中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 2094-2107 DOI: 10.7536/PC211215 Previous Articles   Next Articles

• Review •

Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere

Zonghan Xue1,2,3, Nan Ma1,3(), Weigang Wang2()   

  1. 1 Institute for Environmental and Climate Research, Jinan University,Guangzhou 511443, China
    2 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    3 Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality,Guangzhou 511443, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wangwg@iccas.ac.cn (Weigang Wang);nan.ma@jnu.edu.cn (Nan Ma)
  • Supported by:
    Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06N263); Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(2019B121205004)
Richhtml ( 12 ) PDF ( 228 ) Cited
Export

EndNote

Ris

BibTeX

Nitrated mono-aromatic hydrocarbons(NMAHs)are a class of pollutants with a wide variety of homologous species and complex physical and chemical properties,which are getting increasingly concerned in the researches of atmospheric chemistry.With the advance of measurement technology,more and more types of NMAHs species can be identified in field observations,and the generation mechanisms of different NMAHs are revealed in laboratory research.Base on this, we collected the published literatures of domestic and foreign research in the past 15 years on NMAHs in this paper. Firstly, We summarized its characteristics of temporal and spacial distribution, main sources, gas-particle partitioning in Europe and China as well as other places. Secondly, combing with laboratory experiments and field observations, we summarized generation and loss mechanism of NMAHs,and discussed the research progress in optical absorption, environment and health effects, as well as measurement techniques. Finally, the important scientific problems that need to be solved and future potential research directions are summarized.

Contents

1 Introduction

2 Emission and distribution characteristics of NMAHs in the atmosphere

2.1 Temporal and spatial distribution

2.2 Main sources

2.3 Gas-particle partitioning

3 Mechanisms of generation and loss of NMAHs

3.1 Mechanisms of generation and loss in gas phase

3.2 Mechanisms of generation in particle phase

4 Optical absorption of NMAHs

5 Environment and health effects of NMAHs

6 Measurement technology of NMAHs

6.1 Outline measurement technology

6.2 Online measurement technology

7 Conlusions and outlook

Table 1 The concentration of NMAHs and their seasonal variation in domestic and foreign field observations reported in the literatures
Table 2 Correlation between NMAHs and levoglucan
Fig. 1 The fractions of NMAHs species in particle phase in spring and summer[12]
Fig. 2 The pathways by which NMAHs species are generated and migrated in the gas phase and particle phase(take some species as an example)[8,16,25,28,62⇓~64]
Table 3 The maximum absorption wavelength of some NMAHs species[1]
中文名称 英文名称 英文缩略语
单环芳香族硝基化合物 Nitrated Mono-aromatic Hydrocarbons NMAHs
硝基苯酚类 Nitrophenols NPs
硝基苯酚类甲基衍生物 Methy-Nitrophenols MNPs
硝基儿茶酚类 Nitrocatechols NCs
硝基儿茶酚类甲基衍生物 Methy-Nitrocatechols MNCs
二硝基苯酚类 Dinitrophenols DNPs
二硝基苯酚类甲基衍生物 Methy-Dinitrophenols MDNPs
硝基水杨酸类 Nitrosalicylic Acids NSAs
硝基愈创木酚类 Nitroguaiacols NGs
4-硝基儿茶酚 4-Nitrocatechol 4NC
4-硝基苯酚 4-Nitrophenol 4NP
3-甲基-4-硝基苯酚 3-Methy-4-Nitrophenol 3M4NP
2-甲基-4-硝基苯酚 2-Methy-4-Nitrophenol 2M4NP
3-硝基水杨酸 3-Nitrosalicylic Acid 3NSA
5-硝基水杨酸 5-Nitrosalicylic Acid 5NSA
4-硝基愈创木酚 4-Nitroguaiacol 4NG
2-硝基苯酚 2-Nitrophenol 2NP
3-甲基-6-硝基儿茶酚 3-Methy-6-Nitrocatechol 3M6NC
3-甲基-5-硝基儿茶酚 3-Methy-5-Nitrocatechol 3M5NC
4-甲基-5-硝基儿茶酚 4-Methy-5-Nitrocatechol 4M5NC
2,4-二硝基苯酚 2,4-Dinitrophenol 2,4DNP
4-甲基-2,6-二硝基苯酚 4-Methy-2,6-Dinitrophenol 4M2,6DNP
2,6-二甲基-4-硝基苯酚 2,6-Dimethy-4-Nitrophenol 2,6DM4NP
4-甲基-2-硝基苯酚 4-Methy-2-Nitrophenol 4M2NP
5-甲基-2-硝基苯酚 5-Methy-2-Nitrophenol 5M2NP
4,6-二硝基愈创木酚 4,6-Dinitroguaiacol 4,6DNG
5-硝基愈创木酚 5-Nitroguaiacol 5NG
3-甲基儿茶酚 3-Methycatechol 3MC
4-甲基儿茶酚 4-Methycatechol 4MC
3-甲基硝基儿茶酚类 3-Methy-Nitrocatechols 3MNCs
愈创木酚 Guaiacol GUA
6-硝基愈创木酚 6-Nitroguaiacol 6NG
[1]
Mohr C, Lopez-Hilfiker F D, Zotter P, PrÉvôt A S H, Xu L, Ng N L, Herndon S C, Williams L R, Franklin J P, Zahniser M S, Worsnop D R, Knighton W B, Aiken A C, Gorkowski K J, Dubey M K, Allan J D, Thornton J A. Environ. Sci. Technol., 2013, 47(12): 6316.

