中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 780-793 DOI: 10.7536/PC221005 Previous Articles   Next Articles

• Review •

Selective Ionic Removal Strategy and Adsorbent Preparation

Zhixuan Wang, Shaokui Zheng()   

  1. School of Environment, Beijing Normal University,Beijing 100875, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: zsk@bnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22176015)
Richhtml ( 21 ) PDF ( 436 ) Cited
Export

EndNote

Ris

BibTeX

The selective ionic removal from water or wastewater by newly-developed adsorbents has been intensely investigated around the world since 1960s. These selective ionic adsorbents were used to control the concentrations of specific ions in drinking water or wastewater in the presence of plentiful coexisting ions to prepare quality drinking water or avoid ecological hazards in natural waterbodies due to wastewater discharge. Due to remarkable market demands and wide application prospects, this topic still generates numerous amazing findings in terms of international publications in recent decade. Besides the history, the present status and the research bias, this paper lays particular emphasis on the four selective ionic removal strategies involved in previous studies (i.e., the molecular imprinting technology, the soft and hard acid base theory, the non-electrostatic interaction theory, and the self-inhibition theory of competitive ions), including their mechanisms, histories, and adsorbent preparations and applications. Finally, this review also prospects the future research directions. This review provides overall information for the further development of selective ionic adsorbents for water or wastewater treatment.

Contents

1 Introduction

2 Selective ion adsorption materials based on molecular imprinting technology

2.1 Principles and development history of molecular imprinting technology

2.2 Preparation of molecularly imprinted materials and selective ion adsorption

3 Selective ion adsorption materials based on hard and soft acid base theory

3.1 The development history of acid-base theory

3.2 Preparation of hard and soft acid base materials and selective ion adsorption

4 Selective anion adsorption materials based on non-electrostatic interaction

4.1 Selective ion adsorption based on hydrophilicity and hydrophobicity

4.2 Selective ion adsorption based on hydrogen bonding

5 Selective ion adsorption of standard resin based on competitive ion self-inhibition mechanism

6 Conclusion and outlook

Fig. 1 Number of international publications on selective ionic materials during 2018—2022 (August)
Fig. 2 Target ionic types investigated in international papers on selective ionic materials during 2018—2022 (August)
Fig. 3 Principles of imprinted polymers[66]
Fig. 4 XPS spectra of GO-IIP: (a) survey spectra before and after Pb(Ⅱ) adsorption; (b) Pb 4f spectrum after Pb(Ⅱ) adsorption; N 1 s spectra before adsorption (c) and after adsorption (d); O1 s spectra before adsorption (e) and after adsorption (f)[86]
Table 1 Absolute hardness of some Lewis bases[89]
Table 2 Absolute hardness of some Lewis acids[89]
Table 3 Typical soft and hard acids and bases[130]
Fig. 5 Removal of Hg2+ from water by sulfhydryl frozen gel[96]
Fig. 6 (a) FTIR, (b) XPS, (c) Hg 4f and (d) S 2p spectra of adsorbent before and after Hg2+adsorption[132]
Table 4 Hydration energy of typical anions[146]
Fig. 7 Scanning electron microscopic images showing the mineral deposits and surface morphology of (a) Purolite A-520E and (b) bifunctional (RO-02-119) resin beads[142]
Fig. 8 (a) Evolution of the XPS C 1s peaks between Zn2Al-PMA-LDHs before and after adsorption and (b) comparison of the XPS P 2p peaks between Zn2Al-PMA-LDHs and Zn2Al-Cl-LDHs after adsorption[149]
[1]
Environmental Quality Standard for Surface Water (GB3838-2002). Beijing: Genetal Bureau of China National Environment Protection, 2002.
(地表水环境质量标准(GB 3838-2002). 北京: 中国国家环境保护总局, 2002.).
[2]
Standards for Drinking Water Quality(GB 5749-2022). Beijing: State Administration for Market Regulation, Standardization Administration, 2022.
(生活饮用水卫生标准(GB 5749-2022). 北京: 国家市场监督管理总局, 中国国家标准化管理委员会, 2022.).
[3]
Integrated Wastewater Discharge Standard(GB 8978-1996). Beijing: National Environmnent Protection Bureau, State Technology Supervision Bureau, 1996.
(污水综合排放标准(GB 8978-1996). 北京: 国家环境保护总局, 国家技术监督局, 1996.).
[4]
Wang F. Modern Ion Exchange and Adsorption Technology. Beijing: Tsinghua University Press, 2015.
(王方. 现代离子交换与吸附技术. 北京: 清华大学出版社, 2015.).
[5]
He B L. Ion Exchange and Adsorption Resin. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1995. 1.
(何炳林. 离子交换与吸附树脂. 上海: 上海科技教育出版社, 1995.1.).
[6]
Hiroshi S,. Xu J W(Eds.). Ion Exchange Resin. Shanghai: Shanghai Scientific & Technical Publishers, 1960.1.
((日) 清水博(著). 许景文(编译). 离子交换树脂. 上海: 上海科学技术出版社, 1960.1).
[7]
Shao L. Ion Exchange Resin for Water Treatment. Beijing: China Water Power Press, 1989.
(邵林. 水处理用离子交换树脂. 北京: 水利电力出版社, 1989. ).
[8]
Duan S P, Tong T Z, Zheng S K, Zhang X Y, Li S D. Water Res., 2020, 173: 115571.

