中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 254-262 DOI: 10.7536/PC200449 Previous Articles   Next Articles

• Review •

Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion

Yuanxia Zhang1,2, Yan Bao1,3,*(), Jianzhong Ma1,3,*()   

  1. 1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
    2 National Demonstration Center for Experimental Light Chemistry Engineering Education(Shaanxi University of Science & Technology), Xi’an 710021, China
    3 Key Laboratory of Leather Cleaner Production, China National Light Industry, Xi’an 710021, China
  • Received: Revised: Online: Published:
  • Contact: Yan Bao, Jianzhong Ma
  • About author:
    * Corresponding author e-mail: (Yan Bao);
    (Jianzhong Ma)
  • Supported by:
    National Natural Science Foundation of China(21878181); National Natural Science Foundation of China(22078188); Key Research and Development Program of Shaanxi Province(2018ZDXM-GY-118)
Richhtml ( 68 ) PDF ( 1024 ) Cited
Export

EndNote

Ris

BibTeX

Janus particles are promising materials for stabilizing emulsion, self-assembly, biomedicine and functional coatings due to its anisotropic properties in mechanical, magnetic, optical, electrical properties, surface hydrophilicity and hydrophobicity. The amphiphilic Janus particles, in which one face possesses hydrophobicity and the other face possesses hydrophilicity, have received considerable attention in stabilizing Pickering emulsion owing to its property of surfactant and solid particle. In this paper, the fabrication methods of amphiphilic Janus particles are summarized, and their advantages and defects are compared firstly. Then the effects of amphiphilic Janus particles on the stability of Pickering emulsion are highlighted. Finally, the development of amphiphilic Janus particles in the future is prospected.

Contents

1 Introduction

2 Synthesis of amphiphilic Janus particles

2.1 Surface modification

2.2 In-situ generation

3 Research progress of amphiphilic Janus particles in Pickering emulsion

3.1 Hydrophilic-hydrophobic balance

3.2 Morphological

3.3 Size

4 Conclusion and outlook

Fig. 1 Different types of Janus particles(spherical(a), cylindrical(b, c), disc-shaped(d, e), asymmetric or snowman(f), symmetric appearance(g, k), attached nodes(h), eccentric encapsulation(i), and vesicles or capsules(l))[30]
Fig. 2 The synthesis of SiO2 particles by protecting mask techniques
Fig.3 (a) Schematic synthesis of Janus silica nanoparticles at the interface of a Pickering emulsion.(b) TEM images of Janus nanoparticles labeled with Au nanoparticles; one side of the SiO2 nanoparticles is labeled with Au nanoparticles, whereas the other side is not labeled.(c) TEM image of amino-modified SiO2 nanoparticles labeled with Au nanoparticles. Different from the Janus nanoparticles, all of the sides were labeled[49]
Fig.4 The synthesis of Janus particles by bipolar electrodeposition:(a) Principle of bipolar electrochemistry;(b) SEM images of glassy carbon particles before and after bipolar electrodeposition.(The particle diameter is around 20 μm) [50]
Fig.5 (a) Schematic diagram of synthesis of amphiphilic Janus particles by microfluidic device;(b) Optical microscope image of amphiphilic Janus particles(The bright and dark phase of polymer are M1 and M2, respectively, scale of 100 μm) [55]
Fig. 6 The synthesis of the asymmetric Janus polymer particles via phase separation[59]
Fig. 7 The preparation of amphiphilic PS/P2VP Janus particles by solvent evaporation-induced phase separation[60]
Fig. 8 Schematic and corresponding SEM images depicting the synthesis of Janus particles and subsequent modification via thiol-yne click reactions[62]
Table 1 Advantages and disadvantages of different preparation methods of amphiphilic Janus particles
Fig. 9 (A1~E1) Transmission electron microscopy photos of Janus particles(The size of silica hemisphere from A1 to E1 are 0, 50, 90, 110 and 200 nm);(A2~E2) The corresponding photos of toluene-water emulsion stabilized by Janus particles[80]
Fig. 10 (a)The most typical adsorption stages pointed out for(A) Janus spheres,(B) Janus discs, and(C) Janus cylinders;(b)The influence of the Janus particle shape on the interfacial tensionata water/toluene interface[74]
[1]
Hu J, Chen M, Fang X S, Wu L M. Chem. Soc. Rev., 2011, 40:5472.
[2]
Zhang J, Grzybowski B A, Granick S. Langmuir., 2017, 33:6964.
[3]
Liang F X, Liu B, Cao Z, Yang Z. Langmuir., 2017, 34:4123.