doi: 10.1021/es400683v
[2]
Kitanovski Z, Shahpoury P, Samara C, Voliotis A, Lammel G. Atmos. Chem. Phys., 2020, 20(4): 2471.

doi: 10.5194/acp-20-2471-2020
[3]
Shahpoury P, Kitanovski Z, Lammel G. Atmos. Chem. Phys., 2018, 18(18): 13495.

doi: 10.5194/acp-18-13495-2018
[4]
Kitanovski Z, Hovorka J, Kuta J, Leoni C, Prokeš R, Sáñka O, Shahpoury P, Lammel G. Environ. Sci. Pollut. Res., 2021, 28(42): 59131.

doi: 10.1007/s11356-020-09540-3
[5]
Chow K S, Huang X H H, Yu J Z. Environ. Chem., 2016, 13(4): 665.

doi: 10.1071/EN15174
[6]
Teich M, van Pinxteren D, Wang M, Kecorius S, Wang Z B, Müller T, Močnik G, Herrmann H. Atmos. Chem. Phys., 2017, 17(3): 1653.

doi: 10.5194/acp-17-1653-2017
[7]
Xie M J, Chen X, Hays M D, Lewandowski M, Offenberg J, Kleindienst T E, Holder A L. Environ. Sci. Technol., 2017, 51(20): 11607.

doi: 10.1021/acs.est.7b03263
[8]
Wang Y J, Hu M, Wang Y C, Zheng J, Shang D J, Yang Y D, Liu Y, Li X, Tang R Z, Zhu W F, Du Z F, Wu Y S, Guo S, Wu Z J, Lou S R, Hallquist M, Yu J Z. Atmos. Chem. Phys., 2019, 19(11): 7649.

doi: 10.5194/acp-19-7649-2019
[9]
Kahnt A, Behrouzi S, Vermeylen R, Safi Shalamzari M, Vercauteren J, Roekens E, Claeys M, Maenhaut W. Atmos. Environ., 2013, 81: 561.

doi: 10.1016/j.atmosenv.2013.09.041
[10]
Majewska M, Khan F, Pieta I S, WrÓblewska A, Szmigielski R, Pieta P. Chemosphere, 2021, 266: 128996.

doi: 10.1016/j.chemosphere.2020.128996
[11]
Kroflič A, Anders J, Drventić I, Mettke P, Böge O, Mutzel A, Kleffmann J, Herrmann H. ACS Earth Space Chem., 2021, 5(5): 1083.

doi: 10.1021/acsearthspacechem.1c00014 pmid: 34084985
[12]
Li M, Wang X F, Lu C Y, Li R, Zhang J, Dong S W, Yang L X, Xue L K, Chen J M, Wang W X. Sci. Total. Environ., 2020, 714: 136760.

doi: 10.1016/j.scitotenv.2020.136760
[13]
Lu C Y, Wang X F, Li R, Gu R R, Zhang Y X, Li W J, Gao R, Chen B, Xue L K, Wang W X. Atmos. Environ., 2019, 203: 10.

