中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 643-664 DOI: 10.7536/PC210215 Previous Articles   Next Articles

• Review •

CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application

Jie Zhao1,2, Shuai Deng1,2(), Li Zhao1, Ruikai Zhao1,2   

  1. 1 Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China,Tianjin 300350, China
    2 International Cooperation Research Centre of Carbon Capture in Ultra-low Energy-consumption, Tianjin University,Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Shuai Deng
  • Supported by:
    National Key Research and Development Program of China(2017YFE0125100); National Natural Science Foundation of China(51876134); Research Plan of Science and Technology of Tianjin City(18YDYGHZ00090)
Richhtml ( 35 ) PDF ( 918 ) Cited
Export

EndNote

Ris

BibTeX

The presence of water vapor in gas streams is a significant technical issue for restricting the large-scale development of carbon capture. The polarity of H2O often leads to the decrease or even failure of CO2 capture rate of adsorbents. In addition, it also causes parasitic losses such as temperature and pressure drop to the system, and even causes equipment corrosion and adsorbent poisoning, thus greatly increasing the extra energy consumption and cost. In order to solve the above bottleneck, understanding the mechanism of H2O/CO2 co-adsorption and developing the highly efficient CO2 adsorbent with reasonable cost, low regeneration energy consumption and insensitivity to H2O are the important basis for the realization of effective CO2 adsorption capture under wet gas streams. At present, due to the dispersion in multiple fields and different emphasis points, there is a lack of summary on the mechanism analysis of the influence of H2O on CO2 adsorption, and it is difficult to form a relatively unified view. In this paper, the co-adsorption process of CO2 and H2O are reviewed in detail from the macro and micro levels. Firstly, according to the fundamental research of co-adsorption mechanism, the progress in the fields of competitive adsorption, moisture swing adsorption and “breathing effect” are reviewed and briefly evaluated. Secondly, based on the application research of co-adsorption, the status and progress of adsorbent development and technology improvement of wet gas CO2 adsorption are described. Furthermore, the CO2 adsorption capture level under different wet gas sources is also briefly evaluated. Finally, the shortcomings of the current research are summarized and the future directions are prospected. This paper attempts to summarize, analyze and compare the CO2/H2O co-adsorption processes in various fields, which may provide effective guidance for CO2 adsorption capture in wet gas source.