pmid: 29169237
[4]
de Gennes P G. Rev. Mod. Phys., 1992, 64:645.
[5]
Baran Ł, BorÓwko M, R?ysko W. J. Phys. Chem. C, 2020, 124:17556.
[6]
Liu Y J, Dai R, Wei Q Y, Li W Z, Zhu G, Chi H, Guo Z M, Wang L, Cui C H, Xu J Q, Ma K. ACS Appl. Mater. Interfaces, 2019, 11:44582.

pmid: 31682097
[7]
Lan Y, Choi J, Li H Y, Jia Y K, Huang R J, Stebe K J, Lee D. Ind. Eng. Chem. Res., 2019, 58:20961.
[8]
Kirillova A, Marschelke C, Synytska A. ACS Appl. Mater. Interfaces, 2019, 11:9643.
[9]
Liu S C, Pan J M, Dai X H, Qiu F X, Ma Y, He F, Pan G Q. J. Control. Release, 2017, 259:39.
[10]
Pardhy N P, Budhlall B M. Langmuir, 2010, 26:13130.
[11]
Zhang Y J, Kang L, Huang H J, Deng J P. ACS Appl. Mater. Interfaces, 2020, 12:6319.

pmid: 31939279
[12]
Chi J J, Shao C M, Shang L R, Zhao Y J, Ye F F. Chem. Eng. J., 2020:128073.
[13]
Sun X T, Guo R, Wang D N, Wei Y Y, Yang C G, Xu Z R. J. Colloid Interface Sci., 2019, 553:631.
[14]
He Y, Savagatrup S, Zarzar L D, Swager T M. ACS Appl. Mater. Interfaces, 2017, 9:7804.
[15]
Chen S Q, He C, Li H J, Li P Y, He W D. Polym. Chem., 2016, 7:2476.
[16]
Tang X P, Hou Y, Meng Q B, Zhang G L, Liang F X, Song X M. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 570:191.
[17]
Fedeli E, Lancelot A, Serrano J L, Calvo P, Sierra T. New J. Chem., 2015, 39:1960.
[18]
Yang T, Wei L J, Jing L Y, Liang J F, Zhang X M, Tang M, Monteiro M J, Chen Y I, Wang Y, Gu S, Zhao D Y, Yang H Q, Liu J, Lu G Q M. Angew. Chem. Int. Ed., 2017, 56:8459.
[19]
Söz Ç K, Trosien S, Biesalski M. ACS Mater. Lett., 2020, 2:336.
[20]
Yoon J, Lee K J, Lahann J. J. Mater. Chem., 2011, 21:8502.
[21]
Wurm F, Kilbinger A. Angew. Chem. Int. Ed., 2009, 48:8412.
[22]
Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S. Adv. Mater., 2010, 22:1060.
[23]
Si Y S, Chen M, Wu L M. Chem. Soc. Rev., 2016, 45:690.
[24]
Zhao R T, Yu X T, Sun D Y, Huang L Y, Liang F X, Liu Z P. ACS Appl. Nano Mater., 2019, 2:2127.
[25]
Sikwal D R, Kalhapure R S, Govender T. Eur. J. Pharm. Sci., 2017, 97:113.

pmid: 27864064
[26]
Pawar A B, Kretzschmar I. Macromol. Rapid Commun., 2010, 31:150.
[27]
Du J Z, O’Reilly R K. Chem. Soc. Rev., 2011, 40:2402.
[28]
Duguet E, DÉsert A, Perro A, Ravaine S. Chem. Soc. Rev., 2011, 40:941.
[29]
Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Chem. Soc. Rev., 2012, 41:4356.
[30]
Walther A, Müller A H E. Chem. Rev., 2013, 113:5194.
[31]
Zhang S, Deng Q C, Shangguan H J, Zheng C, Shi J, Huang F H, Tang B. ACS Appl. Mater. Interfaces, 2020, 12:12227.
[32]
Wilms D, Schröer F, Paul T J, Schmidt S. Langmuir, 2020, 36:12555.

pmid: 32975417
[33]
Xue D, Meng Q B, Song X M. ACS Appl. Mater. Interfaces, 2019, 11:10967.