doi: 10.1016/j.atmosenv.2019.01.047
[14]
Harrison M A J, Barra S, Borghesi D, Vione D, Arsene C, Iulian Olariu R. Atmos. Environ., 2005, 39(2): 231.

doi: 10.1016/j.atmosenv.2004.09.044
[15]
Marussi G, Vione D. Molecules, 2021, 26(9): 2550.

doi: 10.3390/molecules26092550
[16]
Vidović K, Lašič Jurković D, Šala M, Kroflič A, Grgić I. Environ. Sci. Technol., 2018, 52(17): 9722.

doi: 10.1021/acs.est.8b01161
[17]
Zhang X L, Lin Y H, Surratt J D, Weber R J. Environ. Sci. Technol., 2013, 47(8): 3685.

doi: 10.1021/es305047b
[18]
Claeys M, Vermeylen R, Yasmeen F, GÓmez-González Y, Chi X G, Maenhaut W, MÉszáros T, Salma I. Environ. Chem., 2012, 9(3): 273.

doi: 10.1071/EN11163
[19]
Twohy C H, Anderson J R, Crozier P A. Geophys. Res. Lett., 2005, 32(19): L19805.
[20]
Pflieger M, Kroflič A. J. Hazard. Mater., 2017, 338: 132.

doi: 10.1016/j.jhazmat.2017.05.023
[21]
Caumo S E S, Claeys M, Maenhaut W, Vermeylen R, Behrouzi S, Safi Shalamzari M, Vasconcellos P C. Atmos. Environ., 2016, 145: 272.

doi: 10.1016/j.atmosenv.2016.09.046
[22]
Lee B H, Mohr C, Lopez-Hilfiker F D, Lutz A, Hallquist M, Lee L C, Romer P, Cohen R C, Iyer S, KurtÉn T, Hu W W, Day D A, Campuzano-Jost P, Jimenez J L, Xu L, Ng N L, Guo H Y, Weber R J, Wild R J, Brown S S, Koss A, de Gouw J, Olson K, Goldstein A H, Seco R, Kim S, McAvey K, Shepson P B, Starn T, Baumann K, Edgerton E S, Liu J M, Shilling J E, Miller D O, Brune W, Schobesberger S, D’Ambro E L, Thornton J A. PNAS, 2016, 113(6): 1516.

doi: 10.1073/pnas.1508108113
[23]
Iinuma Y, Böge O, Gräfe R, Herrmann H. Environ. Sci. Technol., 2010, 44(22): 8453.

doi: 10.1021/es102938a
[24]
Li X, Jiang L, Hoa L P, Lyu Y, Xu T T, Yang X, Iinuma Y, Chen J M, Herrmann H. Atmos. Environ., 2016, 145: 115.

doi: 10.1016/j.atmosenv.2016.09.030
[25]
Yuan B, Liggio J, Wentzell J, Li S M, Stark H, Roberts J M, Gilman J, Lerner B, Warneke C, Li R, Leithead A, Osthoff H D, Wild R, Brown S S, de Gouw J A. Atmos. Chem. Phys., 2016, 16(4): 2139.

doi: 10.5194/acp-16-2139-2016
[26]
Herterich R, Herrmann R. Environ. Technol., 1990, 11(10): 961.

doi: 10.1080/09593339009384948
[27]
Kitanovski Z, Grgić I, Vermeylen R, Claeys M, Maenhaut W. J. Chromatogr. A, 2012, 1268: 35.

doi: 10.1016/j.chroma.2012.10.021 pmid: 23122275
[28]
Frka S, Šala M, Kroflič A, Huš M, Čusak A, Grgić I. Environ. Sci. Technol., 2016, 50(11): 5526.

doi: 10.1021/acs.est.6b00823
[29]
Su L M, Zhang X J, Yuan X, Zhao Y H, Zhang D M, Qin W C. J. Hazard. Mater., 2012, 241-242: 450.

doi: 10.1016/j.jhazmat.2012.09.065
[30]
Kampf C J, Jakob R, Hoffmann T. Atmos. Chem. Phys., 2012, 12(14): 6323.

doi: 10.5194/acp-12-6323-2012
[31]
Zhang Y Y, Müller L, Winterhalter R, Moortgat G K, Hoffmann T, Pöschl U. Atmos. Chem. Phys., 2010, 10(16): 7859.

