中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1440-1458 DOI: 10.7536/PC190324 Previous Articles   

Advanced Materials for Separation of Oil/Water Emulsion

Jihao Zuo, Jiahui Chen, Xiufang Wen, Shoupin Xu, Pihui Pi**()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received: Online: Published:
  • Contact: Pihui Pi
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21676102); National Natural Science Foundation of China(21878110)
Richhtml ( 101 ) PDF ( 2742 ) Cited
Export

EndNote

Ris

BibTeX

Frequent marine oil spills accidents and the increasing discharge of various industrial sewage have caused great threats to the ecological environment and human health. Therefore, it’s a vitally important task for scientists all over the world to develop advanced materials for separating oil/water emulsions. The separation of oil/water emulsion(also known as emulsified oil/water) is more arduous than that of the immiscible oil/water mixture. This review focuses on the materials of oil/water emulsion separation. Firstly, the formation mechanism and the separation principle of oil/water emulsion are analyzed in essence, and we emphasize the importance of "size sieving" effect and membrane demulsification technology. Then, the latest developments of advanced materials which are commonly applied to the separation of oil/water emulsion are comprehensively introduced and discussed from the perspective of substrate, and the application of various modification methods of substrates in oil/water separation are elaborated. The emphases of material modification are "appropriate pore size" and "special wettability", which can meet excellent separation efficiency, permeability, antifouling ability, mechanical ability and durability requirements. These properties are critical for actual oil/water separation operations. Importantly, the environmental system will be getting more complicated in the future. Besides, most of the oil/water emulsions contain a variety of pollutants in the real environment, and most of them are operated in a harsh environment. Therefore, oil/water separation materials need to be constantly improved to meet these conditions. We believe that in the future, an advanced multifunctional material, which can be used for efficient separation of various oil/water emulsions and other impurities under harsh conditions, will possess great prospects.

Fig. 1 (a) Schematic illustration of alkaline-induced phase separation process for the fabrication of PAN membrane.(b) Oil content in the filtrate after permeation and water flux for different O/W emulsion permeating through the PAN membrane.(c) Photographs of an isooctane-in-water emulsion before and after filtration[36]. Copyright 2016, Elsevier.
Fig. 2 PVDF electrospinning membrane which can be used for oil/water emulsion separation.(a) Preparation of superhydrophobic/superoleophilic PVDF membrane by two-step electrospinning method.(b) SEM images of superhydrophobic/superoleophilic PVDF membrane.(c) Photograph of the water droplets(dyed blue) and oil droplets(dyed red) on the PVDF membrane.(d) The optical microscopy photographs of water-in-D5 emulsions before and after separation[34]. Copyright 2018, RSC.
Fig. 3 (a) Formation process of PDA network structure in traditional Tris buffer mixture.(b) Formation process of PDA nano-microspheres in THF-Tris buffer mixture.(c) Water flux and oil rejection of different surfactant-stabilized oil in water emulsions treated by PTFE membrane[38]. Copyright 2018, Elsevier.
Fig. 4 Characterization of wettability stability of ZNG-g-PVDF membrane under different pH and different salt concentration. Variation of wettability stability(initiated water CA and underwater oil CA) of ZNG-g-PVDF membrane with respect to(a) pH and(b) NaCl concentration. Adhesion force of ZNG-g-PVDF membrane with respect to(c) pH and(d) NaCl concentration. The photographs of feed solution and filtrates with (e) pure oil-in-water emulsion,(f) oil-in-water emulsion with BSA added, and(g) oil-in-water emulsion with humic acid added[32]. Copyright 2018, Wiley.
Fig. 5 (a) A schematic showing the fabrication process of the Cu2+/alginate multilayer modified PAA-g-PVDF membrane via LbL self-assembly for separation of crude oil-in-water emulsion. (b)Optical images showing the dynamic wetting behaviors of Cu2+/alginate multilayer modifed PAA-g-PVDF membrane via LbL self-assembly.(c)Digital and microscopic photographs of surfactant-stabilized crude oil-in-water emulsion before(feed) and after(filtrate) separation[33]. Copyright 2018, Wiley.