doi: 10.1021/acsami.8b21012 pmid: 30793582
[34]
Chen H, Fu W X, Li Z B. Langmuir, 2020, 36:273.
[35]
Anjali T G, Basavaraj M G. Langmuir, 2019, 35:3.

pmid: 29986588
[36]
Casagrande C, Veyssie M. C. R. Acad. Sci., 1988, 306,1423.
[37]
Casagrande C, Fabre P, Raphaël E, VeyssiÉ M. Europhys. Lett., 1989, 9:251.
[38]
Panwar K, Jassal M, Agrawal A K. Particuology, 2017, 33:50.
[39]
Wu H, Yi W Y, Chen Z, Wang H T, Du Q G. Carbon, 2015, 93:473.
[40]
Berger S, Synytska A, Ionov L, Eichhorn K J, Stamm M. Macromolecules, 2008, 41:9669.
[41]
Yang L L, Wang T D, Yang X, Jiang G C, Luckham P F, Xu J P, Li X L, Ni X X. Ind. Eng. Chem. Res., 2019, 58:9795.
[42]
Chen W Z, Qu Y J, Yao L M, Hou X H, Shi X Q, Pan H. J. Mater. Chem. A, 2018, 6:8021.
[43]
Ma A Y, Wang G L, Yang Z L, Bai L J, Chen H, Wang W X, Yang H W, Wei D L, Yang L X. Chem. Eng. J., 2020, 385:123962.
[44]
Hong L, Jiang S, Granick S. Langmuir, 2006, 22:9495.

doi: 10.1021/la062716z pmid: 17073470
[45]
Jiang S, Schultz M J, Chen Q, Moore J S, Granick S. Langmuir, 2008, 24:10073.
[46]
Zhang J, Jin J, Zhao H Y. Langmuir, 2009, 25:6431.
[47]
Tan J S J, Wong S L Y, Chen Z. Adv. Mater. Interfaces, 2020, 7:1901961.
[48]
Kadam R, Zilli M, Maas M, Rezwan K. Part. Part. Syst. Charact., 2018, 35:1700332.
[49]
Han B, Xia W D, Liu K N, Tian F C, Chen Y, Wang X Y, Liang F X, Yang Z Z. ACS Appl. Mater. Interfaces, 2018, 10:8519.
[50]
Loget G, Roche J, Kuhn A. Adv. Mater., 2012, 24:5111.

pmid: 22806760
[51]
Loget G, Roche J, Gianessi E, Bouffier L, Kuhn A. J. Am. Chem. Soc., 2012, 134:20033.
[52]
Haney B, Werner J G, Weitz D A, Ramakrishnan S. ACS Appl. Mater. Interfaces, 2020, 12:33439.
[53]
Ge X H, Geng Y H, Chen J, Xu J H. Chem Phys Chem., 2018, 19:2009.

pmid: 28771977
[54]
Zhang S B, Ge X H, Geng Y H, Luo G S, Chen J, Xu J H. Chem. Eng. Sci., 2017, 172:100.
[55]
Nisisako T, Torii T, Takahashi T, Takizawa Y. Adv. Mater., 2006, 18:1152.
[56]
Cui Y W, Wang Y, Wu J, He X K, Xuan S H, Gong X L. RSC Adv., 2019, 9:17959.
[57]
Ekanem E E, Zhang Z L, Vladisavljevi? G T. Langmuir, 2017, 33:8476.
[58]
Xu K, Ge X H, Huang J P, Dang Z X, Xu J H, Luo G S. RSC Adv., 2015, 5:46981.
[59]
Wang Y H, Zhang C L, Tang C, Li J, Shen K, Liu J G, Qu X Z, Li J L, Wang Q, Yang Z Z. Macromolecules, 2011, 44:3787.
[60]
Ku K H, Lee Y J, Yi G R, Jang S G, Schmidt B V K J, Liao K, Klinger D, Hawker C J, Kim B J. Macromolecules, 2017, 50:9276.
[61]
Tu F Q, Lee D. J. Am. Chem. Soc., 2014, 136:9999.

pmid: 24791976
[62]
Bradley L C, Stebe K J, Lee D. J. Am. Chem. Soc., 2016, 138:11437.