Contents

1 Introduction

2 Fundamental research on CO2/H2O co-adsorption mechanism

2.1 Competitive adsorption

2.2 Moisture swing adsorption

2.3 Breathing effect

2.4 Evaluation of CO2/H2O co-adsorption mechanism

3 Application research on CO2/H2O co-adsorption mechanism

3.1 Adsorbents for CO2 adsorption capture in wet gas

3.2 Technology for CO2 adsorption capture in wet gas

3.3 Performance evaluation of CO2 adsorption capture in wet gas

4 Conclusion and outlook

Fig.1 Summary of relevant literature on composition ratio of CO2 and H2O in industrial gas source[20⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~60]
Fig.2 A summary of the H2O and CO2 adsorption performed for multicomponent at 313 K and equilibrium conditions representative of a coal-fired power plant flue gas[14]
Table 1 Parameters of the post-combustion flue gas mixtures[21]
Fig.3 CO2/H2O Competitive adsorption. (a) Cation RDFs[21]. (b) Histogram of the distance between H2O-Na and H2O-H2O with water content[22]. (c) Simulated trajectory[23]. (d) CO2 Adsorption isotherms[23]. (e) CO2 energy contours[23]. Reprinted with permission from [21⇓~23], Copyright 2017, Elsevier and 2013, 2016, American Chemical Society
Table 2 summary of CO2/H2O competitive adsorption mechanism
Year Author Adsorbent Method Performance index Mechanism ref
2019 Peter et al. MOFs GCMC Working capacity, Selectivity Pore shape frustrates the formation of hydrogen bonds for H2O 33
2019 Gabriel et al. calcite MD Density distribution, Self-diffusion coefficient,
Adsorption energy
CO2 is arranged on the wall plane, while H2O molecules are arranged in the direction; The adsorption energy of H2O is greater than that of CO2 34
2018 Roussanaly et al. Membrane Experiment CO2 Capture ratio, Energy consumption, Selectivity The pore size of the membrane limits CO2 and H2O respectively 35
2016 Marta et al. Microporous Biochar TSA Adsorption isotherms,
Breakthrough curve
High porosity has low adsorption capacity to H2O at low pressure 36
2015 Joos et al. Zeolites GCMC Selectivity, Gibbs free adsorption energy Gibbs free adsorption energy difference between CO2 and H2O 32
2015 Xian et al MOFs Experiment Adsorption isotherms,
Breakthrough curve,
TPD curve
The H2O on MIL-100(Fe) surface promoted the formation of new alkaline active adsorption sites for CO2 37
2012 Rege et al. Zeolites PSA Adsorption isotherms - 38
2012 Yu et al. MOFs DFT Adsorption energy The Gibbs free adsorption energy of H2O is always greater than that of CO2 39
2011 Kwon et al. Bao (100) DFT Bond, Adsorption energy, The amount of charge transfer BaO (100) has strong adsorption on CO2 with high charge transfer. The adsorption energy of H2O is less than that of CO2 40
2004 Federico et al. Zeolites MD Adsorption isotherms,
Henry constant
H2O is strongly adsorbed species; CO2 is a less-strongly adsorbed species 41
Fig.4 Reaction path of CO2 adsorption and desorption during a moisture swing based on anion exchange resin[44]. [44]- Reproduced by permission of the Royal Society of Chemistry
Fig.5 (a) “CO2-H2O-adsorbent” multi-component equilibrium model; (b) The relationship between the Gibbs free energy and relative humidity in moisture swing adsorption[43].Copyright 2013, the Royal Society of Chemistry
Fig.6 (a) Chemical structures of the repeat unit of P[VBTEA][ CO 3 2 -][45]; (b) Schematic diagram of the CO2 adsorption process of PILs with carbonate anions[45].Copyright 2016, the Royal Society of Chemistry
Fig.7 (a) the “breathing behavior” of LiMM-WZ-1 after hydration[51]; (b) the "breathing behavior" of flexible MER[52].Copyright 2019, 2020, American Chemical Society
Fig.8 (a) Simulated and experimental adsorption isotherms for CO2 at 298 K in CuBTC with different water contents; (b) CO2 selectivity from the simulations of equimolar mixtures of CO2/CH4 and CO2/N2 at 298 K[53]. Copyright 2009, American Chemical Society
Table 3 The summary of thermodynamic process of CO2/H2O co-adsorption
Fig.9 TCP model for CO2/H2O competitive adsorption
Table 4 Adsorption enthalpy (ΔHads, kJ/mol) and Gibbs free adsorption energy (ΔGads, kJ/mol) of CO2/H2O mixture in materials
Fig.10 CO2/H2O adsorption selectivity varies with temperature
Fig.11 The relationship between the CO2/H2O adsorption selectivity and ΔG3
Fig.12 The summary of mechanism of CO2/H2O co-adsorption
Fig.13 Porous materials based on CO2 capture in wet gas source (Including MOFs, zeolites, polymer and functionalized materials)[77,113,114]
Fig.14 CO2 loadings under dry and different RH% conditions, T=298~323 K, P=1 bar. the adsorption data from[21,23,59,102,113]
Fig.15 Schematic representation of possible mechanisms of CO2 adsorption in the presence of humidity[71]. (a) Pre-equilibrated water in the mesoporous MIL-100(Fe) forms microporous pockets; (b) these microporous pockets are filled with CO2.Copyright 2016, the Royal Society of Chemistry
Fig.16 CO2 adsorption performance of various adsorbents[77]. (a) CO2 adsorption isotherms; (b) Plot of U C O 2 ( h u m i d )/ U C O 2 ( d r y ) with respect to various materials as indicated
Fig.17 Synthetic protocols for the polymer-grafted carbon blacks (top), colloidal crystal templated material (middle), and HIPE based material (bottom)[85].Copyright 2013, the Royal Society of Chemistry
Table 5 Summary of CO2 capture performance of modified materials and unmodified materials in the presence of H2O
Fig.18 Three step cycle design for CO2/H2O VSA with double/multilayered layered column[100]: step (1), adsorption; step (2), countercurrent evacuation; step (3), repressurization. Reproduced with permission. Copyright 2014, Progress in Chemistry
Fig.19 Carbon capture system of high temperature adsorption and low-temperature (HALD) Desorption[32]. Copyright 2015, the Royal Society of Chemistry
Fig.20 Schematic diagram of moisture swing adsorption
Table 6 The relationship between adsorption capacity and half adsorption time of moisture swing adsorption materials
Fig.21 Schematic diagram of separation model
Fig.22 The relationship between the minimum work of CO2 separation and the initial concentration of H2O
Fig.23 Energy consumption with adsorption temperature under different water content conditions during TSA process
Fig.24 Energy consumption as a function of difference between Gibbs free adsorption energy of CO2 and H2O
[1]
Intergovernmental panel on climate change (IPCC). IPCC special report on carbon dioxide capture and storage. Japan: Inchon, 2018.
[2]
The 75th Congress of the United Nations. Special report on carbon neutral. US: New York, 2020.
[3]
International Energy Agency (IEA), Special Report on Carbon Capture, Utilization and Storage (CCUS) - World Energy Technology Outlook, 2020.
[4]
Meisen A, Shuai X S. Energy Convers. Manag., 1997, 38: S37.