Fig. 6 (a) Schematic illustration of superhydrophilic/underwater superoleophobic glass fiber membrane fabrication and emulsion separation. Residual oil content in filtrate and separation efficiency for (b) various O/W emulsions(toluene was selected as the oil phase, deionized water, H2SO4 aqueous solution in gradient concentration, and saturated NaCl solution were chosen as water phases separately); (c) various O/W emulsions(10 M H2SO4 aqueous solution is chosen as water phases, toluene, n-hexane, n-octane, isooctane, and n-heptane are selected as the oil phase, separately) [81]. Copyright 2016, Springer Nature.
Fig. 7 (a) SWCNT film suspended by a steel hoop.(b)TEM image of SWCNT film showing a porous network structure(~70 nm thick).(c) A photograph of separating a creamy white water-in-oil emulsion through the SWCNT film.(d) Separation efficiency of SWCNT film for six various emulsions [93]. Copyright 2013, Wiley.
Fig. 8 (a) SEM images of a superhydrophilic bumps-superhydrophobic/superoleophilic stainless steel mesh(SBS-SSM).(b) Digital images of superhydrophobic/superoleophilic stainless steel mesh(S-SSM)(filtrate Ⅰ) and SBS-SSM(filtrate Ⅱ) after separating water-in-toluene emulsion. Separation efficiency for(c) various surfactant-free water-in-oil emulsions and(d) various surfactant-stabilized water-in-oil emulsions of S-SSM and SBS-SSM[112]. Copyright 2016, ACS.
Fig. 9 (a) Schematic of the fabrication process of hydrogel-coated filter paper.(b) SEM images of hydrogel-coated filter paper.(c) Photographs of hexane-in-water before and after filtration[121]. Copyright 2015, Wiley.
Fig. 10 Cotton after hydrophobic modification by ODA.(a) Beaded water droplets in air on SHC.(b) Beaded water droplets under oil on SHC.(c) Water contact angle in air images of SHC.(d) Water contact angle under oil images of SHC.(e) Process for separating water-in-dichloromethane emulsion(oil dyed red) through gravity-driven filtration using SHC.(f) The oil phase in the water-in-dichloromethane emulsion penetrates into SHC easily. Photographs of water-in-dichloromethane emulsion (g)before and (h)after filtration [126]. Copyright 2017, RSC.
Fig. 11 (a) Schematic illustration of preparation process of modified PMF sponges and SEM images of corresponding pore.(b) Variation of the water contact angle and the underwater oil contact angle of the PMF sponges with different SiO2 nanofiber concentrations.(c) Oil/water separation process and the microscopy images of hexane-in-water emulsion before and after separation[132]. Copyright 2017, Wiley.
Fig. 12 (a) Schematic illustration of the process of fabricating 3D porous cage-like structure copper foam.(b) Process for separating toluene-in-water emulsion through superhydrophobic copper foam. Emulsion appearance images of toluene-in-water emulsion (c)before and (d)after separation. Microscopy images of toluene-in-water emulsion (e)before and (f)after separation[138]. Copyright 2017, RSC.
Fig. 13 (a) Schematic of oil/water separation setup with sand layer.(b) Process of sand layer for the separation of water-in-oil emulsions.(c) Microscope images of the surfactant-stabilized water-in-diesel emulsion before and after separation [142]. Copyright 2018, RSC.
Fig. 14 (a) Schematic of the transformation of hydrophobic substrates into superhydrophilic/underwater superoleophobic membranes via OVA and TA.(b)Water droplets penetrate into the surface of the four different membranes quickly via OVA and TA[145]. Copyright 2018, RSC.
