中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1874-1886 DOI: 10.7536/PC180315 Previous Articles   Next Articles

• Review •

Smart Responsive Superwetting Materials

Mengnan Qu*, Mingjuan Yuan, Jiao He, Menghui Xue, Jinmei He*   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21473132).
PDF ( 656 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, superwetting materials have received increasing attention because of their novelty and excellent performances, including self-cleaning, anti-fouling, anti-corrosion and oil-water separation, and played an important role in the real life and industry production field. However, with the continuous progress of preparation technology and the gradual deepening of research and exploration, the existing single superwetting materials can no longer meet the needs of real life, such as increasing oil spills, controlled release of drugs and microfluidic devices. On this basis, the superwetting materials that are able to respond to external stimuli, that is, the smart responsive superwetting materials come into being. In this review, basic theories and influence factors of solid surface wettability are introduced firstly. Secondly, according to the difference of external stimuli, the research and progress of the smart responsive superwetting materials, including thermoresponsive, photo-responsive, pH-responsive and electricity-responsive are reviewed. Furthermore, the wettability conversion mechanisms and properties of these smart responsive superwetting materials mentioned in the review are introduced. In order to reveal the importance of roughness to the realization of superwetting conversion, we explain it in micro-and nano-scale. Finally, some existing problems are discussed and the future research directions in this field are proposed.
Contents
1 Introduction
2 Wettability of solid surface
3 Single stimuli-responsive materials
3.1 Thermoresponsive materials
3.2 Photo-responsive materials
3.3 pH-responsive materials
3.4 Electricity-responsive materials
3.5 Solvent-responsive materials
3.6 Other responsive materials
4 Dual-and multiresponsive switchable materials
5 Existing problems
6 Conclusion

CLC Number: 