doi: 10.1016/S0196-8904(96)00242-7
[5]
Fan Q S, You L S, Lang X M, Wang Y H, Li W T, Liu Y Z, Zhou Z. Chemical Industry and Engineering Progress, 2020, 39 (4): 1211.
(樊栓狮, 尤莎莉, 郎雪梅, 王燕鸿, 李文涛, 刘元直, 周政. 化工进展, 2020, 39 (4): 1211.).
[6]
Zhu X Q, Liu Y S, Yang X, Liu W H. Chemical Industry and Engineering Progress, 2015, 34(1): 19.
(祝显强, 刘应书, 杨雄, 刘文海. 化工进展, 2015, 34(1): 19.).
[7]
Elfving J, Kauppinen J, Jegoroff M, Ruuskanen V, Järvinen L, Sainio T. Chem. Eng. J., 2021, 404: 126337.

doi: 10.1016/j.cej.2020.126337
[8]
Deem M W, Pophale R, Cheeseman P A, Earl D J. J. Phys. Chem. C, 2009, 113(51): 21353.

doi: 10.1021/jp906984z
[9]
Yazaydın A Ö, Snurr R Q, Park T H, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Galloway D B, Low J J, Willis R R. J. Am. Chem. Soc., 2009, 131(51): 18198.

doi: 10.1021/ja9057234
[10]
Drage T C, Snape C E, Stevens L A, Wood J, Wang J W, Cooper A I, Dawson R, Guo X, Satterley C, Irons R. J. Mater. Chem., 2012, 22(7): 2815.

doi: 10.1039/C2JM12592G
[11]
Kizzie A C, Wong-Foy A G, Matzger A J. Langmuir, 2011, 27(10): 6368.

doi: 10.1021/la200547k
[12]
Huang H L, Zhang W J, Liu D H, Zhong C L. Ind. Eng. Chem. Res., 2012, 51(30): 10031.

doi: 10.1021/ie202699r
[13]
Kandy M M. Sustain. Energy Fuels, 2020, 4(2): 469.

