中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (1): 101-111 DOI: 10.7536/PC170836 Previous Articles   Next Articles

• Review •

RAFT Emulsion Polymerization

Qing Xiang, Yingwu Luo*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21636008).
PDF ( 1474 ) Cited
Export

EndNote

Ris

BibTeX

The properties of polymer materials are based on chain microstructures. Combining with the merits of both conventional radical polymerization and living anionic polymerization, controlled/"living" radical polymerizations(CLRPs) represented by RAFT polymerization have been shown to be a powerful tool to finely tune chain microstructures. RAFT emulsion polymerization, as a CLRP process very promisingly used in industry, has received extensive attentions for the past two decades. The current review summarizes the up-to-date status of RAFT emulsion polymerization in terms of colloidal instability, polymerization kinetics, and the controllability over chain microstructures, including molecular weight, PDI and livingness. Some new materials of block and gradient copolymers from the RAFT emulsion polymerization are summarized. In addition, the prospects of RAFT emulsion polymerization in polymeric material synthesis are also highlighted.
Contents
1 Introduction
2 Colloidal instability of RAFT emulsion polymerization
3 Controllability of RAFT emulsion polymerization
3.1 Polymerization kinetics
3.2 Molecular weight and PDI
3.3 Livingness and high molecular weight polymer
4 New materials synthesized via RAFT emulsion polymerization
4.1 Block copolymer
4.2 Gradient copolymer
5 Conclusion

CLC Number: 

