中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2302-2315 DOI: 10.7536/PC220237 Previous Articles   Next Articles

• Review •

Research on the Construction and Application of Superwetting Materials with Photothermal Effect

Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng()   

  1. Key Laboratory For Characteristic Textiles & Cleaner Dyeing and Finishing Technology, Xinjiang University,Urumqi 830017, China
  • Received: Revised: Online: Published:
  • Contact: Chen Cheng
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C68); Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2021Y007); Tianchi Doctoral Program of Xinjiang(TCBS202011); PhD Start-Up Fund of Xinjiang University(BS210215)
Richhtml ( 70 ) PDF ( 531 ) Cited
Export

EndNote

Ris

BibTeX

With the continuous developing of industrial society, higher requirements for the functions of superwetting materials have been put forward in different industries. In this circumstances, the transformation to multi-function or intelligent for superwetting materials has become an inevitable trend. Meanwhile, under the background of people’s increasing attention to the environmental issue, new technologies with sustainable environmental protection, high efficiency and low consumption has been concerned. Superwetting materials with photothermal effect have become a research hotpot at home and abroad, which could be as the emerging products to achieve seawater desalination, solar evaporator and other fields. In this review, we firstly introduced the research status for constructing superwetting photothermal materials, including carbon-based, organic-based or semiconductor-based substrates and compound type. Besides, the limitation of these materials were analyzed. Then, the research progress and mechanism of superwetting photothermal materials, which are applied in anti-icing, seawater desalination, oil/water separation and etc, are teased and elaborated. Furthermore, the problems such as environmental hazards in the process of preparation were summarized. At last, the development tendency and research route of functional and intelligent superwetting materials with photothermal effect were prospected.

Fig.1 (a) Mechanism of photothermal conversion; (b) schematic diagram of photothermal conversion principle; (c) schematic diagram for seawater desalination application of superwetting photothermal materials[23]
Fig. 2 The construction methods of superwetting photothermal materials
Table 1 The comparison of preparation methods of superwetting photothermal materials
Fig. 3 (a) Preparation method of graphene mask; (b) Heating of original mask and graphene mask under infrared irradiation[30]; (c) Diagram of photothermal deicing of SiC/CNTs coatings; (d) Temperature curves of different samples under infrared irradiation[25]; (e) Photothermal deicing of glass (top) and carbon black superhydrophobic coating (bottom) at one solar intensity; (f) Photothermal-heating curves for surface of glass and carbon black superhydrophobic coating under one-sun irradiation[33]
Table 2 Photothermal conversion properties of different carbon-based superwetting photothermal materials
Fig. 4 (a) Diagram of HCPs synthesis[36]; (b) schematic illustration of the preparation process for superhydrophobic FTPMF sponge; (c) schematic illustration of the solar-heating measurement of Janus sponge top and bottom surfaces; (d) UV-vis absorption spectra of MF, PMF, TPMF and Janus sponge; (e) infrared images of the photothermal performance of the top and bottom surfaces of MF and Janus sponge[37]
Fig. 5 (a) The surface temperature evolution curves of the sample placed on the surface of crude oil under the simulated sunlight irradiation; (b) The change of crude oil viscosity as a function of oil temperature[39]; (c) Schematic representation of the fabrication of the CuO nanowire mesh and the evaporation experiment; (d) Comparison of the mass-changes over different conditions: CuO tree in dark condition (red line), water under light (green line), CuO tree under light (black line); (e) Different energy distribution ratio of the solar evaporation process for the CuO tree system[40]
Fig. 6 (a) Schematic diagram of fabrication of Fe2O3/CNT/NF nanocomposite foam[49]; (b) Synthetic route of MNP@NH2@P(C6SMA-r-SMA-r-GMA) coating; (c) Schematic diagram of photothermal experimental set-up; (d) Photothermal effect of coating surfaces under sunlamp irradiation (75 W)[51]
Fig. 7 (a) Preparation of the superhydrophobic coatings and photothermal curves of composite coatings added with different amount of Prussian blue[55]; (b) Schematic illustration for preparing Fe3O4@SiO2/HMDS particles[29]; (c) Schematic diagram of preparation of SiO2/SiC superhydrophobic coating onto EVA substrate
Fig. 8 The (a) schematic preparation, (b) functions of each component, (c) diagram of experimental device for clean water collection via solar desalination of ilicone/MWCNT evaporators[58]; (d) The fabrication process, (e) a general strategy for efficient and stable solar desalination hydrophobic d-Ti3C2 membrane[23]; (f) schematic illustration of synthesis of carbon soot coated PAFs for solar steam generation; (g) schematic diagram of the CPAFs as evaporator for solar steam generation[59]
Fig. 9 (a) The schematic illustration for the preparation, and (b) the temperature variation with the illumination time of the foam composite; (c) The practical scenario of the oil absorption process without and with light illumination after 20 min[60]; (d) Schematic illustration of the preparation process for a superhydrophobic PDMS/CuS/PDA@MF sponge; (e) Time-dependent temperature evolution for different sponges under one sunlight. The light was turned off after 200 s; (f) The PDMS0.8/CuS3/PDA@MF sponge for absorbing a crude oil droplet (0.4 mL) from top to bottom under one sunlight[62]
Table 3 Brief introduction to the application of superwetting materials with photothermal effect
[1]
Li H, Yu S R. Appl. Surf. Sci., 2017, 420: 336.