doi: 10.1039/C9SE00827F
[14]
Mason J A, McDonald T M, Bae T H, Bachman J E, Sumida K, Dutton J J, Kaye S S, Long J R. J. Am. Chem. Soc., 2015, 137(14): 4787.

doi: 10.1021/jacs.5b00838
[15]
Xu D, Zhang J, Li G, Webley P, Zhai Y C. Journal of Inorganic Materials, 2012, 27: 139.

doi: 10.3724/SP.J.1077.2012.00139
(徐冬, 张军, 李刚, Webley P, 翟玉春. 无机材料学报, 2012, 27: 139. ).

doi: 10.3724/SP.J.1077.2012.00139
[16]
Cheeseman C R, Virdi G S. Resour. Conserv. Recycl., 2005, 45(1): 18.

doi: 10.1016/j.resconrec.2004.12.006
[17]
Stampi-Bombelli V, Spek M, Mazzotti M. Adsorption, 2020, 26(7): 1183.

doi: 10.1007/s10450-020-00249-w
[18]
Drechsler C, Agar D W. Appl. Energy, 2020, 273: 115076.

doi: 10.1016/j.apenergy.2020.115076
[19]
Jiang J W. AIChE J., 2009, 55(9): 2422.

doi: 10.1002/aic.11865
[20]
Zhao J, Deng S, Zhao L, Yuan X Z, Du Z Y, Li S J, Chen L J, Wu K L. Sustain. Energy Fuels, 2020, 4(12): 5970.

doi: 10.1039/D0SE01179G
[21]
Purdue M J, Qiao Z W. Microporous Mesoporous Mater., 2018, 261: 181.

doi: 10.1016/j.micromeso.2017.10.059
[22]
Joos L, Swisher J A, Smit B. Langmuir, 2013, 29(51): 15936.

doi: 10.1021/la403824g
[23]
Jeong W, Kim J. J. Phys. Chem. C, 2016, 120(41): 23500.

doi: 10.1021/acs.jpcc.6b06571
[24]
Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc., 1938, 60(2): 309.

doi: 10.1021/ja01269a023
[25]
Oschatz M, Antonietti M. Energy Environ. Sci., 2018, 11(1): 57.

doi: 10.1039/C7EE02110K
[26]
Du Z Y, Nie X H, Deng S, Zhao L, Li S J, Zhang Y, Zhao J. Microporous Mesoporous Mater., 2020, 298: 110053.

doi: 10.1016/j.micromeso.2020.110053
[27]
Li G, Xiao P, Webley P. Langmuir, 2009, 25(18): 10666.

doi: 10.1021/la901107s
[28]
Bolis V, Busco C, Ugliengo P. J. Phys. Chem. B, 2006, 110(30): 14849.

doi: 10.1021/jp061078q
[29]
Ruthven D M. Principles of Adsorption and Adsorption Processes, first ed., Wiley Interscience, 1984.
[30]
Yu L. J. Chem. Eng. Data, 2009, 54(7): 1981.

doi: 10.1021/je800661q
[31]
Wang X X, Liu X, Zhang Q, Chen H S. Acta Phys. Sin. 2017, 66: 103601.

doi: 10.7498/aps.66.103601
(王小霞, 刘鑫, 张琼, 陈宏善. 物理学报. 2017, 66: 103601.).
[32]
Joos L, Lejaeghere K, Huck J M, van Speybroeck V, Smit B. Energy Environ. Sci., 2015, 8(8): 2480.

doi: 10.1039/C5EE01690H
[33]
Boyd P G, Chidambaram A, García-Díez E, Ireland C P, Smit B. Nature, 2019, 576: 12.

doi: 10.1038/d41586-019-03697-9
[34]
Berghe G, Kline S, Burket S, Bivens L, Johnson D, Singh R. J. Mol. Modeling, 2019, 25(9): 1.

doi: 10.1007/s00894-018-3878-2
[35]
Roussanaly S, Anantharaman R, Lindqvist K, Hagen B. Sustain. Energy Fuels, 2018, 2(6): 1225.