[1] Das S, Kumar S, Samal S K, Mohanty S, Nayak S K. Ind. Eng. Chem. Res., 2018, 57:2727.
[2] Dong S L, Wang Z L, Wang Y K, Bai X L, Fu Y Q, Guo B, Tan C L, Zhang J, Hu P A. ACS Appl. Mater. Interfaces, 2018, 10:2174.
[3] Stayton P S, Shimoboji T, Long C, Chilkoti A, Chen G, Harris J M, Hoffman A S. Nature, 1995, 378:472.
[4] Lendlein A, Shastri V P. Adv. Mater., 2010, 22:3344.
[5] Liu J C, Wang N, Yu L J, Karton A, Li W, Zhang W X, Guo F Y, Hou L L, Cheng Q F, Jiang L, Weitz D A, Zhao Y. Nat. Commun., 2017, 8:2011.
[6] Lei Z W, Zhang G Z, Deng Y H, Wan C Y. ACS Appl. Mater. Interfaces, 2017, 9:8967.
[7] Cheng B W, Li Z J, Li Q X, Ju J G, Kang W M, Naebe M. J. Membr. Sci., 2017, 534:1.
[8] Chen T, Ferris R, Zhang J M, Ducker R, Zauscher S. Prog. Poly. Sci., 2010, 35:94.
[9] Jeong B, Gutowska A. Trends Biotechnol., 2002, 20:305.
[10] Cohen Stuart M A, Huck W T. S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9:101.
[11] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Poly. Sci., 2008, 33:1088.
[12] Caputo G, Nobile C, Kipp T, Blasi L, Grillo V, Carlino E, Manna L, Cingolani R, Cozzoli P D, Athanassiou A. J. Phys. Chem. C, 2008, 112:701.
[13] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388:431.
[14] Feng X J, Zhai J, Jiang L. Angew. Chem. Int. Ed., 2005, 44:5115.
[15] Caputo G, Cingolani R, Cozzoli P D, Athanassiou A. Phys. Chem. Chem. Phys., 2009, 11:3692.
[16] Sun W T, Zhou S Y, Chen P, Peng L M. Chem. Commun., 2008, 5:603.
[17] Chen G H, Hoffman A S. Nature, 1995, 373:49.
[18] Okada Y, Tanaka F. Macromolecules, 2005, 38:4465.
[19] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43:357.
[20] Motornov M, Sheparovych R, Katz E, Minko S. ACS Nano, 2008, 2:41.
[21] Wang L M, Peng B, Su Z H. Langmuir, 2010, 26:12203.
[22] Jiang C, Wang Q H, Wang T M. New J. Chem., 2012, 36:1641.
[23] Young T. Philos. T. R. Soc., 1805, 95:65.
[24] Guo Z G, Liu W M. Plant Sci., 2007, 172:1103.
[25] Gao X F, Jiang L. Nature, 2004, 432:36.
[26] Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J H, Yang B, Jiang L. Adv. Mater., 2007, 19:2213.
[27] Zheng Y J, Liu X, Xu J J, Zhao H X, Xiong X H, Hou X, Cui J X. ACS Appl. Mater. Interfaces, 2017, 9:35483.
[28] Wang L L, Heng L P, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10:7442.
[29] Yim H, Kent M S, Mendez S, Balamurugan S S, Balamurugan S, López G P, Satija S. Macromolecules, 2004, 37:1994.
[30] Ou R W, Wei J, Jiang L, Simon G P, Wang H T. Environ. Sci. Technol., 2016, 50:906.
[31] Zhao T Y, Nie F Q, Jiang L. J. Mater. Chem., 2010, 20:2176.
[32] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem., 2004, 116:361.
[33] Zhou Y N, Li J J, Luo Z H. Ind. Eng. Chem. Res., 2015, 54:10714.
[34] Xue B L, Gao L C, Hou Y P, Liu Z W, Jiang L. Adv. Mater., 2013, 25:273.
[35] Fu Q, Rama Rao G V, Basame S B, Keller D J, Artyushkova K, Fulghum J E, López G P. J. Am. Chem. Soc., 2004, 126:8904.
[36] Zareie H M, Boyer C, Bulmus V, Nateghi E, Davis T P. ACS Nano, 2008, 2:757.
[37] Wang N, Zhao Y, Jiang L. Macromol. Rapid Comm., 2008, 29:485.
[38] Hu S X, Cao X Y, Song Y L, Li C, Xie P, Jiang L. Chem. Commun., 2008, 17:2025.
[39] Yang H, Hu X J, Su C P, Liu Y L, Chen R. Phys. Chem. Chem. Phys., 2017, 19:31666.
[40] Zhang X T, Sato O, Taguchi M, Einaga Y, Murakami T, Fujishima A. Chem. Mater., 2005, 17:696.
[41] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F. Langmuir, 2006, 22:2856.
[42] Uyama A, Yamazoe S, Shigematsu S, Morimoto M, Yokojima S, Mayama H, Kojima Y, Nakamura S, Uchida K. Langmuir, 2011, 27:6395.
[43] Kang H J, Liu Y Y, Lai H, Yu X Y, Cheng Z J, Jiang L. ACS Nano, 2018, 12:1074.
[44] Zhu W Q, Feng X J, Feng L, Jiang L. Chem. Commun., 2006, 26:2753.
[45] Wang J W, Mao B D, Gole JL, Burda C. Nanoscale, 2010, 2:2257.
[46] Patra S, Sarkar S, Bera S, Paul G, Ghosh R. J. Appl. Phys., 2010, 108:083507.
[47] Dong P Y, Hou G H, Xi X G, Shao R, Dong F. Environ. Sci. Nano, 2017, 4:539.
[48] Tian D L, Zhang X F, Tian Y, Wu Y, Wang X, Zhai J, Jiang L. J. Mater. Chem., 2012, 22:19652.
[49] Feng X J, Zhai J, Jiang L. Angew. Chem. Int. Ed., 2005, 117:5245.
[50] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. J. Am. Chem. Soc., 2007, 129:4128.
[51] Gao Q Q, He L, Li Y J, Ran X, Guo L J. RSC Adv., 2017, 7:50403.
[52] Bai D S, Habersberger B M, Jennings G K. J. Am. Chem. Soc., 2005, 127:16486.
[53] Chandan S, Ramakrishna S, Sunitha K, Satheesh Chandran M, Santhosh Kumar K S, Mathew D. J. Mater. Chem. A, 2017, 5:22813.