Fig. 15 (a) Schematic illustration of preparation process of SSM/SWCNT-cDNA membrane and separation of multicomponent pollutant-oil-water emulsion by nanopore size sieving effect and wetting property of underwater superoleophobic.(b) Oil rejection of SSM / SWCNT-cDNA membrane for various oil/water emulsions(containing BSA, methylene blue and Au nanoparticles, respectively).(c) Size distribution of various oil/water emulsions(containing BSA, methylene blue and Au nanoparticles, respectively) before and after separation [154]. Copyright 2018, Elsevier.
[1]
Wolfaardt A C, Underhill L G, Altwegg R, Visagie J, Williams A J . Afr. J. Mar. Sci., 2008,30:405.
[2]
Worton D R, Zhang H F, Isaacman-VanWertz G, Chan A W H, Wilson K R, Goldstein A H . Environ. Sci. Technol., 2015,49:13130.
[3]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M . Nature, 2008,452:301.
[4]
Wang S T, Liu K S, Yao X, Jiang L . Chem. Rev., 2015,115:8230.
[5]
Gao S J, Sun J C, Liu P P, Zhang F, Zhang W B, Yuan S L, Li J Y, Jin J . Adv. Mater., 2016,28:5307.
[6]
Rosso F, Sona G . Adv. Math. Sci. Appl., 2001,11:127.
[7]
Selyanina S B, Makarevich N A, Tel’Tevskaya S E, Afanas’Eva N I, Selivanova N V . Russ. J. Appl. Chem., 2002,75:1873.
[8]
O’Brien K J, Prendergast G J J . US 5514266 A, 1996.
[9]
Al-Shamrani A A, James A, Xiao H . Water Res., 2002,36:1503.
[10]
Hosny A Y . Sep. Technol., 1996,6:9.
[11]
Palmer L L, Beyer A H, Stock J . J. Petrol. Technol., 1981,33:1136.
[12]
Ren B P, Kang Y . Sep. Purif. Technol., 2019,211:958.
[13]
Xu D D, Zheng X T, Xiao R . RSC Adv., 2017,7:7108.
[14]
曾新娟(Zeng X J), 王丽(Wang L), 皮丕辉(Pi P H), 程江(Cheng J), 文秀芳(Wen X F), 钱宇(Qian Y) . 化学进展 (Progress in Chemistry), 2018,30(1):73.
[15]
Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L, Zhu D B . Angew. Chem., 2004,43:2012.
[16]
Tao M M, Xue L X, Liu F, Jiang L . Adv. Mater., 2014,26:2943.
[17]
Wang Z J, Wang Y, Liu G J . Angew. Chem. Int. Ed., 2016,55:1291.
[18]
Jiang Y S, Hou J W, Xu J, Shan B T . Carbon, 2017,115:477.
[19]
Yang X B, Wang Z X, Shao L . J. Membrane Sci., 2018,549:67.
[20]
Kota A K, Kwon G, Choi W, Mabry J M, Tuteja A . Nat. Commun., 2012,3:1025.
[21]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci., 2018,555:69.
[22]
Zhou X, He C B . J. Mater. Chem. A, 2018,6:607.
[23]
Zhang W F, Liu N, Zhang Q D, Qu R X, Liu Y N, Li X Y, Wei Y, Feng L, Jiang L . Angew. Chem. Int. Ed., 2018,57:5740.
[24]
Wang Y F, Lai C L, Wang X W, Liu Y, Hu H W, Guo Y J, Ma K K, Fei B, Xin J H . ACS Appl. Mater. Inter., 2016,8:25612.
[25]
Abraham S, Kumaran S K, Montemagno C D . RSC Adv., 2017,7:39465.
[26]
Zuo J H, Li Z K, Wei C, Yan X, Chen Y, Lang W Z . J. Membrane Sci., 2019,577:79.
[27]
Wang G W, Peng L S, Yu B, Chen S G, Ge Z C, Uyama H . J. Ind. Eng. Chem., 2018,62:192.
[28]
Wang J T, Wang H F . Surf. Coat. Tech., 2018,350:234.