doi: 10.1039/C8SE00039E
[36]
Plaza M G, Durán I, Querejeta N, Rubiera F, Pevida C. Ind. Eng. Chem. Res., 2016, 55(24): 6854.

doi: 10.1021/acs.iecr.6b01720
[37]
Xian S K, Peng J J, Zhang Z J, Xia Q B, Wang H H, Li Z. Chem. Eng. J., 2015, 270: 385.

doi: 10.1016/j.cej.2015.02.041
[38]
Rege S U, Ralph T Y, Qian K Y, Mark A B. Chem. Eng. Sci., 2001, 56: 27.
[39]
Yu K, Kiesling K, Schmidt J R. J. Phys. Chem. C, 2012, 116(38): 20480.

doi: 10.1021/jp307894e
[40]
Kwon S C, Lee W R, Lee H N, Kim J H, Lee H L. Bull. Korean Chem. Soc., 2011, 32(3): 988.

doi: 10.5012/bkcs.2011.32.3.988
[41]
Brandani F, Ruthven D M. Ind. Eng. Chem. Res., 2004, 43(26): 8339.

doi: 10.1021/ie040183o
[42]
Lackner K S. Eur. Phys. J. Spec. Top., 2009, 176(1): 93.

doi: 10.1140/epjst/e2009-01150-3
[43]
Wang T, Lackner K S, Wright A B. Phys. Chem. Chem. Phys., 2013, 15(2): 504.

doi: 10.1039/c2cp43124f pmid: 23172123
[44]
Ge K. Doctoral Dissertation of ZheJiang University, 2016.
(葛坤. 浙江大学博士论文, 2016.).
[45]
Wang T, Ge K, Chen K X, Hou C L, Fang M X. Phys. Chem. Chem. Phys., 2016, 18(18): 13084.

doi: 10.1039/c5cp07229h pmid: 27115032
[46]
Ma M, Guo L, Anderson D G, Langer R. Science, 2013, 339(6116): 186.

doi: 10.1126/science.1230262
[47]
Chen X, Goodnight D, Gao Z H. Nat. Commun., 2015, 6: 7346.

doi: 10.1038/ncomms8346 pmid: 26079632
[48]
Zhang X H, Wang M Y, Chen Y L, Li D. Abstracts of the 30th Annual Conference of the Chinese Chemical Society. 2016. 1.
(张兴华, 王铭扬, 陈云琳, 李丹. 中国化学会第30届学术年会摘要集. 2016. 1.).
[49]
Uemura K, Matsuda R, Kitagawa S. J. Solid State Chem., 2005, 178(8): 2420.

doi: 10.1016/j.jssc.2005.05.036
[50]
Alhamami M, Doan H, Cheng C H. Materials, 2014, 7(4): 3198.

doi: 10.3390/ma7043198 pmid: 28788614
[51]
Wang Z, Zhu C Y, Wei Z W, Fan Y N, Pan M. Chem. Mater., 2020, 32(2): 841.

doi: 10.1021/acs.chemmater.9b04440
[52]
Georgieva V M, Bruce E L, Verbraeken M C, Scott A R, Casteel W J, Brandani S, Wright P A. J. Am. Chem. Soc., 2019, 141(32): 12744.

doi: 10.1021/jacs.9b05539 pmid: 31373800
[53]
Yazaydın A Ö, Benin A I, Faheem S A, Jakubczak P, Low J J, Willis R R, Snurr R Q. Chem. Mater., 2009, 21(8): 1425.

doi: 10.1021/cm900049x
[54]
Llewellyn P L, Bourrelly S, Serre C, Filinchuk Y, Férey G. Angew. Chem. Int. Ed., 2006, 45(46): 7751.

doi: 10.1002/anie.200602278
[55]
Abdelnaby M M, Qasem N A A, Bassem A. ACS Sustain. Chem. Eng., 2019, 7: 13941.