doi: 10.5194/acp-10-7859-2010
[32]
Delhomme O, Morville S, Millet M. Atmos. Pollut. Res., 2010, 1(1): 16.

doi: 10.5094/APR.2010.003
[33]
Cecinato A, di Palo V, Pomata D, Tomasi Scianò M C, Possanzini M. Chemosphere, 2005, 59(5): 679.

pmid: 15792665
[34]
Kitanovski Z, Grgić I, Yasmeen F, Claeys M, Čusak A. Rapid Commun. Mass Spectrom., 2012, 26(7): 793.

doi: 10.1002/rcm.6170
[35]
zhuang M, Ma Y, Cheng Y, Zhou M, Dai H, Huang C, Yu J, Zhu S, Qiao L, Tong Z. Environ. Sci., 2021, 10: 1225.
( 庄旻, 马英歌, 程玉璜, 周敏, 戴海夏, 黄成, 郁建珍, 朱书慧, 乔利平, 童张法. 环境科学, 2021, 10: 1225).
[36]
Chen M J, Qian Z H, Gu C J, Zhang S M, Liu Z Y, Wang X F, Ge X L. Environ. Sci., 2022(4): 1738.
( 陈美娟, 钱姿合, 顾陈娟, 张书萌, 刘智艺, 王新锋, 盖鑫磊. 环境科学, 2022(4): 1738.).
[37]
Irei S, Stupak J, Gong X P, Chan T W, Cox M, McLaren R, Rudolph J. J. Anal. Methods Chem., 2017, 2017: 3504274.
[38]
Wang L W, Wang X F, Gu R R, Wang H, Yao L, Wen L, Zhu F P, Wang W H, Xue L K, Yang L X, Lu K D, Chen J M, Wang T, Zhang Y, Wang W X. Atmos. Chem. Phys., 2018, 18(6): 4349.

doi: 10.5194/acp-18-4349-2018
[39]
Asmi E, Kondratyev V, Brus D, Laurila T, Lihavainen H, Backman J, Vakkari V, Aurela M, Hatakka J, Viisanen Y, Uttal T, Ivakhov V, Makshtas A. Atmos. Chem. Phys., 2016, 16(3): 1271.

doi: 10.5194/acp-16-1271-2016
[40]
Zhao Y. Shandong University, 2019.
( 赵亚楠. 山东大学硕士论文, 2019.).
[41]
Lu C Y, Wang X F, Dong S W, Zhang J, Li J, Zhao Y N, Liang Y H, Xue L K, Xie H J, Zhang Q Z, Wang W X. Environ. Res., 2019, 179: 108709.

doi: 10.1016/j.envres.2019.108709
[42]
Inomata S, Tanimoto H, Fujitani Y, Sekimoto K, Sato K, Fushimi A, Yamada H, Hori S, Kumazawa Y, Shimono A, Hikida T. Atmos. Environ., 2013, 73: 195.

doi: 10.1016/j.atmosenv.2013.03.035
[43]
Inomata S, Fushimi A, Sato K, Fujitani Y, Yamada H. Atmos. Environ., 2015, 110: 93.

doi: 10.1016/j.atmosenv.2015.03.043
[44]
Lüttke J, Scheer V, Levsen K, Wünsch G, Cape J N, Hargreaves K J, Storeton-West R L, Acker K, Wieprecht W, Jones B. Atmos. Environ., 1997, 31(16): 2637.

doi: 10.1016/S1352-2310(96)00229-4
[45]
Kourtchev I, O’Connor I P, Giorio C, Fuller S J, Kristensen K, Maenhaut W, Wenger J C, Sodeau J R, Glasius M, Kalberer M. Atmos. Environ., 2014, 89: 525.

doi: 10.1016/j.atmosenv.2014.02.051
[46]
Knobloch T, Michael H, Engewald W. Trans.Ecol. Environ., 1999, 36: 282.
[47]
Chen Y J, Zhi G R, Feng Y L, Fu J M, Feng J L, Sheng G Y, Simoneit B R T. Geophys. Res. Lett., 2006, 33(20): L20815.

doi: 10.1029/2006GL026966
[48]
Yuan B, Koss A R, Warneke C, Coggon M, Sekimoto K, de Gouw J A. Chem. Rev., 2017, 117(21): 13187.