doi: 10.1016/j.watres.2020.115571
[9]
DeGeiso R C, Donaruma L G, Tomic E A. Anal. Chem., 1962, 34(7): 845.

doi: 10.1021/ac60187a039
[10]
Kunin R, Preuss A F. Ind. Eng. Chem. Prod. Res. Dev., 1964, 3(4): 304.
[11]
Yee W C. Journal AWWA, 1966, 58(2): 239.

doi: 10.1002/j.1551-8833.1966.tb01574.x
[12]
Sýkora V, Dubský F. Collect. Czech. Chem. Commun., 1967, 32(9): 3342.

doi: 10.1135/cccc19673342
[13]
Mercer B W, Ames L L, Touhill C J, Van Slyke W J, Dean R B. J. Water Pollut. Control Fed., 1970, 42(2): R95.
[14]
Qureshi M, Kumar R, Rathore H S. Anal. Chem., 1972, 44(6): 1081.

doi: 10.1021/ac60314a044
[15]
Samanta S K, Ramaswamy M, Misra B M. Sep. Sci. Technol., 1992, 27(2): 255.

doi: 10.1080/01496399208018877
[16]
Avery N L, Fries W. Ind. Eng. Chem. Prod. Res. Dev., 1975, 14(2): 102.
[17]
Grinstead R R, Nasutavicus W A, Wheaton R M, Jones K C. JOM, 1975, 27(12): A9.
[18]
Rawat J P, Singh Muktawat K P. Chromatographia, 1978, 11(9): 513.

doi: 10.1007/BF02311073
[19]
Choi W W, Chen K Y. Journal AWWA, 1979, 71(10): 562.

doi: 10.1002/j.1551-8833.1979.tb04420.x
[20]
Maeda H, Egawa H. J. Chem. Soc. Jpn., Chem. Ind. Chem., 1981, (7): 1177.
[21]
Hoek J P, Hoek W F, Klapwijk A. Water Air Soil Pollut., 1988, 37(1-2): 41.

doi: 10.1007/BF00226478
[22]
Ebra M A, Wallace R M, Walker D D, Wille R A. MRS Online Proc. Libr., 1981, 6(1): 633.
[23]
Zemlyanushnova O V, Kirillov A I, Golentovskaya I P, Vlasova N N. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1982, 25(5): 568.
[24]
Rawat J P, Khan M A, Thind P S. Bull. Chem. Soc. Jpn., 1984, 57(6): 1701.

doi: 10.1246/bcsj.57.1701
[25]
Brajter K, Slonawska K. Fresenius'Zeitschrift Für Anal. Chemie, 1986, 323(2): 145.
[26]
Strelko V V, Khainakov S A, Kvashenko A P, Belyakov V N, Bortun A I. Russ. J. Appl. Chem., 1988, 61(9): 1922.
[27]
Srivastava S, Rao G N. Anal., 1990, 115(12): 1607.