doi: 10.1021/acssuschemeng.9b02334
[56]
Chen H Y, Wang W L, Ding J, Wei X L, Lu J F. Energy Procedia, 2017, 105: 4370.

doi: 10.1016/j.egypro.2017.03.929
[57]
Coelho J A, Lima A E O, Rodrigues A E, Azevedo D C S, Lucena S M P. Adsorption, 2017, 23(2/3): 423.

doi: 10.1007/s10450-017-9872-7
[58]
Walczak R, Savateev A, Heske J, Tarakina N V, Sahoo S, Epping J D, Kühne T D, Kurpil B, Antonietti M, Oschatz M. Sustain. Energy Fuels, 2019, 3(10): 2819.

doi: 10.1039/C9SE00486F
[59]
Querejeta N, Plaza M G, Rubiera F, Pevida C, Avery T, Tennisson S R. Energy Procedia, 2017, 114: 2341.

doi: 10.1016/j.egypro.2017.03.1366
[60]
Gebald C, Wurzbacher J A, Borgschulte A, Zimmermann T, Steinfeld A. Environ. Sci. Technol., 2014, 48(4): 2497.

doi: 10.1021/es404430g
[61]
Zhang J F, Burke N, Zhang S C, Liu K Y, Pervukhina M. Chem. Eng. Sci., 2014, 113: 54.

doi: 10.1016/j.ces.2014.04.001
[62]
Wang T, Lackner K S, Wright A. Environ. Sci. Technol., 2011, 45(15): 6670.

doi: 10.1021/es201180v pmid: 21688825
[63]
Chen H F, Wang G Z, Zhou S M, Feng L N, Wang D D, Hu L. Modern Chemical Industry, 2020, 40: 59.
(陈红芳, 王广智, 周思敏, 冯丽娜, 王东东, 胡磊. 现代化工, 2020, 40: 59. ).
[64]
Hu Y K. Master's Dissertation of South China University of Science, 2007.
(胡玉坤. 华南理工大学硕士论文. 2007).
[65]
Wang Y, LeVan M D. J. Chem. Eng. Data, 2010, 55(9): 3189.

doi: 10.1021/je100053g
[66]
Rege S U, Yang R T. Chem. Eng. Sci., 2001, 56(12): 3781.

doi: 10.1016/S0009-2509(01)00095-1
[67]
Zeng Y Y, Zhang B J. Acta Physico-Chimica Sinica, 2008, 24: 1493.

doi: 10.3866/PKU.WHXB20080828
(曾余瑶, 张秉坚. 物理化学学报, 2008, 24: 1493.).
[68]
Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127(51): 17998.

pmid: 16366539
[69]
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319(5865): 939.

doi: 10.1126/science.1152516 pmid: 18276887
[70]
Li S, Chung Y G, Snurr R Q. Langmuir, 2016, 32(40): 10368.

doi: 10.1021/acs.langmuir.6b02803
[71]
Eduardo G Z, Ilich A L. Mater. Chem. Front., 2017, 1: 1471.

doi: 10.1039/C6QM00301J
[72]
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710.

doi: 10.1038/359710a0
[73]
Beck J S, Vartuli J C. Curr. Opin. Solid State Mater. Sci., 1996, 1(1): 76.

doi: 10.1016/S1359-0286(96)80014-3
[74]
Anderson M W, Terasaki O, Ohsuna T, Philippou A, MacKay S P, Ferreira A, Rocha J, Lidin S. Nature, 1994, 367(6461): 347.

doi: 10.1038/367347a0
[75]
Chen C Y, Burkett S L, Li H X, Davis M E. Microporous Mater., 1993, 2(1): 27.

doi: 10.1016/0927-6513(93)80059-4
[76]
Zhang Z R, Suo J Q, Zhang X M, Li S B. Progress in Chemistry, 1999, 11: 1.
(张兆荣, 索继栓, 张小明, 李树本. 化学进展, 1999, 11: 1.).
[77]
Datta S J, Khumnoon C, Lee Z H, Moon W K, Docao S, Nguyen T H, Hwang I C, Moon D, Oleynikov P, Terasaki O, Yoon K B. Science, 2015, 350(6258): 302.