doi: 10.1021/acs.chemrev.7b00325 pmid: 28976748
[49]
Shinji T, Kazuyuki K, Hideyuki H, Noriko T, Koh-Ichi S, Akiyo S, Shin Y, Kouya Y, Masakatsu S, Yoki M, Akira K S. J. Heal. Sci., 2004, 50(2): 133.

doi: 10.1248/jhs.50.133
[50]
Sjögren M, Li H, Rannug U, Westerholm R. Fuel, 1995, 74(7): 983.

doi: 10.1016/0016-2361(95)00056-B
[51]
Tremp J, Mattrel P, Fingler S, Giger W. Water Air Soil Pollut., 1993, 68(1/2): 113.

doi: 10.1007/BF00479396
[52]
Simoneit B R T, Schauer J J, Nolte C G, Oros D R, Elias V O, Fraser M P, Rogge W F, Cass G R. Atmos. Environ., 1999, 33(2): 173.

doi: 10.1016/S1352-2310(98)00145-9
[53]
Pankow J F. Atmos. Environ., 1994, 28(2): 189.

doi: 10.1016/1352-2310(94)90094-9
[54]
Pankow J F, Seinfeld J H, Asher W E, Erdakos G B. Environ. Sci. Technol., 2001, 35(6): 1164.

pmid: 11347929
[55]
Chandramouli B, Jang M, Kamens R M. Atmos. Environ., 2003, 37(6): 853.

doi: 10.1016/S1352-2310(02)00931-7
[56]
Leuenberger C, Ligocki M P, Pankow J F. Environ. Sci. Technol., 1985, 19(11): 1053.

doi: 10.1021/es00141a005 pmid: 22288749
[57]
Morville S, Scheyer A, Mirabel P, Millet M. Environ. Sci. Pollut. Res. Int., 2006, 13(2): 83.

doi: 10.1065/espr2005.06.264
[58]
Bannan T J, Booth A M, Jones B T, O’Meara S, Barley M H, Riipinen I, Percival C J, Topping D. Environ. Sci. Technol., 2017, 51(7): 3922.

doi: 10.1021/acs.est.6b06364
[59]
O’Meara S, Booth A M, Barley M H, Topping D, McFiggans G. Phys. Chem. Chem. Phys., 2014, 16(36): 19453.

doi: 10.1039/C4CP00857J
[60]
Topping D, Barley M, Bane M K, Higham N, Aumont B, Dingle N, McFiggans G. Geosci. Model Dev., 2016, 9(2): 899.

doi: 10.5194/gmd-9-899-2016
[61]
Le Breton M, Wang Y J, Hallquist Å M, Pathak R K, Zheng J, Yang Y D, Shang D J, Glasius M, Bannan T J, Liu Q Y, Chan C K, Percival C J, Zhu W F, Lou S R, Topping D, Wang Y C, Yu J Z, Lu K D, Guo S, Hu M, Hallquist M. Atmos. Chem. Phys., 2018, 18(14): 10355.

doi: 10.5194/acp-18-10355-2018
[62]
Vione D, Maurino V, Minero C, Pelizzetti E. Chemosphere, 2001, 45(6/7): 893.

doi: 10.1016/S0045-6535(01)00035-2
[63]
Jenkin M E, Saunders S M, Wagner V, Pilling M J. Atmos. Chem. Phys., 2003, 3(1): 181.

doi: 10.5194/acp-3-181-2003
[64]
Vione D, Maurino V, Minero C, Lucchiari M, Pelizzetti E. Chemosphere, 2004, 56(11): 1049.

doi: 10.1016/j.chemosphere.2004.05.027
[65]
Borrás E, Tortajada-Genaro L A. Atmos. Environ., 2012, 47: 154.

doi: 10.1016/j.atmosenv.2011.11.020
[66]
Atkinson R. J. Phys. Chem. Ref. Data, 1991, 20(3): 459.

doi: 10.1063/1.555887
[67]
Schauer J J, Kleeman M J, Cass G R, Simoneit B R T. Environ. Sci. Technol., 2001, 35(9): 1716.

pmid: 11355184
[68]
Atkinson R, Aschmann S M, Arey J. Environ. Sci. Technol., 1992, 26(7): 1397.