doi: 10.1039/an9901501607
[28]
Maeda H, Egawa H. J. Appl. Polym. Sci., 1990, 39(7): 1519.

doi: 10.1002/app.1990.070390710
[29]
Raychaudhuri A, Somlai J. J. Radioanal. Nucl. Chem., 1992, 166(2): 153.

doi: 10.1007/BF02169582
[30]
Ramana A, Sengupta A K. J. Environ. Eng., 1992, 118(5): 755.

doi: 10.1061/(ASCE)0733-9372(1992)118:5(755)
[31]
Gu B H, Brown G M, Bonnesen P V, Liang L Y, Moyer B A, Ober R, Alexandratos S D. Environ. Sci. Technol., 2000, 34(6):1075.

doi: 10.1021/es990951g
[32]
Kim J S, Park J C, Yi J. Sep. Sci. Technol., 2000, 35(12): 1901.

doi: 10.1081/SS-100100626
[33]
Gu B H, Brown G M, Alexandratos S D, Ober R, Dale J A, Plant S. Perchlorate in the Environment. Boston, MA: Springer US, 2000. 165.
[34]
Boudenne J L, Boussetta S, Brach-Papa C, Branger C, Margaillan A, ThÉraulaz F. Polym. Int., 2002, 51(10): 1050.

doi: 10.1002/pi.v51:10
[35]
Mištová E, Parschová H, Matějka Z. Sep. Sci. Technol., 2007, 42(6): 1231.

doi: 10.1080/01496390601174364
[36]
Hajizadeh S, Kirsebom H, Galaev I Y, Mattiasson B. J. Sep. Science, 2010, 33(12): 1752.

doi: 10.1002/jssc.v33:12
[37]
Alexandratos S D, Li Y, Salinaro R. Polymer, 2010, 51(2): 383.

doi: 10.1016/j.polymer.2009.11.040
[38]
Zeng J X, Zhang Z, Zhou H, Liu G Q, Liu Y, Zeng L W, Jian J, Yuan Z Q. Polym. Adv. Technol., 2019, 30(7): 1865.

doi: 10.1002/pat.v30.7
[39]
Zhang H, Omer A M, Hu Z H, Yang L Y, Ji C, Ouyang X K. Int. J. Biol. Macromol., 2019, 135: 490.

doi: S0141-8130(19)31949-X pmid: 31145956
[40]
Zeng H H, Wang L, Zhang D, Yan P, Nie J, Sharma V K, Wang C Y. Chem. Eng. J., 2019, 358: 253.

doi: 10.1016/j.cej.2018.10.001
[41]
Wang K X, Ma H, Pu S Y, Yan C, Wang M T, Yu J, Wang X K, Chu W, Zinchenko A. J. Hazard. Mater., 2019, 362: 160.

doi: 10.1016/j.jhazmat.2018.08.067
[42]
Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J W, Qiu J D. Nat. Commun., 2020, 11: 436.

doi: 10.1038/s41467-020-14289-x
[43]
Cui W R, Jiang W, Zhang C R, Liang R P, Liu J W, Qiu J D. ACS Sustainable Chem. Eng., 2020, 8(1): 445.

doi: 10.1021/acssuschemeng.9b05725
[44]
Jansone-Popova S, Moinel A, Schott J A, Mahurin S M, Popovs I, Veith G M, Moyer B A. Environ. Sci. Technol., 2019, 53(2): 878.

doi: 10.1021/acs.est.8b04215 pmid: 30351038
[45]
Khazaei M, Nasseri S, Ganjali M R, Khoobi M, Nabizadeh R, Gholibegloo E, Nazmara S. J. Mol. Liq., 2018, 265: 189.

doi: 10.1016/j.molliq.2018.05.048
[46]
Hou L, Yang C L, Rao X F, Hu L Z, Bao Y M, Gao Y, Zhu X L. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 625: 126949.

doi: 10.1016/j.colsurfa.2021.126949
[47]
Sitko R, Musielak M, Serda M, Talik E, Zawisza B, Gagor A, Malecka M. Sep. Purif. Technol., 2021, 254: 117606.

doi: 10.1016/j.seppur.2020.117606
[48]
Tang N, Niu C G, Li X T, Liang C, Guo H, Lin L S, Zheng C W, Zeng G M. Sci. Total Environ., 2018, 635: 1331.