doi: 10.1126/science.aab1680
[78]
Xu Q. Doctoral Dissertation of Beijing University of Chemical Technology, 2010.
(许青. 北京化工大学博士论文, 2010).
[79]
Zhong X F. Master's Dissertation of Beijing University of Chemical Technology, 2010.
(钟旭峰. 北京化工大学硕士论文, 2010).
[80]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T. Science, 2003, 300: 1127.

doi: 10.1126/science.1083440
[81]
Zárate A, Peralta R A, Bayliss P A, Howie R, Sánchez-Serratos M, Carmona-Monroy P, Solis-Ibarra D, González-Zamora E, Ibarra I A. RSC Adv., 2016, 6(12): 9978.

doi: 10.1039/C5RA26517G
[82]
Li G, Singh R K, Liu L Y, Webley P A. The 5th Pacific Basin Conference on Adsorption Science and Technology, Singapore, 2009.
[83]
Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E. J. Am. Chem. Soc., 2012, 134(20): 8570.

doi: 10.1021/ja3015082 pmid: 22548687
[84]
Liu L Y, Singh R, Li G, Xiao G K, Webley P A, Zhai Y C. Mater. Chem. Phys., 2012, 133(2/3): 1144.

doi: 10.1016/j.matchemphys.2012.02.028
[85]
He H K, Zhong M J, Konkolewicz D, Yacatto K, Rappold T, Sugar G, David N E, Matyjaszewski K. J. Mater. Chem. A, 2013, 1(23): 6810.

doi: 10.1039/c3ta10699c
[86]
He H K, Zhong M J, Konkolewicz D, Yacatto K, Rappold T. Adv. Funct. Mater., 2013, 23(37):4719.

doi: 10.1002/adfm.201370192
[87]
Hou C L, Wu Y S, Wang T, Wang X R, Gao X. Energy Fuels, 2019, 33(3): 1745.

doi: 10.1021/acs.energyfuels.8b02821
[88]
Ma Y X, Li Z J, Wei L, Ding S Y, Zhang Y B, Wang W. J. Am. Chem. Soc., 2017, 139(14): 4995.

doi: 10.1021/jacs.7b01097
[89]
Nguyen N T T, Lo T N H, Kim J, Nguyen H T D, Le T B, Cordova K E, Furukawa H. Inorg. Chem., 2016, 55(12): 6201.

doi: 10.1021/acs.inorgchem.6b00814 pmid: 27248714
[90]
Sánchez-Serratos M, Bayliss P A, Peralta R A, González-Zamora E, Lima E, Ibarra I A. New J. Chem., 2016, 40(1): 68.

doi: 10.1039/C5NJ02312B
[91]
Peralta R A, Pineda A C R, Pfeiffer H, Álvarez J R, Antonio Zárate J A, Balmaseda J, Zamora E G, Martínez A, Otero D M ancik V, Ibarra I A. Chem. Commun., 2016, 52: 10273.

doi: 10.1039/C6CC04734C
[92]
Álvarez J R, Peralta R A, Balmaseda J, González-Zamora E, Ibarra I A. Inorg. Chem. Front., 2015, 2(12): 1080.

doi: 10.1039/C5QI00176E
[93]
Ibarra I A, Zamora E G, Peralta R, Serratos M S, Vázquez B A. Inorg. Chem. Front., 2015, 2: 898.

doi: 10.1039/C5QI00077G
[94]
Soubeyrand-Lenoir E, Vagner C, Yoon J W, Bazin P, Ragon F, Hwang Y K, Serre C, Chang J S, Llewellyn P L. J. Am. Chem. Soc., 2012, 134(24): 10174.