doi: 10.1021/es00031a018
[69]
Coeur-Tourneur C, Henry F, Janquin M A, Brutier L. Int. J. Chem. Kinet., 2006, 38(9): 553.

doi: 10.1002/kin.20186
[70]
Koch R, Knispel R, Elend M, Siese M, Zetzsch C. Atmos. Chem. Phys., 2007, 7(8): 2057.

doi: 10.5194/acp-7-2057-2007
[71]
Olariu R I, Klotz B, Barnes I, Becker K H, Mocanu R. Atmos. Environ., 2002, 36(22): 3685.

doi: 10.1016/S1352-2310(02)00202-9
[72]
Bejan I, Barnes I, Olariu R, Zhou S M, Wiesen P, Benter T. Phys. Chem. Chem. Phys., 2007, 9(42): 5686.

doi: 10.1039/b709464g
[73]
Minero C, Bono F, Rubertelli F, Pavino D, Maurino V, Pelizzetti E, Vione D. Chemosphere, 2007, 66(4): 650.

doi: 10.1016/j.chemosphere.2006.07.082
[74]
Krofli? A, Huš M, Grilc M, Grgić I. Environ. Sci. Technol., 2018, 52(23): 13756.

doi: 10.1021/acs.est.8b01903
[75]
Renbaum-Wolff L, Grayson J W, Bateman A P, Kuwata M, Sellier M, Murray B J, Shilling J E, Martin S T, Bertram A K. PNAS, 2013, 110(20): 8014.

doi: 10.1073/pnas.1219548110 pmid: 23620520
[76]
Zhang Y, Sanchez M S, Douet C, Wang Y, Bateman A P, Gong Z, Kuwata M, Renbaum-Wolff L, Sato B B, Liu P F, Bertram A K, Geiger F M, Martin S T. Atmos. Chem. Phys., 2015, 15(14): 7819.

doi: 10.5194/acp-15-7819-2015
[77]
Shrestha M, Zhang Y, Upshur M A, Liu P F, Blair S L, Wang H F, Nizkorodov S A, Thomson R J, Martin S T, Geiger F M. J. Phys. Chem. A, 2015, 119(19): 4609.

doi: 10.1021/jp510780e pmid: 25514505
[78]
Booth A M, Murphy B, Riipinen I, Percival C J, Topping D O. Environ. Sci. Technol., 2014, 48(16): 9298.

doi: 10.1021/es501705c
[79]
Vaden T D, Imre D, Beránek J, Shrivastava M, Zelenyuk A. PNAS, 2011, 108(6): 2190.

doi: 10.1073/pnas.1013391108
[80]
Chen Y F, Ge X L, Chen H, Xie X C, Chen Y T, Wang J F, Ye Z L, Bao M Y, Zhang Y L, Chen M D. Atmos. Environ., 2018, 187: 230.

doi: 10.1016/j.atmosenv.2018.06.002
[81]
Zhang X L, Lin Y H, Surratt J D, Zotter P, PrÉvôt A S H, Weber R J. Geophys. Res. Lett., 2011, 38(21): L21810.
[82]
Song J Z, Li M J, Jiang B, Wei S Y, Fan X J, Peng P G. Environ. Sci. Technol., 2018, 52(5): 2575.

doi: 10.1021/acs.est.7b06126
[83]
Samburova V, Connolly J, Gyawali M, Yatavelli R L N, Watts A C, Chakrabarty R K, Zielinska B, Moosmüller H, Khlystov A. Sci. Total. Environ., 2016, 568: 391.

doi: 10.1016/j.scitotenv.2016.06.026
[84]
Dong S. Shandong University, 2020.
( 董书伟. 山东大学硕士论文, 2020).
[85]
Wang Y, Hu M, Li X, Xu N. Prog.Chem., 2019, 32 (5): 627.
( 王玉珏, 胡敏, 李晓, 徐楠. 化学进展, 2019, 32(5): 627).
[86]
Shafer W E, Schönherr J. Ecotoxicol. Environ. Saf., 1985, 10(2): 239.

doi: 10.1016/0147-6513(85)90071-5
[87]
Rippen G, Zietz E, Frank R, Knacker T, Klöpffer W. Environ. Technol. Lett., 1987, 8(1/12): 475.