doi: 10.1016/j.scitotenv.2018.04.236
[49]
Mubita T M, Dykstra J E, Biesheuvel P M, van der Wal A, Porada S. Water Res., 2019, 164: 114885.

doi: 10.1016/j.watres.2019.114885
[50]
Iannicelli-Zubiani E M, Gallo Stampino P, Cristiani C, Dotelli G. Chem. Eng. J., 2018, 341: 75.

doi: 10.1016/j.cej.2018.01.154
[51]
Huang C D, Shi X F, Wang C, Guo L, Dong M Y, Hu G S, Lin J, Ding T, Guo Z H. Int. J. Biol. Macromol., 2019, 140: 1167.

doi: 10.1016/j.ijbiomac.2019.08.230
[52]
Tang J H, Jin J C, Li W A, Zeng X, Ma W, Li J L, Lv T T, Peng Y C, Feng M L, Huang X Y. Nat. Commun., 2022, 13: 658.

doi: 10.1038/s41467-022-28217-8
[53]
Bui N T, Kang H, Teat S J, Su G M, Pao C W, Liu Y S, Zaia E W, Guo J H, Chen J L, Meihaus K R, Dun C C, Mattox T M, Long J R, Fiske P, Kostecki R, Urban J J. Nat. Commun., 2020, 11: 3947.

doi: 10.1038/s41467-020-17757-6
[54]
Lounder S J, Asatekin A. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(37): e2022198118.
[55]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): e1705479.
[56]
Yuan M W, Yao H Q, Xie L X, Liu X W, Wang H, Islam S M, Shi K R, Yu Z H, Sun G B, Li H F, Ma S L, Kanatzidis M G. J. Am. Chem. Soc., 2020, 142(3): 1574.

doi: 10.1021/jacs.9b12196
[57]
Wang R Q, Chen H J, Xiao Y, Hadar I, Bu K J, Zhang X, Pan J, Gu Y H, Guo Z N, Huang F Q, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(42): 16903.

doi: 10.1021/jacs.9b08674
[58]
Fowler W C, Deng C T, Griffen G M, Teodoro T, Guo A Z, Zaiden M, Gottlieb M, de Pablo J J, Tirrell M V. J. Am. Chem. Soc., 2021, 143(11): 4440.

doi: 10.1021/jacs.1c01241
[59]
Feng M L, Sarma D, Gao Y J, Qi X H, Li W A, Huang X Y, Kanatzidis M G. J. Am. Chem. Soc., 2018, 140(35): 11133.

doi: 10.1021/jacs.8b07457
[60]
Chen Z, Chan A K W, Wong V C H, Yam V W W. J. Am. Chem. Soc., 2019, 141(28): 11204.

doi: 10.1021/jacs.9b04397
[61]
Zhang X L, Huang P, Zhu S Y, Hua M, Pan B C. Environ. Sci. Technol., 2019, 53(9): 5319.

doi: 10.1021/acs.est.9b00745
[62]
Wang Z Y, Sim A, Urban J J, Mi B X. Environ. Sci. Technol., 2018, 52(17): 9741.

doi: 10.1021/acs.est.8b01705
[63]
Nkinahamira F, Alsbaiee A, Zeng Q T, Li Y, Zhang Y Q, Feng M L, Yu C P, Sun Q. Water Res., 2020, 181: 115857.

doi: 10.1016/j.watres.2020.115857
[64]
Lin B, Zhang Y Y, Shen F F, Zhang L, Wang D, Tang X B, Zhou Y, Nie X Y, Lv L, Zhang W M, Hua M, Pan B C. Water Res., 2020, 186: 116299.

doi: 10.1016/j.watres.2020.116299
[65]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.

doi: 10.1039/C6CS00061D
[66]
Huang Y, Wang R. Curr. Org. Chem., 2018, 22(16): 1600.

doi: 10.2174/1385272822666180711120045
[67]
Alexander C, Andersson H S, Andersson L I, Ansell R J, Kirsch N, Nicholls I A, O'Mahony J, Whitcombe M J. J. Mol. Recognit., 2006, 19(2): 106.