pmid: 27548642
[63]
Wu J Y, Gao C. Macromolecules, 2010, 43:7139.
[64]
Zhao H, Liang F X, Qu X Z, Wang Q, Yang Z Z. Macromolecules, 2015, 48:700.
[65]
Zhang J, Wang X J, Wu D X, Liu L, Zhao H Y. Chem. Mater., 2009, 21:4012.
[66]
Takahara Y K, Ikeda S, Ishino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsumura M, Ohtani B. J. Am. Chem. Soc., 2005, 127:6271.

pmid: 15853333
[67]
Hong L, Cacciuto A, Luijten E, Granick S. Nano Lett., 2006, 6:2510.
[68]
Xie S T, Chen S, Zhu Q F, Li X, Wang D, Shen S T, Jin M L, Zhou G F, Zhu Y G, Shui L L. ACS Appl. Mater. Interfaces, 2020, 12:26374.
[69]
Binks B P, Fletcher P D I. Langmuir, 2001, 17:4708.
[70]
Glaser N, Adams D J, Böker A, Krausch G. Langmuir, 2006, 22:5227.

pmid: 16732643
[71]
Zahn N, Kickelbick G. Colloids Surfaces A: Physicochem. Eng. Aspects, 2014, 461:142.
[72]
Aveyard R. Soft Matter, 2012, 8:5233.
[73]
Kumar A, Park B J, Tu F Q, Lee D. Soft Matter, 2013, 9:6604.
[74]
Ruhland T M, Gröschel A H, Ballard N, Skelhon T S, Walther A, Müller A H E, Bon S A F. Langmuir, 2013, 29:1388.
[75]
Ge L L, Shao W Q, Lu S H, Guo R. Soft Matter, 2014, 10:4498.

pmid: 24806329
[76]
Ge L L, Lu S H, Guo R. J. Colloid Interface Sci., 2014, 423:108.

doi: 10.1016/j.jcis.2014.02.023 pmid: 24703675
[77]
Ge L L, Li X, Friberg S E, Guo R. Colloid Polym. Sci., 2016, 294:1815.
[78]
Wei D, Ge L L, Lu S H, Li J J, Guo R. Langmuir, 2017, 33:5819.
[79]
Björkegren S, Nordstierna L, Törncrona A, Palmqvist A. J. Colloid Interface Sci., 2017, 487:250.
[80]
Passas-Lagos E, Schüth F. Langmuir, 2015, 31:7749.
[81]
Park B J, Choi C H, Kang S M, Tettey K E, Lee C S, Lee D. Langmuir, 2013, 29:1841.

doi: 10.1021/la304829s pmid: 23330850
[82]
Hirose Y, Komura S, Nonomura Y. J. Chem. Phys., 2007, 127:054707.

pmid: 17688357
[83]
Ruhland T M, Gröschel A H, Walther A, Müller A H E. Langmuir, 2011, 27:9807.
[84]
Rezvantalab H, Shojaei-Zadeh S. Langmuir, 2013, 29:14962.

pmid: 24205863
[85]
Pei X P, Zhai K K, Liang X C, Deng Y K, Tan Y, Wang P X, Xu K. Langmuir, 2017, 33:3787.

pmid: 28343397
[86]
Qi F, Wu J, Sun G Q, Nan F F, Ngai T, Ma G H. J. Mater. Chem. B, 2014, 2:7605.
[87]
Haney B, Chen D, Cai L H, Weitz D, Ramakrishnan S. Langmuir, 2019, 35:4693.
[88]
Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E. J. Am. Chem. Soc., 2006, 128:9408.
[1] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[2] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[3] Wanrong Zhou, Wei Sun*, Pinghui Yang. Preparation and Functional Application of Janus Particles [J]. Progress in Chemistry, 2018, 30(11): 1601-1614.
[4] Yang Pinghui, Sun Wei, Hu Si, Chen Zhongren. Self-Assembly of Nanoparticles at Interfaces [J]. Progress in Chemistry, 2014, 26(07): 1107-1119.
[5] Yi Chenglin, Yang Yiqun, Jiang Jinqiang, Liu Xiaoya, Jiang Ming. Research and Application of Particle Emulsifiers [J]. Progress in Chemistry, 2011, 23(01): 65-79.
[6] Yang Fei Wang Jun Lan Qiang Sun Dejun Li Chuanxian. Research Progress on Pickering Emulsions [J]. Progress in Chemistry, 2009, 21(0708): 1418-1426.
[7] Chen Yunhua, Wang Chaoyang**, Li Yu, Tong Zhen. Synthesis of Janus Particles [J]. Progress in Chemistry, 2009, 21(04): 615-621.