[54] Zang L L, Ma J, Lv D W, Liu Q L, Jiao W L, Wang P P. J. Mater. Chem. A, 2017, 5:19398.
[55] Wang J X, Hu J P, Wen Y Q, Song Y L, Jiang L. Chem. Mater., 2006, 18:4984.
[56] Xu Z G, Zhao Y, Wang H X, Zhou H, Qin C X, Wang X G, Lin T. ACS Appl. Mater. Interfaces, 2016, 8:5661.
[57] Cheng M J, Liu Q, Ju G N, Zhang Y J, Jiang L. Adv. Mater., 2014, 26:306.
[58] Ju G N, Cheng M J, Shi F. NPG Asia Mater., 2014, 6:111.
[59] Wang B, Guo Z G. Chem. Commun., 2013, 49:9416.
[60] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Li C, Zhang N Q, Sun K N. ACS Appl. Mater. Interfaces, 2014, 6:636.
[61] Li J J, Zhou Y N, Luo Z H. ACS Appl. Mater. Interfaces, 2015, 7:19643.
[62] Li J J, Zhou Y N, Jiang Z D, Luo Z H. Langmuir, 2016, 32:13358.
[63] Zhu H G, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Adv. Funct. Mater., 2015, 25:597.
[64] Stratakis E, Mateescu A, Barberoglou M, Vamvakaki M, Fotakis C, Anastasiadis S H. Chem. Commun., 2010, 46:4136.
[65] Sun W, Zhou S X, You B, Wu L M. Macromolecules, 2013, 46:7018.
[66] Fu Y C, Jin B Y, Zhang Q H, Zhan X L, Chen F Q. ACS Appl. Mater. Interfaces, 2017, 9:30161.
[67] Chen X X, Gao J, Song B, Smet M, Zhang X. Langmuir, 2010, 26:104.
[68] Choi I S, Chi Y S. Angew. Chem. Int. Edit., 2006, 45:4894.
[69] Wang X M, Katz E, Willner I. Electrochem. Commun., 2003, 5:814.
[70] Zheng X, Guo Z Y, Tian D L, Zhang X F, Jiang L. Adv. Mater. Interfaces, 2016, 3:1600461.
[71] Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. Science, 2003, 299:371.
[72] Liu Y, Mu L, Liu B H, Zhang S, Yang P Y, Kong J L. Chem. Commun., 2004, 10:1194.
[73] Mecerreyes D, Alvaro V, Cantero I, Bengoetxea M, Calvo P A, Grande H, Rodriguez J, Pomposo J A. Adv. Mater., 2002, 14:749.
[74] Xu L B, Chen W, Mulchandani A, Yan Y S. Angew. Chem. Int. Edit., 2005, 44:6009.
[75] Riskin M, Basnar B, Chegel V I, Katz E, Willner I, Shi F, Zhang X. J. Am. Chem. Soc., 2006, 128:1253.
[76] Isaksson J, Tengstedt C, Fahlman M, Robinson N, Berggren. Adv. Mater., 2010, 16:316.
[77] Hayes R A, Feenstra B J. Nature, 2003, 425:383.
[78] Krupenkin T N, Taylor J A, Schneider T M, Yang S. Langmuir, 2004, 20:3824.
[79] Zhu L B, Xu J W, Xiu Y H, Sun Y Y, Hess D W, Wong C P. J. Phys. Chem. B, 2006, 110:15945.
[80] Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M. J. Am. Chem. Soc., 2003, 125:3896.
[81] Julthongpiput D, Lin Y H, Teng J, Zubarev E R, Tsukruk V V. Langmuir, 2003, 19:7832.
[82] Boyes S G, Brittain W J, Weng X, Cheng S Z D. Macromolecules, 2002, 35:4960.
[83] Jennings G K, Brantley E. L. Adv. Mater., 2004, 16:1983.
[84] Zhou Y F, Yi T, Li T C, Zhou Z G, Li F Y, Huang W, Huang C H. Chem. Mater., 2006, 18:2974.
[85] Heng L P, Dong Y Q, Zhai J, Tang B Z, Jiang L. Langmuir, 2008, 24:2157.
[86] Wang Y, Di J C, Wang L, Li X, Wang N, Wang B X, Tian Y, Jiang L, Yu J H. Nat. Commun., 2017, 8:575.
[87] Kota A K, Kwon G, Choi W, Mabry J M, Tuteja A. Nat. Commun., 2012, 3:1025.
[88] Genzer J, Efimenko K. Science, 2000, 290:2130.
[89] Zhang J L, Lu X Y, Huang W H, Han Y C. Macromol. Rapid Comm., 2005, 26:477.
[90] Zhou C L, Li H J, Lin J, Hou K, Yang Z J, Pi P H, Xu S P, Wen X F, Cheng J. J. Phys. Chem. C, 2017, 121:19716.
[91] Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T, Zhou X Y, Xue Q J. J. Colloid Interf. Sci., 2012, 366:191.
[92] Xia F, Feng L, Wang S T, Sun T L, Song W L, Jiang W H, Jiang L. Adv. Mater., 2006, 18:432.
[93] Guo Y, Xia F, Xu L, Li J, Yang W S, Jiang L. Langmuir, 2010, 26:1024.
[94] Allen A L, Tan K J, Fu H, Batteas J D, Bergbreiter D E. Langmuir, 2012, 28:5237.
[95] Yuan W F, Jiang G Y, Wang J X, Wang G J, Song Y L, Jiang L. Macromolecules, 2006, 39:1300.
[96] Xia F, Ge H, Hou Y, Sun T L, Chen L, Zhang G Z, Jiang L. Adv. Mater., 2007, 19:2520.
[97] Sun W, Zhou S X, You B, Wu L M. J. Mater. Chem. A, 2013, 1:3146.
[98] Jiang Y G, Wan P B, Smet M, Wang Z Q, Zhang X. Adv. Mater., 2008, 20:1972.
[99] Xie G H, Li P, Zhao Z J, Zhu Z P, Kong X Y, Zhang Z, Xiao K, Wen L P, Jiang L. J. Am. Chem. Soc., 2018, 140:4552.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[9] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[10] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[11] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[12] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[13] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[14] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[15] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
Viewed
Full text


Abstract

Smart Responsive Superwetting Materials