doi: 10.1002/(ISSN)1099-1352
[68]
Ramstroem O, Andersson L I, Mosbach K. J. Org. Chem., 1993, 58(26): 7562.

doi: 10.1021/jo00078a041
[69]
Venkatesh A, Chopra N, Krupadam R J. Environ. Sci. Pollut. Res., 2014, 21(10): 6603.

doi: 10.1007/s11356-014-2566-8
[70]
Wang S, Li Y, Ding M J, Wu X L, Xu J H, Wang R Y, Wen T T, Huang W Y, Zhou P, Ma K F, Zhou X M, Du S H. J. Chromatogr. B, 2011, 879(25): 2595.

doi: 10.1016/j.jchromb.2011.07.017
[71]
Polyakov M. Zhur Fiz Khim, 1931, 2: 799.
[72]
Wulff G. Angrew. Chem. Internat. Edit., 1972, 11(4): 341.
[73]
Birlik E, Ersöz A, Denizli A, Say R. Anal. Chimica Acta, 2006, 565(2): 145.

doi: 10.1016/j.aca.2006.02.051
[74]
Mishra S, Tripathi A. J. Environ. Chem. Eng., 2020, 8(2): 103656.

doi: 10.1016/j.jece.2020.103656
[75]
Ren Z Q, Zhu X Y, Du J, Kong D L, Wang N, Wang Z, Wang Q, Liu W, Li Q S, Zhou Z Y. Appl. Surf. Sci., 2018, 435: 574.

doi: 10.1016/j.apsusc.2017.11.059
[76]
Hajri A K, Jamoussi B, Albalawi A E, Alhawiti O H N, Alsharif A A. Carbohydr. Polym., 2022, 286: 119207.

doi: 10.1016/j.carbpol.2022.119207
[77]
Velempini T, Pillay K, Mbianda X Y, Arotiba O A. J. Environ. Sci., 2019, 79: 280.

doi: 10.1016/j.jes.2018.11.022
[78]
Wu G H, Wang Z Q, Wang J, He C Y. Anal. Chimica Acta, 2007, 582(2): 304.

doi: 10.1016/j.aca.2006.09.034
[79]
Li Z H, Chen L H, Su Q, Wu L, Wei X H, Zeng L, Li M C. RSC Adv., 2019, 9(9): 5110.

doi: 10.1039/C8RA09992H
[80]
Liu Y, Liu Z C, Gao J, Dai J D, Han J, Wang Y, Xie J M, Yan Y S. J. Hazard. Mater., 2011, 186(1): 197.

doi: 10.1016/j.jhazmat.2010.10.105 pmid: 21109351
[81]
Zhu L Y, Zhu Z L, Zhang R H, Hong J, Qiu Y L. J. Environ. Sci., 2011, 23(12): 1955.

doi: 10.1016/S1001-0742(10)60611-0
[82]
Teixeira Tarley C R, Corazza M Z, Somera B F, Segatelli M G. J. Colloid Interface Sci., 2015, 450: 254.

doi: 10.1016/j.jcis.2015.02.074
[83]
Xie F Z, Liu G J, Wu F C, Guo G H, Li G L. Chem. Eng. J., 2012, 183: 372.

doi: 10.1016/j.cej.2012.01.018
[84]
Gao B J, Wang X H, Zhang Y Y. Mater. Chem. Phys., 2013, 140(2-3): 478.

doi: 10.1016/j.matchemphys.2013.03.056
[85]
Say R, Ersoz A, Turk H, Denizli A. Sep. Purif. Technol., 2004, 40(1): 9.

doi: 10.1016/j.seppur.2003.12.021
[86]
Huang R J, Shao N, Hou L, Zhu X L. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 566: 218.

doi: 10.1016/j.colsurfa.2019.01.011
[87]
Monier M, Bukhari A A H, Elsayed N H. Int. J. Biol. Macromol., 2020, 155: 795.

doi: S0141-8130(20)32801-4 pmid: 32229208
[88]
Kong D L, Zhang F, Wang K Y, Ren Z Q, Zhang W D. Ind. Eng. Chem. Res., 2014, 53(11): 4434.