[29]
李辈辈(Li B B) . 上海大学博士论文( Doctoral Dissertation of Shanghai University), 2016.
[30]
Lipp P, Lee C H, Fane A G, Fell C J D . J. Membrane Sci., 1988,36:161.
[31]
Zhang W B, Zhu Y Z, Liu X, Wang D, Li J Y, Jiang L, Jin J . Angew. Chem. Int. Ed., 2014,53:856.
[32]
Zhu Y Z, Wang J L, Zhang F, Gao S J, Wang A Q, Fang W G, Jin J . Adv. Funct. Mater., 2018,28:1804121.
[33]
Gao S J, Zhu Y Z, Wang J L, Zhang F, Li J Y, Jin J . Adv. Funct. Mater., 2018,28:1801944.
[34]
Wu J D, Ding Y J, Wang J Q, Li T T, Lin H B, Wang J P, Liu F . J. Mater. Chem. A, 2018,6:7014.
[35]
Ma W J, Zhao J T, Oderinde O, Han J Q, Liu Z C, Gao B H, Xiong R H, Zhang Q L, Jiang S H, Huang C B . J. Colloid Interf. Sci., 2018,532:12.
[36]
Zhang F, Gao S J, Zhu Y Z, Jin J . J. Membrane Sci., 2016,513:67.
[37]
Raza A, Ding B, Zainab G, El-Newehy M, Al-Deyab S S, Yu J Y . J. Mater. Chem. A, 2014,2:10137.
[38]
Li X P, Shan H T, Cao M, Li B A . J. Membrane Sci., 2018,555:237.
[39]
Pan J, Xiao C F, Huang Q L, Liu H L, Zhang T . J. Membrane Sci., 2017,524:623.
[40]
Zuo J H, Cheng P, Chen X F, Yan X, Guo Y J, Lang W Z . Sep. Purif. Technol., 2018,192:348.
[41]
Li M F, Li Y Q, Chang K Q, Cheng P, Liu K, Liu Q Z, Wang Y D, Lu Z T, Wang D . Compos. Commun., 2018,7:69.
[42]
Tan L L, Han N, Qian Y Q, Zhang H R, Gao H K, Zhang L F, Zhang X X . J. Membrane Sci., 2018,564:712.
[43]
Yang Y, Raza A, Banat F, Wang K . J. Water Process Eng., 2018,25:113.
[44]
赵晓勇(Zhao X Y), 曾一鸣(Zeng Y M), 施艳荞(Shi Y Q), 陈观文(Chen G W) . 功能高分子学报 (Journal of Functional Polymers), 2002,15(4):487.
[45]
Arumugham T, Kaleekkal N J, Rana D, Doraiswamy M . J. Appl. Polym. Sci., 2015,1:133.
[46]
Zhang W B, Shi Z, Zhang F, Liu X, Jin J, Jiang L . Adv. Mater., 2013,25:2071.
[47]
Lee M W, An S, Latthe S S, Lee C, Hong S, Yoon S S . ACS Appl. Mater. Inter., 2013,5:10597.
[48]
Ge J L, Zhang J C, Wang F, Li Z L, Yu J Y, Ding B . J. Mater. Chem. A, 2017,5:497.
[49]
Baker B M, Gee A O, Metter R B, Nathan A S, Marklein R A, Burdick J A, Mauck R L . Biomaterials, 2008,29:2348.
[50]
Kang H S, Cho H, Panatdasirisuk W, Yang S . J. Mater. Chem. A, 2017,5:18762.
[51]
Lee H S, Dellatore S M, Miller W M, Messersmith P B . Science, 2007,318:426.
[52]
Liu M Y, Zeng G J, Wang K, Wang Q, Tao L, Zhang X Y, Wei Y . Nanoscale, 2016,8:16819.
[53]
Wang J, Hou L A, Yan K K, Zhang L, Jimmy Y Q M . J. Membrane Sci., 2018,547:156.
[54]
Xiang Y H, Liu F, Xue L X . J. Membrane Sci., 2015,476:321.