[1] Szwarc M, Levy M, Milkovich R. J. Am. Chem. Soc., 1956, 78:2656.
[2] 潘祖仁(Pan Z R). 高分子化学(Polymer Chemistry). 4th edition. 北京:化学工业出版社(Beijing:Chemical Industry Press), 2007.
[3] Chiefari J, Chong Y, Ercole F, Krstina J, Jeffery J, Le T P, Mayadunne R T, Meijs G F, Moad C L, Moad G. Macromolecules, 1998, 31:5559.
[4] Matyjaszewski K, Xia J. Chem. Rev., 2001, 101:2921.
[5] Kamigaito M, Ando T, Sawamoto M. Chem. Rev., 2001, 101:3689.
[6] Hawker C J, Bosman A W, Harth E. Chem. Rev., 2001, 101:3661.
[7] Matyjaszewski K, Müller A H. Controlled and Living Polymerizations:from Mechanisms to Applications. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
[8] Matyjaszewski K, Spanswick J. Mater. Today, 2005, 8:26.
[9] Zetterlund P B, Kagawa Y, Okubo M. Chem. Rev., 2008, 108:3747.
[10] Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49:1079.
[11] Gody G, Maschmeyer T, Zetterlund P B, Perrier S. Macromolecules, 2014, 47:3451.
[12] Gody G, Maschmeyer T, Zetterlund P B, Perrier S. Nat. Commun., 2013, 4:2505.
[13] Gilbert R G. Emulsion Polymerization:A Mechanistic Approach. London:Academic Pr, 1995.
[14] Moad G, Chiefari J, Chong Y K, Krstina J, Mayadunne R T A, Postma A, Rizzardo E, Thang S H. Polym. Int., 2000, 49:993.
[15] Mayadunne R T A, Rizzardo E, Chiefari J, Chong Y K, Moad G, Thang S H. Macromolecules, 1999, 32:6977.
[16] Uzulina I, Kanagasabapathy S, Claverie J. Macromol. Symp., 2000, 150:33.
[17] Charmot D, Corpart P, Adam H, Zard S Z, Biadatti T, Bouhadir G. Macromol. Symp., 2000, 150:23.
[18] Monteiro M J, Sjöberg M, van der Vlist J, Göttgens C M. J. Polym. Sci. Part A:Polym. Chem., 2000, 38:4206.
[19] Monteiro M J, de Barbeyrac J. Macromolecules, 2001, 34:4416.
[20] Monteiro M J, Adamy M M, Leeuwen B J, van Herk A M, Destarac M. Macromolecules, 2005, 38:1538.
[21] Shim S E, Shin Y, Jun J W, Lee K, Jung H, Choe S. Macromolecules, 2003, 36:7994.
[22] Shim S E, Shin Y, Lee H, Choe S. Polym. Bull., 2003, 51:209.
[23] Apostolovic B, Quattrini F, Butté A, Storti G, Morbidelli M. Helv. Chim. Acta, 2006, 89:1641.
[24] Luo Y, Cui X. J. Polym. Sci. Part A:Polym. Chem., 2006, 44:2837.
[25] De Brouwer H, Tsavalas J G, Schork F J, Monteiro M J. Macromolecules, 2000, 33:9239.
[26] Luo Y, Tsavalas J, Schork F J. Macromolecules, 2001, 34:5501.
[27] Monteiro M J, Hodgson M, de Brouwer H. J. Polym. Sci. Part A:Polym. Chem., 2000, 38:3864.
[28] Urbani C N, Nguyen H N, Monteiro M J. Aust. J. Chem., 2006, 59:728.
[29] Nozari S, Tauer K. Polymer, 2005, 46:1033.
[30] Nozari S, Tauer K, Ali A M I. Macromolecules, 2005, 38:10449.
[31] Ferguson C J, Hughes R J, Pham B T, Hawkett B S, Gilbert R G, Serelis A K, Such C H. Macromolecules, 2002, 35:9243.
[32] Save M, Guillaneuf Y, Gilbert R G. Aust. J. Chem., 2006, 59:693.
[33] Prescott S W, Ballard M J, Rizzardo E, Gilbert R G. Macromolecules, 2002, 35:5417.
[34] Prescott S W, Ballard M J, Rizzardo E, Gilbert R G. Macromol. Theory Simul., 2006, 15:70.
[35] Luo Y, Wang X, Li B G, Zhu S. Macromolecules, 2011, 44:221.
[36] Ferguson C J, Hughes R J, Nguyen D, Pham B T T, Gilbert R G, Serelis A K, Such C H, Hawkett B S. Macromolecules, 2005, 38:2191.
[37] Ganeva D E, Sprong E, de Bruyn H, Warr G G, Such C H, Hawkett B S. Macromolecules, 2007, 40:6181.
[38] Rieger J, Osterwinter G, Bui C, Stoffelbach F, Charleux B. Macromolecules, 2009, 42:5518.
[39] Rieger J, Stoffelbach F, Bui C, Alaimo D, Jérôme C, Charleux B. Macromolecules, 2008, 41:4065.
[40] Wang X, Luo Y, Li B, Zhu S. Macromolecules, 2009, 42:6414.
[41] Zhang W, D'Agosto F, Boyron O, Rieger J, Charleux B. Macromolecules, 2011, 44:7584.
[42] Chenal M, Bouteiller L, Rieger J. Polym. Chem., 2013, 4:752.
[43] Chaduc I, Crepet A, Boyron O, Charleux B, D'Agosto F, Lansalot M. Macromolecules, 2013, 46:6013.
[44] Chaduc I, Girod M, Antoine R, Charleux B, D'Agosto F, Lansalot M. Macromolecules, 2012, 45:5881.
[45] Wi Y, Lee K, Lee B H, Choe S. Polymer, 2008, 49:5626.
[46] Manguian M, Save M, Charleux B. Macromol. Rapid Commun., 2006, 27:399.
[47] Barner-Kowollik C, Quinn J F, Morsley D R, Davis T P. J. Polym. Sci. Part A:Polym. Chem., 2001, 39:1353.
[48] Barner-Kowollik C, Quinn J F, Nguyen T L U, Heuts J P A, Davis T P. Macromolecules, 2001, 34:7849.