doi: 10.1080/09593338709384508
[88]
Parvez S, Venkataraman C, Mukherji S. Environ. Int., 2006, 32(2): 265.

doi: 10.1016/j.envint.2005.08.022
[89]
Yang D. Current Biotechnology, 2014, 4: 171.
( 杨端红. 生物技术进展, 2014, 4: 171.).
[90]
Fernandez P, Grifoll M, Solanas A M, Bayona J M, Albaiges J. Environ. Sci. Technol., 1992, 26(4): 817.

doi: 10.1021/es00028a024
[91]
Still K R, Jung A E, Ritchie G D, Jederberg W W, Wilfong E R, Briggs G B, Arfsten D P. Environ. Res., 2005, 98(3): 363.

doi: 10.1016/j.envres.2004.08.009
[92]
An Y F, Geng X R, Mo L H, Liu J Q, Yang L T, Zhang X W, Liu Z G, Zhao C Q, Yang P C. Toxicology, 2018, 395: 9.

doi: 10.1016/j.tox.2018.01.001
[93]
Yang L B, Ma S H, Wan Y F, Duan S Q, Ye S Y, Du S J, Ruan X W, Sheng X, Weng Q, Taya K, Xu M Y. J. Immunotoxicol., 2016, 13(4): 548.

doi: 10.3109/1547691X.2016.1140853
[94]
Mi Y L, Zhang C Q, Li C M, Taneda S, Watanabe G, Suzuki A K, Taya K. Toxicol. Lett., 2009, 190(1): 61.

doi: 10.1016/j.toxlet.2009.07.002
[95]
Li C M, Takahashi S, Taneda S, Furuta C, Watanabe G, Suzuki A K, Taya K. J. Reprod. Dev., 2007, 53(3): 673.

doi: 10.1262/jrd.18133
[96]
Li C M, Suzuki A K, Takahashi S, Taneda S, Watanabe G, Taya K. Biol. Pharm. Bull., 2008, 31(11): 2158.

doi: 10.1248/bpb.31.2158
[97]
Li C, Taneda S, Suzuki A K, Furuta C, Watanabe G, Taya K. J. Androl., 2007, 28(2): 252.

doi: 10.2164/jandrol.106.000802
[98]
Bu T L, Jia Y D, Lin J X, Mi Y L, Zhang C Q. J. Zhejiang Univ. Sci. B, 2012, 13(4): 318.

doi: 10.1631/jzus.B1100318
[99]
Danielsen P H, Møller P, Jensen K A, Sharma A K, Wallin H, Bossi R, Autrup H, Mølhave L, Ravanat J L, BriedÉ J J, de Kok T M, Loft S. Chem. Res. Toxicol., 2011, 24(2): 168.

doi: 10.1021/tx100407m pmid: 21235221
[100]
Rubio M A, Lissi E, Herrera N, PÉrez V, Fuentes N. Chemosphere, 2012, 86(10): 1035.

doi: 10.1016/j.chemosphere.2011.11.046
[101]
Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B. J. Chromatogr. A, 1999, 846(1/2): 277.

doi: 10.1016/S0021-9673(99)00030-8
[102]
Brophy P. Doctoral Dissertation of Colorado state nuiversity, 2016.
[103]
Brophy P, Farmer D K. Atmos. Meas. Tech., 2016, 9(8): 3969.

doi: 10.5194/amt-9-3969-2016
[104]
Cubison M, Sueper D, Jimenez J. Atmos. Meas. Tech., 2014, 7: 617.
[105]
Corbin J C, Othman A, Allan J D, Worsnop D R, Haskins J D, Sierau B, Lohmann U, Mensah A A. Atmos. Meas. Tech., 2015, 8(11): 4615.

doi: 10.5194/amt-8-4615-2015
[106]
Wang X F, Gu R R, Wang L W, Xu W X, Zhang Y T, Chen B, Li W J, Xue L K, Chen J M, Wang W X. Environ. Pollut., 2017, 230: 405.

doi: 10.1016/j.envpol.2017.06.072
[107]
Nałęcz-Jawecki G, Sawicki J. Chemosphere, 2003, 52 (1):249.

doi: 10.1016/S0045-6535(02)00865-2
[1] Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang. Sn-Based Light-Absorbing Materials for Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(6): 882-893.