doi: 10.1016/j.apsusc.2017.05.131
[2]
Cui S, Lu S X, Xu W G, An B F, Wu B. J. Alloys Compd., 2017, 728: 271.

doi: 10.1016/j.jallcom.2017.09.007
[3]
Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347(6226): 1132.

doi: 10.1126/science.aaa0946
[4]
Gao Y L, Qu L C, He B, Dai K M, Fang Z S, Zhu R J. Constr. Build. Mater., 2018, 191: 270.

doi: 10.1016/j.conbuildmat.2018.10.009
[5]
Wang L, Gong Q H, Zhan S H, Jiang L, Zheng Y M. Adv. Mater., 2016, 28(35): 7729.

doi: 10.1002/adma.201602480
[6]
Subeshan B, Usta A, Asmatulu R. Surf. Interfaces, 2020, 18: 100429.
[7]
Latthe S S, Sutar R S, Shinde T B, Pawar S B, Khot T M, Bhosale A K, Sadasivuni K K, Xing R M, Mao L Q, Liu S H. ACS Appl. Nano Mater., 2019, 2(2): 799.

doi: 10.1021/acsanm.8b02021
[8]
Huang G, Lai B W, Xu H D, Jin Y K, Huo L, Li Z R, Deng Y L. Sep. Purif. Technol., 2021, 258: 118063.

doi: 10.1016/j.seppur.2020.118063
[9]
Mao Y, Wang F, Li Y, Guidoin R, Wang L, Wang F J. Appl. Surf. Sci., 2020, 517: 146104.

doi: 10.1016/j.apsusc.2020.146104
[10]
Xun X W, Wan Y Z, Zhang Q C, Gan D Q, Hu J, Luo H L. Appl. Surf. Sci., 2020, 505: 144566.

doi: 10.1016/j.apsusc.2019.144566
[11]
He J, Mao M, Lu Y T, Jiang W, Liang B. Ind. Eng. Chem. Res., 2017, 56(2): 495.

doi: 10.1021/acs.iecr.6b03542
[12]
Cho E C, Chang-Jian C W, Chen H C, Chuang K S, Zheng J H, Hsiao Y S, Lee K C, Huang J H. Chem. Eng. J., 2017, 314: 347.

doi: 10.1016/j.cej.2016.11.145
[13]
Vazirinasab E, Jafari R, Momen G. Surf. Coat. Technol., 2018, 341: 40.

doi: 10.1016/j.surfcoat.2017.11.053
[14]
Kim A, Kim H, Lee C, Kim J. Appl. Phys. Lett., 2014, 104(8): 081601.

doi: 10.1063/1.4866262
[15]
Dai H Y, Gao C, Sun J H, Li C X, Li N, Wu L, Dong Z C, Jiang L. Adv. Mater., 2019, 31(43): 1905449.

doi: 10.1002/adma.201905449
[16]
Lai Y K, Huang J Y, Cui Z Q, Ge M Z, Zhang K Q, Chen Z, Chi L F. Small, 2016, 12(16): 2203.

doi: 10.1002/smll.201501837
[17]
Yin K, Du H F, Dong X R, Wang C, Duan J A, He J. Nanoscale, 2017, 9(38): 14620.