doi: 10.1021/ie403484p
[89]
Yu X, Luo Y, Yang Y, Jin H, Ren H. Shandong Chem. Ind. 2017, 46(24): 71.
(于晓洋, 罗亚楠, 杨艳艳, 金华, 任红. 山东化工. 2017, 46(24): 71.).
[90]
Parr R G, Pearson R G. J. Am. Chem. Soc., 1983, 105(26): 7512.

doi: 10.1021/ja00364a005
[91]
Sun D T, Peng L, Reeder W S, Moosavi S M, Tiana D, Britt D K, Oveisi E, Queen W L. ACS Cent. Sci., 2018, 4(3): 349.

doi: 10.1021/acscentsci.7b00605
[92]
Awual M R. J. Environ. Chem. Eng., 2019, 7(3): 103087.

doi: 10.1016/j.jece.2019.103087
[93]
He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. ACS Appl. Mater. Interfaces, 2018, 10(19): 16650.

doi: 10.1021/acsami.8b03987
[94]
Awual M R. J. Mol. Liq., 2019, 284: 502.

doi: 10.1016/j.molliq.2019.03.157
[95]
Bagheri S, Amini M M, Behbahani M, Rabiee G. Microchem. J., 2019, 145: 460.

doi: 10.1016/j.microc.2018.11.006
[96]
Huang R F, Ma X G, Li X, Guo L H, Xie X W, Zhang M Y, Li J. J. Colloid Interface Sci., 2018, 514: 544.

doi: 10.1016/j.jcis.2017.12.065
[97]
Zhu Y F, Lin H Y, Feng Q G, Zhao B H, Lan W L, Li T S, Xue B, Li M G, Zhang Z H. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 617: 126382.

doi: 10.1016/j.colsurfa.2021.126382
[98]
Pan J Y, Wang S, Zhang R F. J. Appl. Polym. Sci., 2006, 102(3): 2372.

doi: 10.1002/(ISSN)1097-4628
[99]
Sohrabi M R. Microchimica Acta, 2014, 181(3-4): 435.

doi: 10.1007/s00604-013-1133-1
[100]
Yao X X, Wang H C, Ma Z H, Liu M Q, Zhao X Q, Jia D. Chin. J. Chem. Eng., 2016, 24(10): 1344.

doi: 10.1016/j.cjche.2016.07.008
[101]
Fu L K, Wang S X, Lin G, Zhang L B, Liu Q M, Fang J, Wei C, Liu G. J. Hazard. Mater., 2019, 368: 42.

doi: 10.1016/j.jhazmat.2019.01.025
[102]
Abbas K, Znad H, Awual M R. Chem. Eng. J., 2018, 334: 432.

doi: 10.1016/j.cej.2017.10.054
[103]
Song Y H, Lu M C, Huang B, Wang D L, Wang G, Zhou L. J. Alloys Compd., 2018, 737: 113.

doi: 10.1016/j.jallcom.2017.12.087
[104]
Shao G L, Xiao J F, Tian Z H, Huang J J, Yuan S G. Polym. Adv. Technol., 2018, 29(3): 1030.

doi: 10.1002/pat.v29.3
[105]
Wang Y, Dang Q F, Liu C S, Yu D J, Pu X Y, Wang Q Q, Gao H, Zhang B N, Cha D S. ACS Appl. Mater. Interfaces, 2018, 10(46): 40302.

doi: 10.1021/acsami.8b14893
[106]
Cardoso S P, Faria T L, Pereira E, Portugal I, Lopes C B, Silva C M. Materials, 2020, 14(1): 11.

doi: 10.3390/ma14010011
[107]
Viswanathan N, Meenakshi S. J. Fluor. Chem., 2008, 129(6): 503.

doi: 10.1016/j.jfluchem.2008.03.005
[108]
Viswanathan N, Meenakshi S. J. Colloid Interface Sci., 2008, 322(2): 375.

doi: 10.1016/j.jcis.2008.03.007
[109]
Viswanathan N, Sundaram C S, Meenakshi S. Colloids Surf. B Biointerfaces, 2009, 68(1): 48.

doi: 10.1016/j.colsurfb.2008.09.009
[110]
Viswanathan N, Meenakshi S. J. Appl. Polym. Sci., 2009, 112(3): 1114.