doi: 10.1021/ja302787x pmid: 22591198
[95]
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. J. Am. Chem. Soc., 2011, 133(29): 11378.

doi: 10.1021/ja203857g
[96]
Yu K, Kiesling K, Schmidt J R. J. Phys. Chem. C, 2012, 116(38): 20480.

doi: 10.1021/jp307894e
[97]
Prats H, Bahamon D, Alonso G, Giménez X, Gamallo P, Sayós R. J. CO2 Util., 2017, 19: 100.
[98]
Cavenati S, Grande C A, Rodrigues A E. Adsorption, 2005, 11(1): 549.

doi: 10.1007/s10450-005-5983-7
[99]
Cavenati S, Grande C A, Rodrigues A E. Chem. Eng. Sci., 2006, 61(12): 3893.

doi: 10.1016/j.ces.2006.01.023
[100]
Li G, Xiao P, Zhang J, Webley P A, Xu D. AIChE J., 2014, 60(2): 673.

doi: 10.1002/aic.14281
[101]
Hefti M, Joss L, Bjelobrk Z, Mazzotti M. Faraday Discuss., 2016, 192: 153.

pmid: 27509258
[102]
Wu Y S. Master's Dissertation of Zhejiang University, 2020.
(吴禹松. 浙江大学硕士论文, 2020).
[103]
E Bajamundi C J, Koponen J, Ruuskanen V, Elfving J, Kosonen A, Kauppinen J, Ahola J, J. CO2 Util., 2019, 30: 232.
[104]
Veneman R, Frigka N, Zhao W Y, Li Z S, Kersten S, Brilman W. Int. J. Greenh. Gas Control., 2015, 41: 268.

doi: 10.1016/j.ijggc.2015.07.014
[105]
He H K, Li W W, Zhong M J, Konkolewicz D, Wu D C, Yaccato K, Rappold T, Sugar G, David N E, Matyjaszewski K. Energy Environ. Sci., 2013, 6(2): 488.

doi: 10.1039/C2EE24139K
[106]
Wang T, Liu J, Lackner K S, Shi X Y, Fang M X, Luo Z Y. Greenh. Gases: Sci. Technol., 2016, 6(1): 138.
[107]
Wang T, Liu J, Huang H, Fang M X, Luo Z Y. Chem. Eng. J., 2016, 284: 679.

doi: 10.1016/j.cej.2015.09.009
[108]
Shi X Y, Xiao H, Lackner K S, Chen X. Angew. Chem. Int. Ed., 2016, 55(12): 4026.

doi: 10.1002/anie.201507846
[109]
Song J Z, Liu J, Zhao W, Chen Y, Xiao H, Shi X Y, Liu Y L, Chen X. Ind. Eng. Chem. Res., 2018, 57(14): 4941.

doi: 10.1021/acs.iecr.8b00064
[110]
Liu Y N, Deng S, Zhao R K, Zhao L, He J N. Chem. Ind. Eng. Prog., 2016, 35(12): 3848.
(刘一楠, 邓帅, 赵睿恺, 赵力, 何俊南. 化工进展, 2016, 35(12): 3848.).
[111]
House K Z, Harvey C F, Aziz M J, Schrag D P. Energy Environ. Sci., 2009, 2(2): 193.

doi: 10.1039/b811608c
[112]
Bahamon D, Díaz-Márquez A, Gamallo P, Vega L F. Chem. Eng. J., 2018, 342: 458.

doi: 10.1016/j.cej.2018.02.094
[113]
Bahamon D, Vega L F. Chem. Eng. J., 2016, 284: 438.

doi: 10.1016/j.cej.2015.08.098
[114]
Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W. Chem. Rev., 2016, 116(19): 11840.

pmid: 27560307
[115]
American Physical Society. Direct air capture of CO2 with chemicals: A technology assessment for the APS panel on public affairs; APS: 2011.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[4] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[5] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[8] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[9] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[10] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[11] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[12] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[15] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.