doi: 10.1039/C7NR05683D
[18]
Luo F L, Shen L P, Ling Z C. Text. Aux., 2019, 36(1): 32.
雒芳林, 沈兰萍, 凌子超. 印染助剂, 2019, 36(1): 32.).
[19]
Xu D. Master Dissertation of Northeast Normal University, 2018.
徐丹. 东北师范大学硕士学位论文, 2018.).
[20]
Fu C. Master Dissertation of University of Chinese Academy of Sciences, 2020.
付超. 中国科学院大学硕士学位论文, 2020.).
[21]
Su F H, Yao K. ACS Appl. Mater. Interfaces, 2014, 6(11): 8762.

doi: 10.1021/am501539b
[22]
Zhu Q, Chu Y, Wang Z K, Chen N, Lin L, Liu F T, Pan Q M. J. Mater. Chem. A, 2013, 1(17): 5386.

doi: 10.1039/c3ta00125c
[23]
Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. J. Mater. Chem. A, 2018, 6(33): 16196.

doi: 10.1039/C8TA05569F
[24]
Shen C, Zhu Y Q, Xiao X D, Xu X Q, Chen X L, Xu G. ACS Appl. Mater. Interfaces, 2020, 12(31): 35142.

doi: 10.1021/acsami.0c11332
[25]
Jiang G, Chen L, Zhang S D, Huang H X. ACS Appl. Mater. Interfaces, 2018, 10(42): 36505.

doi: 10.1021/acsami.8b11201
[26]
Xue C H, Du M M, Guo X J, Liu B Y, Wei R X, Li H G, Huang M C, Deng F Q, Jia S T. Cellulose, 2021, 28(8): 5107.

doi: 10.1007/s10570-021-03857-z
[27]
Xie Z T,. Wang H, Zhu X, Chen R, Ding Y D, Liao Q. CIESC Journal, 2021, 72(11): 5840.
谢震廷, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强. 化工学报, 2021, 72(11): 5840.).
[28]
Zhu Z D, Fu S Y, Lucia L A. ACS Sustainable Chem. Eng., 2019, 7(19): 16428.

doi: 10.1021/acssuschemeng.9b03544
[29]
Zhu R F, Liu M M, Hou Y Y, Zhang L P, Li M, Wang D, Fu S H. ACS Appl. Mater. Interfaces, 2020, 12(14): 17004.

doi: 10.1021/acsami.9b22268
[30]
Zhong H, Zhu Z R, Lin J, Cheung C F, Lu V L, Yan F, Chan C Y, Li G J. ACS Nano, 2020, 14(5): 6213.

doi: 10.1021/acsnano.0c02250 pmid: 32329600
[31]
Wang X D, Dai L G, Jiao N D, Tung S, Liu L Q. Chem. Eng. J., 2021, 422: 129394.

doi: 10.1016/j.cej.2021.129394
[32]
Su X J, Li H Q, Lai X J, Yang Z P, Chen Z H, Wu W J, Zeng X R. J. Mater. Chem. A, 2018, 6(35): 16910.

doi: 10.1039/C8TA05273E
[33]
Li H G, Xue Z H, Jia S T. Fine Chemicals, 2021, 38(05): 934.
李回归, 薛朝华, 贾顺田. 精细化工, 2021, 38(05): 934.).
[34]
Zhou Y L, Ying P J, Geng Y, Tian T Q, Li M, Sun K. Research and Exploration in Laboratory, 2020, 39(01): 54.
周永利, 应佩晋, 耿阳, 田廷泉, 李猛, 孙宽. 实验室研究与探索, 2020, 39(01): 54.).
[35]
Guo X X, Gao H, Yin L F, Wang S Y, Dai Y R, Feng C P. Prog. Chem., 2019, 31(4): 580.
郭星星, 高航, 殷立峰, 王思宇, 代云容, 冯传平. 化学进展, 2019, 31(4): 580.).

doi: 10.7536/PC180908
[36]
Liu F, Liang W D, Wang C J, He J X, Xiao C H, Zhu Z Q, Sun H X, Li A. Sol. Energy Mater. Sol. Cells, 2021, 221: 110913.

doi: 10.1016/j.solmat.2020.110913
[37]
Yang J, Xu P, Yao Y L, Li Y, Shi B, Jia X H, Song H J. Mater. Des., 2020, 195: 108979.