doi: 10.1002/app.v112:3
[111]
Praipipat P, El-Moselhy M M, Khuanmar K, Weerayutsil P, Nguyen T T, Padungthon S. Chem. Eng. J., 2017, 314: 192.

doi: 10.1016/j.cej.2016.12.122
[112]
Iqbal M, Suleman M, Ullah S, Bibi H, Wahab H, Iqbal Z, Dawar K M, Wahab S, Ahmad M N. Fluoride, 2020, 53(1): 112.
[113]
Prabhu S M, Meenakshi S. Int. J. Biol. Macromol., 2015, 78: 280.

doi: 10.1016/j.ijbiomac.2015.04.002
[114]
Shang Y N, Xu X, Gao B Y, Yue Q Y. J. Clean. Prod., 2018, 199: 36.

doi: 10.1016/j.jclepro.2018.07.162
[115]
Mani S K, Bhandari R, Nehra A. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 610: 125751.

doi: 10.1016/j.colsurfa.2020.125751
[116]
Viswanathan N, Meenakshi S. Appl. Clay Sci., 2010, 48(4): 607.

doi: 10.1016/j.clay.2010.03.012
[117]
Wu R S S, Lam K H, Lee J M N, Lau T C. Chemosphere, 2007, 69(2): 289.

doi: 10.1016/j.chemosphere.2007.04.022
[118]
Barsbay M, Kavaklı P A, Güven O. Radiat. Phys. Chem., 2010, 79(3): 227.

doi: 10.1016/j.radphyschem.2009.09.003
[119]
Zhang L, Wan L H, Chang N, Liu J Y, Duan C, Zhou Q, Li X L, Wang X Z. J. Hazard. Mater., 2011, 190(1-3): 848.

doi: 10.1016/j.jhazmat.2011.04.021 pmid: 21530079
[120]
Kumar I A, Viswanathan N. J. Environ. Chem. Eng., 2017, 5(2): 1438.

doi: 10.1016/j.jece.2017.02.005
[121]
Li X H, Hu X Y, Fu Y Z, Ai H Y, Fu M L, Yuan B L. Environ. Technol., 2022, 43(3): 345.

doi: 10.1080/09593330.2020.1788169
[122]
Yang Q T, Gong L, Huang L L, Xie Q L, Zhong Y J, Chen N C. Int. J. Environ. Res. Public Health, 2020, 17(2): 429.

doi: 10.3390/ijerph17020429
[123]
Nakakubo K, Hasegawa H, Ito M, Yamazaki K, Miyaguchi M, Biswas F B, Ikai T, Maeda K. J. Hazard. Mater., 2019, 380: 120816.

doi: 10.1016/j.jhazmat.2019.120816
[124]
Wang Y L, Liu Y H, Guo T Q, Liu H P, Li J L, Wang S F, Li X H, Wang X, Jia Y F. Environ. Sci. Pollut. Res., 2020, 27(34): 42868.

doi: 10.1007/s11356-020-10240-1
[125]
Morita F, Nakakubo K, Yunoshita K, Endo M, Biswas F B, Nishimura T, Mashio A S, Hasegawa H, Taniguchi T, Maeda K. RSC Adv., 2020, 10(50): 30238.

doi: 10.1039/d0ra05573e pmid: 35518251
[126]
Pan B C, Pan B J, Chen X Q, Zhang W M, Zhang X, Zhang Q J, Zhang Q X, Chen J L. Water Res., 2006, 40(15): 2938.

doi: 10.1016/j.watres.2006.05.028
[127]
Sharma R K, Puri A, Monga Y, Adholeya A. J. Mater. Chem. A, 2014, 2(32): 12888.

doi: 10.1039/C4TA01815J
[128]
Jia K, Pan B C, Lv L, Zhang Q R, Wang X S, Pan B J, Zhang W M. J. Colloid Interface Sci., 2009, 331(2): 453.

doi: 10.1016/j.jcis.2008.11.068
[129]
Liu Y P, Zhang W L, Zhao C C, Wang H, Chen J, Yang L, Feng J T, Yan W. Chem. Eng. J., 2019, 361: 528.