[55]
Yang X, He Y, Zeng G Y, Chen X, Shi H, Qing D Y, Li F, Chen Q . Chem. Eng. J., 2017,321:245.
[56]
Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K . ACS Appl. Mater. Inter., 2014,6:12566.
[57]
Bernstein R, Singer C E, Singh S P, Mao C, Arnusch C J . J. Membrane Sci., 2018,548:73.
[58]
Chen W J, Su Y L, Zheng L L, Wang L J, Jiang Z Y . J. Membrane Sci., 2009,337:98.
[59]
Zhang M G, Nguyen Q T, Ping Z H . J. Membrane Sci., 2009,327:78.
[60]
Lv R H, Yin M, Zheng W Z, Na B, Wang B, Liu H S . J. Appl. Polym. Sci., 2017,25:134.
[61]
Xiong Z, Lin H B, Liu F, Xiao P, Wu Z Y, Li T T, Li D H . Sci. Rep., 2017,7:14099.
[62]
Shi Z, Zhang W B, Zhang F, Liu X, Wang D, Jin J, Jiang L . Adv. Mater., 2013,25:2422.
[63]
Tan B Y L, Juay J, Liu Z Y, Sun D . Chem. - Asian J., 2016,11:561.
[64]
Wang K, Yiming W, Saththasivam J, Liu Z Y . Nanoscale, 2017,9:9018.
[65]
Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L . Adv. Mater., 2011,23:4270.
[66]
Yuan T, Meng J Q, Hao T Y, Wang Z H, Zhang Y F . ACS Appl. Mater. Inter., 2015,7:14896.
[67]
Chen P C, Xu Z K . Sci. Rep., 2013,3:2776.
[68]
Iler R K . J. Colloid Interf. Sci., 1966,21:569.
[69]
谢瑜亮(Xie Y L), 王明君(Wang M J), 姚善泾(Yao S J) . 化工学报 (Journal of Chemical Industry and Engineering(China)), 2008,59(11):2910.
[70]
Li J, Zhao Z H, Li D M, Tian H F, Zha F, Feng H, Guo L . Nanoscale, 2017,9:13610.
[71]
Yuliwati E, Ismail A F . Desalination, 2011,273:226.
[72]
Chakrabarty B, Ghoshal A K, Purkait M K . J. Membrane Sci., 2008,325:427.
[73]
Liu Y, Su Y L, Li Y F, Zhao X T, Jiang Z Y . RSC Adv., 2015,5:21349.
[74]
Yang L, Thongsukmak A, Sirkar K K, Gross K B, Mordukhovich G . J. Membrane Sci., 2011,378:138.
[75]
Bader S A, Ong C S . RSC Adv., 2017,7:20981.
[76]
Cui J Y, Zhang X F, Liu H O, Liu S Q, Yeung K L . J. Membrane Sci., 2008,325:420.
[77]
Ding D, Mao H Y, Chen X F, Qiu M H, Fan Y Q . J. Membrane Sci., 2018,565:303.
[78]
Zhou J E, Chang Q B, Wang Y Q, Wang J M, Meng G Y . Sep. Purif. Technol., 2010,75:243.
[79]
聂淼杰(Nie M J), 朱轶铮(Zhu Y Z), 刘森林(Liu S L), 马敬红(Ma J H), 杨曙光(Yang S G), 龚静华(Gong J H) . 东华大学学报(自然科学版) (Journal of Donghua University, Natural Sciences), 2013,39:16.
[80]
Yoshino Y, Suzuki T, Nair B N, Taguchi H, Itoh N . J. Membrane Sci., 2005,267:8.
[81]
Chen Y N, Liu N, Cao Y Z, Lin X, Xu L X, Zhang W F, Wei Y, Feng L . Sci. Rep., 2016,6:32540.
[82]
Liu N, Lin X, Zhang W F, Cao Y Z, Chen Y N, Feng L, Wei Y . Sci. Rep., 2015,5:9688.