doi: 10.1016/j.matdes.2020.108979
[38]
Ibrahim I, Seo D H, McDonagh A M, Shon H K, Tijing L. Desalination, 2021, 500: 114853.

doi: 10.1016/j.desal.2020.114853
[39]
Li Q Q, Sun Q Y, Li Y H, Wu T, Li S K, Zhang H, Huang F Z. ACS Appl. Mater. Interfaces, 2020, 12(17): 19476.

doi: 10.1021/acsami.0c01207
[40]
Xu Y, Ma J X, Han Y, Zhang J J, Cui F Y, Zhao Y, Li X, Wang W. ACS Sustainable Chem. Eng., 2019, 7(5): 5476.

doi: 10.1021/acssuschemeng.8b06679
[41]
Jiang T T, Song J, Zhang W T, Wang H, Li X D, Xia R X, Zhu L X, Xu X L. ACS Appl. Mater. Interfaces, 2015, 7(39): 21985.

doi: 10.1021/acsami.5b08305
[42]
Espinosa A, Curcio A, Cabana S, Radtke G, Bugnet M, Kolosnjaj-Tabi J, PÉchoux C, Alvarez-Lorenzo C, Botton G A, Silva A K A, Abou-Hassan A, Wilhelm C. ACS Nano, 2018, 12(7): 6523.

doi: 10.1021/acsnano.8b00482 pmid: 29906096
[43]
Cai S C, Li J J, Yu E Q, Chen X, Chen J, Jia H P. ACS Appl. Nano Mater., 2018, 1(11): 6368.

doi: 10.1021/acsanm.8b01578
[44]
Liu X, Zhang X, Zhu M, Lin G H, Liu J, Zhou Z F, Tian X, Pan Y. ACS Appl. Mater. Interfaces, 2017, 9(1): 279.

doi: 10.1021/acsami.6b15183
[45]
Chen S, Tang F, Tang L Z, Li L D. ACS Appl. Mater. Interfaces, 2017, 9(24): 20895.

doi: 10.1021/acsami.7b04956
[46]
Zhang W X, Hao Y N, Gao Y R, Shu Y, Wang J H. ACS Appl. Mater. Interfaces, 2021, 13(32): 38127.

doi: 10.1021/acsami.1c12199
[47]
Li D M. Master Dissertation of Northwest Normal University, 2017.
李殿明. 西北师范大学硕士学位论文, 2017.).
[48]
Song Y F, Li X Y, Wang Y C. Chem. Res., 2017, 28(4): 513.
宋玉丰, 李西营, 王玉超. 化学研究, 2017, 28(4): 513.).
[49]
Han S, Yang J, Li X F, Li W, Zhang X T, Koratkar N, Yu Z Z. ACS Appl. Mater. Interfaces, 2020, 12(11): 13229.

doi: 10.1021/acsami.0c00606
[50]
Wang L, Wang D, Wu Z F, Luo J C, Huang X W, Gao Q, Lai X J, Tang L C, Xue H G, Gao J F. ACS Appl. Mater. Interfaces, 2020, 12(11): 13316.

doi: 10.1021/acsami.0c00150
[51]
Cheng T T, He R, Zhang Q H, Zhan X L, Chen F Q. J. Mater. Chem. A, 2015, 3(43): 21637.

doi: 10.1039/C5TA05277G
[52]
Li Y B, Li B C, Zhao X, Tian N, Zhang J P. ACS Appl. Mater. Interfaces, 2018, 10(45): 39391.

doi: 10.1021/acsami.8b15061
[53]
Hao Q Y, Pang Y C, Zhao Y, Zhang J, Feng J, Yao S H. Langmuir, 2014, 30(51): 15416.

doi: 10.1021/la504166x
[54]
Hu J H, Jiang G. Surf. Coat. Technol., 2020, 402: 126342.