doi: 10.1016/j.cej.2018.12.093
[130]
Ye M, Cao Y, Ding R, Lei Z, Jin L, Zhang J. Chem. Ind. Times. 2019, 33(02): 28.
(叶明富, 曹云钟, 丁仁浩, 雷智平, 金玲, 张婧. 化工时刊. 2019, 33(02): 28.).
[131]
Dias Filho N L, do Carmo D R. Talanta, 2006, 68(3): 919.

doi: 10.1016/j.talanta.2005.06.028
[132]
Ji C H, Ren Y, Yu H, Hua M, Lv L, Zhang W M. Chem. Eng. J., 2022, 430: 132960.

doi: 10.1016/j.cej.2021.132960
[133]
Tzvetkova P, Vassileva P, Nickolov R. J. Porous Mater., 2010, 17(4): 459.

doi: 10.1007/s10934-009-9308-1
[134]
Jiang Y J, Li X T, Gao J, Guo X C, Guan J, Mu X D. J. Nanoparticle Res., 2011, 13(3): 939.

doi: 10.1007/s11051-010-0066-4
[135]
Vatutsina O M, Soldatov V S, Sokolova V I, Johann J, Bissen M, Weissenbacher A. React. Funct. Polym., 2007, 67(3): 184.

doi: 10.1016/j.reactfunctpolym.2006.10.009
[136]
Nilchi A, Garmarodi S R, Darzi S J. J. Appl. Polym. Sci., 2011, 119(6): 3495.

doi: 10.1002/app.v119.6
[137]
Hao M J, Xie Y H, Liu X L, Chen Z S, Yang H, Waterhouse G I N, Ma S Q, Wang X K. JACS Au, 2023, 3(1): 239.

doi: 10.1021/jacsau.2c00614
[138]
Abney C W, Liu S B, Lin W B. J. Phys. Chem. A, 2013, 117(45): 11558.

doi: 10.1021/jp408460x
[139]
Kang J K, Kim S B. Microporous Mesoporous Mater., 2020, 295: 109967.

doi: 10.1016/j.micromeso.2019.109967
[140]
Song H O, Zhou Y, Li A M, Mueller S. Desalination, 2012, 296: 53.

doi: 10.1016/j.desal.2012.04.003
[141]
Sowmya A, Meenakshi S. Chem. Eng. J., 2014, 257: 45.

doi: 10.1016/j.cej.2014.07.015
[142]
Gu B H, Brown G M, Bonnesen P V, Liang L Y, Moyer B A, Ober R, Alexandratos S D. Environ. Sci. Technol., 2000, 34(6): 1075.

doi: 10.1021/es990951g
[143]
Gu B H, Brown G M, Chiang C C. Environ. Sci. Technol., 2007, 41(17): 6277.

doi: 10.1021/es0706910
[144]
Gu B H, Ku Y K, Jardine P M. Environ. Sci. Technol., 2004, 38(11): 3184.

doi: 10.1021/es034902m
[145]
Behnsen J, Riebe B. Appl. Geochem., 2008, 23(9): 2746.

doi: 10.1016/j.apgeochem.2008.06.019
[146]
Marcus Y. Ions in Solution and their Solvation. Newyork: John Wiley & Sons, 2015. 113.
[147]
Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2011, 133(29): 11050.

doi: 10.1021/ja203291n pmid: 21721540
[148]
Muller P. Pure Appl. Chem., 1994, 66(5): 1077.

doi: 10.1351/pac199466051077
[149]
Yu Q Q, Zheng Y Q, Wang Y P, Shen L, Wang H T, Zheng Y M, He N, Li Q B. Chem. Eng. J., 2015, 260: 809.

doi: 10.1016/j.cej.2014.09.059
[150]
Liang H X, Zhang H W, Wang Q, Xu C Y, Geng Z C, She D, Du X G. Sci. Total Environ., 2021, 792: 148452.

doi: 10.1016/j.scitotenv.2021.148452
[151]
Li S D, Yang X Y, Wang Z X, Duan S P, Zheng S K, Zheng X N. J. Clean. Prod., 2023, 385: 135762.

doi: 10.1016/j.jclepro.2022.135762
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[6] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[7] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[10] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[11] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[12] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[13] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[14] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[15] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.