[83]
Wang K, Han D S, Yiming W, Ahzi S, Abdel-wahab A, Liu Z Y . Sci. Rep., 2017,7:16081.
[84]
Vandezande P, Gevers L E M, Vankelecom I F . J. Chem. Soc. Rev., 2008,37:365.
[85]
刘壮(Liu Z), 汪伟(Wang W), 巨晓洁(Ju X J), 谢锐(Xie R), 褚良银(Chu L Y) . 化工学报 (Journal of Chemical Industry and Engineering(China)), 2018,69:166.
[86]
Zhang X, Lang W Z, Yan X, Lou Z Y, Chen X F . J. Membrane Sci., 2016,499:179.
[87]
Miao W, Li Z K, Yan X, Guo Y J, Lang W Z . Chem. Eng. J., 2017,317:901.
[88]
Li Z K, Lang W Z, Miao W, Yan X, Guo Y J . J. Membrane Sci., 2016,511:151.
[89]
Saththasivam J, Yiming W, Wang K, Jin J, Liu Z Y . Sci. Rep., 2018,8:7418.
[90]
Huang T F, Zhang L, Chen H L, Gao C J . J. Mater. Chem. A, 2015,3:19517.
[91]
Gu J C, Xiao P, Huang Y J, Zhang J W, Chen T . J. Mater. Chem. A, 2015,3:4124.
[92]
Hu L, Gao S J, Zhu Y Z, Zhang F, Jiang L, Jin J . J. Mater. Chem. A, 2015,3:23477.
[93]
Gao S J, Zhu Y Z, Zhang F, Jin J . J. Mater. Chem. A, 2015,3:2895.
[94]
Gu J C, Xiao P, Zhang L, Lu W, Zhang G G, Huang Y J, Zhang J W, Chen T . RSC Adv., 2016,6:73399.
[95]
Huang Y, Li H, Wang L, Qiao Y L, Tang C B, Jung C I, Yoon Y M, Li S G, Yu M . Adv. Mater. Interfaces, 2015,2:1400433.
[96]
Zhao X T, Su Y L, Liu Y N, Li Y F, Jiang Z Y . ACS Appl. Mater. Inter., 2016,8:8247.
[97]
Hou K, Zeng Y C, Zhou C L, Chen J H, Wen X F, Xu S P, Cheng J, Lin Y G, Pi P H . Appl. Surf. Sci., 2017,416:344.
[98]
Pi P H, Hou K, Zhou C L, Li G D, Wen X F, Xu S P, Cheng J, Wang S F . Appl. Surf. Sci., 2017,396:566.
[99]
Zhou C L, Li Y F, Li H J, Zeng X J, Pi P H, Wen X F, Xu S P, Cheng J . Surf. Coat. Tech., 2017,313:55.
[100]
Zhou C L, Feng J X, Cheng J, Zhang H, Lin J, Zeng X J, Pi P H . Ind. Eng. Chem. Res., 2018,57:1059.
[101]
Li X Y, Hu D, Huang K, Yang C F . J. Mater. Chem. A, 2014,2:11830.
[102]
侯昆(Hou K) . 华南理工大学硕士论文( Master’s Dissertation of South China University of Technology), 2017.
[103]
Song B T, Xu Q . Langmuir, 2016,32:9960.
[104]
Guo W, Zhang Q, Xiao H B, Xu J, Li Q T, Pan X H, Huang Z Y . Appl. Surf. Sci., 2014,314:408.
[105]
Lin X D, Heo J W, Jeong H J, Choi M, Chang M W, Hong J K . J. Mater. Chem. A, 2016,4:17970.
[106]
Wen X F, Ye C, Cai Z Q, Xu S P, Pi P H, Cheng J, Zhang L J, Qian Y . Appl. Surf. Sci., 2015,339:109.
[107]
Wang S T, Song Y L, Jiang L . Nanotechnology, 2007,18:15103.
[108]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci., 2017,543:10.