doi: 10.1016/j.surfcoat.2020.126342
[55]
Yang X X, Chen Q, Zhang H L, Xu Z S, Y C F. Acta Mater Compos. Sin, 2021, 38(12): 4014.
杨晓昕, 陈奇, 张宏量, 徐祖顺, 易昌凤. 复合材料学报, 2021, 38(12): 4014.).
[56]
Gao S R, Jiao L L, Yi M C, Jin J X, Wang X D. Acta. Aerodynamica Sinica, 2021, 39(02): 151.
高淑蓉, 焦丽丽, 易孟超, 金佳鑫, 王晓东. 空气动力学学报, 2021, 39(02): 151.).
[57]
S. P, Liu H. Express Water Resour. & Hydropower Inf., 2017, 38(5): 14.
S.普里查德, 刘卉. 水利水电快报, 2017, 38(5): 14.).
[58]
Hu T, Li L X, Yang Y F, Zhang J P. J. Mater. Chem. A, 2020, 8(29): 14736.

doi: 10.1039/D0TA04917D
[59]
Liu F, Liang W D, Wang C J, Xiao C H, He J X, Zhao G H, Zhu Z Q, Sun H X, Li A. Mater. Today Energy, 2020, 16: 100375.
[60]
Guo Z, Long B, Gao S J, Luo J C, Wang L, Huang X W, Wang D, Xue H G, Gao J F. J. Hazard. Mater., 2021, 402: 123838.

doi: 10.1016/j.jhazmat.2020.123838
[61]
Ji H N, Yi C F, Xu Z S, Yang X X. Acta. Materiae Compositae Sinica, 2021, 39(0): 1.
纪浩楠, 易昌凤, 徐祖顺, 杨晓昕. 复合材料学报, 2021, 39(0): 1.).
[62]
Niu H F, Li J B, Wang X F, Luo F H, Qiang Z, Ren J. ACS Appl. Mater. Interfaces, 2021, 13(18): 21175.

doi: 10.1021/acsami.1c00452
[63]
Zhang C, Li Y L, Sun S, Kalulu M, Wang Y, Zhou X, Wang X Y, Du Q, Jiang Y. Prog. Org. Coat., 2020, 139: 105369.
[64]
Zhang S, Huang X W, Wang D, Xiao W, Huo L Y, Zhao M, Wang L, Gao J F. ACS Appl. Mater. Interfaces, 2020, 12(41): 47076.

doi: 10.1021/acsami.0c15110
[65]
Yang R L, Zhu Y J, Chen F F, Qin D D, Xiong Z C. ACS Sustainable Chem. Eng., 2019, 7(15): 13226.

doi: 10.1021/acssuschemeng.9b02488
[66]
Cao W T, Feng W, Jiang Y Y, Ma C, Zhou Z F, Ma M G, Chen Y, Chen F. Mater. Horiz., 2019, 6(5): 1057.

doi: 10.1039/C8MH01566J
[67]
Chen C, Huang Z C, Shi L A, Jiao Y L, Zhu S W, Li J W, Hu Y L, Chu J R, Wu D, Jiang L. Adv. Funct. Mater., 2019, 29(40): 1904766.

doi: 10.1002/adfm.201904766
[68]
Jiao L, Chen R, Ye D D, Li W, Li D L. Int. J. Heat Mass Transf., 2019, 143: 118560.

doi: 10.1016/j.ijheatmasstransfer.2019.118560
[1] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[2] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[3] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[4] Cuiping Zhou, Qiming Liu, Xuan Zhao, Chunsheng Li, Hui Li, Shuxiang Zhang. The Preparation and Anti-Icing Properties of Flexible Surfaces [J]. Progress in Chemistry, 2019, 31(7): 1056-1066.
[5] Jihao Zuo, Jiahui Chen, Xiufang Wen, Shoupin Xu, Pihui Pi. Advanced Materials for Separation of Oil/Water Emulsion [J]. Progress in Chemistry, 2019, 31(10): 1440-1458.
[6] Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang. Selective Oil/Water Separation Materials [J]. Progress in Chemistry, 2019, 31(1): 134-143.
[7] Jing Yuan, Fangfang Liao, Yani Guo, Liyun Liang. Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation [J]. Progress in Chemistry, 2019, 31(1): 144-155.
[8] Mengnan Qu*, Mingjuan Yuan, Jiao He, Menghui Xue, Jinmei He*. Smart Responsive Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1874-1886.
[9] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[10] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[11] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[12] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[13] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.
[14] Qu Yang, Li Jianbo*, Ren Jie*. Thermo-Sensitive Drug Delivery and Relevant Applications on Thermo-Chemotherapy [J]. Progress in Chemistry, 2013, 25(05): 785-798.
[15] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.