[49] Wang A R, Zhu S, Kwak Y, Goto A, Fukuda T, Monteiro M S. J. Polym. Sci. Part A:Polym. Chem., 2003, 41:2833.
[50] Barner-Kowollik C, Coote M L,Davis T P, Radom L, Vana P. J. Polym. Sci. Part A:Polym. Chem., 2003, 41:2828.
[51] Butté A, Storti G, Morbidelli M. Macromolecules, 2001, 34:5885.
[52] Lansalot M, Davis T P, Heuts J P A. Macromolecules, 2002, 35:7582.
[53] Luo Y, Wang R, Yang L, Yu B, Li B, Zhu S. Macromolecules, 2006, 39:1328.
[54] Yan K, Gao X, Luo Y. AIChE J., 2016, 62:2126.
[55] Hawkett B S, Napper D H, Gilbert R G. J. Chem. Soc. Faraday Trans. 1, 1980, 76:1323.
[56] Ugelstad J, Mörk P C, Aasen J O. J. Polym. Sci. Part A:Polym. Chem., 1967, 5:2281.
[57] Huang J, Zhao S, Gao X, Luo Y, Li B. Ind. Eng. Chem. Res., 2014, 53:7688.
[58] Zhu Y, Bi S, Gao X, Luo Y. Macromol. React. Eng., 2015, 9:503.
[59] Yan K, Gao X, Luo Y. J. Polym. Sci. Part A:Polym. Chem., 2015, 53:1848.
[60] Yan K, Luo Y. React. Chem.& Eng., 2017, 2:159.
[61] Zhao F, Mahdavian A R, Teimouri M B, Daniels E S, Klein A, El-Aasser M S. Colloid. Polym. Sci., 2012, 290:1247.
[62] Yan K, Gao X, Luo Y. Macromol. Rapid Commun., 2015, 36:1277.
[63] Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336:434.
[64] Ruzette A V, Leibler L. Nat. Mater., 2005, 4:19.
[65] Leibler L. Prog. Polym. Sci., 2005, 30:898.
[66] Luo Y, Wang X, Zhu Y, Li B G, Zhu S. Macromolecules, 2010, 43:7472.
[67] 罗英武(Luo Y W). 化工学报(CIESC Journal), 2013, 64:415.
[68] Ma Z, Xie Y, Mao J, Yang X, Li T, Luo Y. Macromol. Rapid Commun., 2017, 38:1700268.
[69] Zheng Z, Gao X, Luo Y, Zhu S. Macromolecules, 2016, 49:2179.
[70] Mao J, Li T, Luo Y. J. Mater. Chem. C, 2017, 27:6834.
[71] Wei R, Luo Y, Zeng W, Wang F, Xu S. Ind. Eng. Chem. Res., 2012, 51:15530.
[72] Zhu Y, Gao X, Luo Y. J. Appl. Polym. Sci., 2016, 133:42833.
[73] Xiang Q, Luo Y. Polymer, 2016, 106:285.
[74] 郭云龙(Guo Y L),罗英武(Luo Y W).化工学报(CIESC Journal), 2016, 67:218.
[75] Li X, Liang S, Wang W J, Li B G, Luo Y, Zhu S. Macromol. React. Eng., 2015, 9:409.
[76] Sun X, Luo Y, Wang R, Li B G, Zhu S. AIChE J., 2008, 54:1073.
[77] Guo Y, Zhang J, Xie P, Gao X, Luo Y. Polym. Chem., 2014, 5:3363.
[78] Guo Y, Gao X, Luo Y. J. Polym. Sci. Part B:Polym. Phys., 2015, 53:860.
[79] Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O. Soft Matter, 2012, 8:7649.
[80] Tonnar J, Lacroix-Desmazes P. Soft Matter, 2008, 4:1255.
[81] Kim J, Gray M K, Zhou H, Nguyen S T, Torkelson J M. Macromolecules, 2005, 38:1037.
[82] Palermo E F, van der Laan H L, McNeil A J. Polym. Chem., 2013, 4:4606.
[83] Kim J, Zhou H, Nguyen S T, Torkelson J M. Polymer, 2006, 47:5799.
[84] Wang Y Q, Wang Y, Zhang H F, Zhang L Q. Macromol. Rapid Commun., 2006, 27:1162.
[85] Mok M M, Kim J, Torkelson J M. J. Polym. Sci. Part B:Polym. Phys., 2008, 46:48.
[86] Ogura Y, Terashima T, Sawamoto M. ACS Macro Letters, 2013, 2:985.
[87] Luo Y, Guo Y, Gao X, Li B G, Xie T. Adv. Mater., 2013, 25:743.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[6] Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*. Directed Self-Assembly of Block Copolymers [J]. Progress in Chemistry, 2017, 29(4): 435-442.
[7] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[8] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[9] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[10] Wei Wei, Liu Jingcheng, Li Hu, Mu Qidao, Liu Xiaoya. Development and Application of Microelectronic Photoresist [J]. Progress in Chemistry, 2014, 26(11): 1867-1888.
[11] Yang Jiexin, Liu Lei, Xu Junting. Crystalline Micelles of Block Copolymers [J]. Progress in Chemistry, 2014, 26(11): 1811-1820.
[12] Wang Lulu, Huang Haiying, He Tianbai. Block Copolymer Nanotubular Aggregates Prepared via Direct Self-Assembly in Solution [J]. Progress in Chemistry, 2014, 26(05): 810-819.
[13] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[14] Xiong Xingquan, Tang Zhongke, Cai Lei. Synthesis of Functional Polymers via Combination of Thiol-Based Click Reactions with RAFT Polymerization [J]. Progress in Chemistry, 2012, (9): 1751-1764.
[15] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
Viewed
Full text


Abstract

RAFT Emulsion Polymerization