[109]
Lee C H, Johnson N, Drelich J, Yap Y K . Carbon, 2011,49:669.
[110]
Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L . Adv Mater., 2013,25:4192.
[111]
Cao Y Z, Chen Y N, Liu N, Lin X, Feng L, Wei Y . J. Mater. Chem. A, 2014,2:20439.
[112]
Zeng X J, Qian L, Yuan X X, Zhou C L, Li Z W, Cheng J, Xu S P, Wang S F, Pi P H, Wen X F . ACS Nano, 2017,11:760.
[113]
Jiang L, Tang Z, Park-Lee K J, Hess D W, Breedveld V . Sep. Purif. Technol., 2017,184:394.
[114]
Chen Y, Wang N, Guo F Y, Hou L L, Liu J C, Liu J, Xu Y, Zhao Y, Jiang L . J. Mater. Chem. A, 2016,4:12014.
[115]
Cao C Y, Cheng J . Mater. Lett., 2018,217:5.
[116]
Cao Y Z, Liu N, Zhang W F, Feng L, Wei Y . ACS Appl. Mater. Inter., 2016,8:3333.
[117]
Li L X, Li B C, Sun H X, Zhang J P . J. Mater. Chem. A, 2017,5:14858.
[118]
童贤涛(Tong X T), 钟璇(Zhong X), 何小云(He X Y), 李欣达(Li X D), 兰嫒(Lan A), 余木火(Yu M H) . 高分子通报 (Chinese Polymer Bulletin), 2013,10:151.
[119]
Medina-Sandoval C F, Valencia-Dávila J A, Combariza M Y, Blanco-Tirado C . Fuel, 2018,231:297.
[120]
Hong S K, Bae S, Jeon H, Kim M, Cho S J, Lim G . Nanoscale, 2018,10:3037.
[121]
Fan J B, Song Y Y, Wang S T, Meng J X, Yang G, Guo X L, Feng L, Jiang L . Adv. Funct. Mater., 2015,25:5368.
[122]
Ge D T, Yang L L, Wang C B, Lee E, Zhang Y Q, Yang S . Chem. Commun., 2015,51:6149.
[123]
Wang C F, Yang S Y, Kuo S W . Sci. Rep., 2017,7:43053.
[124]
Karimnezhad H, Rajabi L, Salehi E, Derakhshan A A, Azimi S . Appl. Surf. Sci., 2014,293:275.
[125]
Matsubayashi T, Tenjimbayashi M, Komine M, Manabe K, Shiratori S . Ind. Eng. Chem. Res., 2017,56:7080.
[126]
Rather A M, Jana N, Hazarika P, Manna U . J. Mater. Chem. A., 2017,5:23339.
[127]
Cao C Y, Ge M Z, Huang J Y, Li S H, Deng S, Zhang S N, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K . J. Mater. Chem. A, 2016,4:12179.
[128]
Tran V H T, Lee B K . Sci. Rep., 2017,7:17520.
[129]
Zhang Y Q, Yang X B, Wang Z X, Long J, Shao L . J. Mater. Chem. A, 2017,5:7316.
[130]
Wu Z Z, Li Y Z, Zhang L P, Zhong Y, Xu H, Mao Z P, Wang B J, Sui X F . RSC Adv., 2017,7:20147.
[131]
Li J, Xu C C, Zhang Y, Wang R F, Zha F, She H D . J. Mater. Chem. A, 2016,4:15546.
[132]
Lv W Y, Mei Q Q, Xiao J L, Du M, Zheng Q . Adv. Funct. Mater., 2017,27:1704293.
[133]
Chen J J, Zhang Y X, Chen C, Xu M Y, Wang G, Zeng Z X, Wang L P, Xue Q J . Macromol. Mater. Eng., 2017,302:1700086.
[134]
Wang G, He Y, Wang H, Zhang L, Yu Q Y, Peng S S, Wu X D, Ren T H, Zeng Z X, Xue Q J . Green Chem., 2015,17:3093.
[135]
Yun J J, Khan F A, Baik S . ACS Appl. Mater. Inter., 2017,9:16694.
[136]
章雯(Zhang W), 张爽(Zhang S), 张友法(Zhang Y F), 余新泉(Yu X Q) . 东南大学学报(自然科学版) (Journal of Southeast University, Natural Sciences), 2015,45:69.
[137]
Luo Z Y, Lyu S S, Wang Y Q, Mo D C . Ind. Eng. Chem. Res., 2017,56:699.
[138]
Wang Z D, Xiao C M, Wu Z J, Wang Y T, Du Y, Kong W, Pan D H, Guan G Q, Hao X G . J. Mater. Chem. A, 2017,5:5895.
[139]
Cao C Y, Cheng J . Chem. Eng. J., 2018,347:585.
[140]
Jiang G M, Li J X, Nie Y L, Zhang S, Dong F, Guan B H, Lv X S . Environ. Sci. Technol., 2016,50:7650.
[141]
Li Y, Zhang Z Z, Ge B, Men X H, Xue Q J . Sep. Purif. Technol., 2017,176:1.
[142]
Li J, Xu C C, Guo C Q, Tian H F, Zha F, Guo L . J. Mater. Chem. A, 2018,6:223.
[143]
Han X Y, Hu J Y, Chen K, Wang P, Zhang G, Gu J J, Ding C, Zheng X S, Cao F F . Chem. Eng. J., 2018,352:530.
[144]
Feng J G, Sun M, Ye Y M . J. Mater. Chem. A, 2017,5:14990.
[145]
Wang Z X, Ji S Q, Zhang J, Liu Q X, He F, Peng S Q, Li Y X . J. Mater. Chem. A, 2018,6:13959.
[146]
Tie L, Li J, Liu M M, Guo Z G, Liang Y M, Liu W M . J. Mater. Chem. A, 2018,6:11682.
[147]
Guo G L, Liu L B, Zhang Q, Pan C G, Zou Q Q . New J. Chem., 2018,42:3819.
[148]
Zhang L, Gu J C, Song L P, Chen L, Huang Y J, Zhang J W, Chen T . J. Mater. Chem. A, 2016,4:10810.
[149]
Zhang Q D, Cao Y Z, Liu N, Zhang W F, Chen Y N, Lin X, Tao L, Wei Y, Feng L . Adv. Mater. Interfaces, 2016,3:1600291.
[150]
Zhang L, Zha X H, Zhang G, Gu J C, Zhang W, Huang Y J, Zhang J W, Chen T . J. Mater. Chem. A, 2018,6:10217.
[151]
Xu L X, Liu N, Cao Y Z, Lu F, Chen Y N, Zhang X Y, Feng L, Wei Y . ACS Appl. Mater. Inter., 2014,6:13324.
[152]
Wang J Q, Wu Z Y, Li T T, Ye J R, Shen L Q, She Z, Liu F . Chem. Eng. J., 2018,334:579.
[153]
Chen Q, Yu Z X, Li F, Yang Y, Pan Y, Peng Y X, Yang X, Zeng G Y . J. Chem. Technol. Biotechnol., 2018,93:761.
[154]
Lin X D, Heo J W, Hong J K . Chem. Eng. J., 2018,348:870.
[155]
Wang H X, Xue Y H, Ding J, Feng L F, Wang X G, Lin T . Angew. Chem. Int. Ed., 2011,50:11433.
[1] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[2] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[3] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[4] Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang. Selective Oil/Water Separation Materials [J]. Progress in Chemistry, 2019, 31(1): 134-143.
[5] Jing Yuan, Fangfang Liao, Yani Guo, Liyun Liang. Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation [J]. Progress in Chemistry, 2019, 31(1): 144-155.
[6] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[7] Zhu Dunru Qi Li Cheng Huimin Shen Xuan Lu Wei. Fe(II) Spin Crossover Molecule-Based Materials [J]. Progress in Chemistry, 2009, 21(6): 1187-1198.