中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1229-1244 DOI: 10.7536/PC210614 Previous Articles   

• Review •

A Review on MXene and Its Applications in Environmental Remediation

Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai()   

  1. College of Environmental Science and Engineering, North China Electric Power University,Beijing 102206, China
  • Received: Revised: Online: Published:
  • Contact: Yuejie Ai
Richhtml ( 41 ) PDF ( 760 ) Cited
Export

EndNote

Ris

BibTeX

MXenes is advanced two-dimensional inorganic compound materials that consist of transition metal carbides, nitrides or carbonitrides at a few atomic thicknesses, which are widely used in energy, optics, catalysis, adsorption and other fields. Due to the high hydrophilicity, large specific surface area, negative surface charge and strong ion exchange capability, it is considered an excellent adsorption material. Based on the excellent adsorption performance of MXene, this material has significant potential for environmental remediation. MXene is expected to become an ideal carrier for heavy metal ions and radionuclides through electrostatic attraction and ligand chelation. The full text mainly reviews the application of MXene as an adsorbent in the field of environmental remediation. The structure and synthesis method of MXene, and the application of MXene for extracting heavy metal ions (such as chromium (Cr), mercury (Hg), lead (Pb), nickel (Ni)) and radionuclides (such as uranium (U), cesium (Cs), europium (Eu), barium (Ba) and strontium (Sr)), etc. are reviewed systematically. In particular, the interactive mechanism of different MXene systems is discussed and highlighted. In addition, the existing challenges of MXene materials for environmental remediation and its future development are presented for a prospect.

Contents

1 Introduction

2 Structure and synthesis method of MXenes

2.1 Structure of MXenes

2.2 Synthesis of MXenes

3 Removal of heavy metal ions with MXenes

3.1 Pb(Ⅱ)

3.2 Hg(Ⅱ)

3.3 Cr(Ⅵ)

3.4 Ni(Ⅱ)

4 Radionuclide removal with MXenes

4.1 U(Ⅵ)

4.2 Eu(Ⅲ)

4.3 Cs(Ⅰ)

4.4 Ba(Ⅱ) and Sr(Ⅱ)

5 Conclusion and outlook

Fig. 1 Distribution diagrams of elements represented by M, A, X, and T in MXene and MAX (M: transition metal element; A: selective etching layer; X: C or N elements; T: functional group)
Fig. 2 Hexagonal crystal structure of MAX phase (Ti3AlC2)[16] (Lattice parameters: a=3.081,b=3.081,c=18.679)
Fig. 3 Structure diagram of M2AX, M3AX2 and M4AX3, and their corresponding M2X, M3X2, and M4X3 phases
Fig. 4 (a)Ⅰ-Ti3C2(OH)2;(b)Ⅱ-Ti3C2(OH)2;(c)Ⅲ-Ti3C2(OH)2 configuration[20]
Fig. 5 Schematic diagram of HF acid etching process: MXene material was layered by ultrasonic after MAX was etched with HF acid
Fig.6 TEM images of Ti3AlC2 before and after hydrothermal treatment[60]
Fig. 7 (a) and (b) are (110) planar ELF sections and (-110) planar ELF sections of pristine Ti3C2(OH)2, respectively. (c) and (d) are (110) and (-110) planar ELF sections of Ti3C2(O2 H 2 - 2 mPbm), respectively[34]
Fig. 8 The optimized structures for Pb(Ⅱ) adsorbed on etched Ti3AlC2; the bond length unit is in Å[61]
Fig. 9 The adsorption mechanism of Pb(Ⅱ) ions by Ti2CTx-EHL[72]
Fig. 10 (a) VSM magnetization curves for MPMS analysis of MGMX nanocomposites; (b) PXRD diffraction patterns of Ti3C2Tx MXene and MGMX nanocomposites[75]
Fig. 11 XPS spectra before and after adsorption of Hg2+ from aqueous phase by MX-SA4∶20 microspheres: (a) Ti 2p before adsorption of Hg(Ⅱ). (b) Ti 2p after adsorption of Hg(Ⅱ)[68]
Fig. 12 Mechanism diagram of Cr(Ⅵ) removal by Ti3C2Tx Mxene: Ti3C2Tx reduces Cr(Ⅵ) to Cr(Ⅲ), and then adsorbs Cr(Ⅲ)[82]
Fig. 13 (a) SEM images of prepared MXene-Cs; (b) XPS spectra before and after Cr(Ⅵ) adsorption by MXene-CS; (c) XPS spectra of Cr 2p after adsorption[86]
Fig. 14 (a) SEM images of u-RTC composites; (b) scheme of the fabrication of u-RTC[83]
Fig. 15 Schematic representation of the adsorption process of alk-MXene/LDH material on Ni2+ under weak acid conditions[88]
Fig. 16 Synthesis of Ti3C2Tx MXene (hydration intercalation method), and schematic diagram of Ti3C2Tx MXene adsorption U(Ⅵ)[65]
Fig. 17 Maximum adsorption of uranium by Ti2C, V2C and Cr2C MXenes decorated with different types of surfaces[96]
Fig. 18 Synthesis of layered titanate nanostructures (HTNs) and their adsorption of radioactive elements[99]
Fig. 19 Full-scan XPS spectra of Ti3C2Tx and Ti3C2Tx-Cs[103]
Fig. 20 Adsorption mechanism of Ba2+ on Ti3C2Tx MXene: Ba2+ combines with —OH and —F functional groups on the surface of Ti3C2Tx MXene to form Ba(OH)2 and Ba(F)2, respectively[67]
Fig. 21 Ti3C2Tx was activated by NaOH to form Alk-Ti3C2Tx for the adsorption of radioactive Ba2+[105]
Fig. 22 The removal rates of Ti3C2Tx MXene for Ba2+ (a) and Sr2+ (b), respectively[106]
[1]
Hwang S K, Kang S M, Rethinasabapathy M, Roh C, Huh Y S. Chem. Eng. J., 2020, 397: 125428.

doi: 10.1016/j.cej.2020.125428
[2]
Fan M, Wang L, Zhang Y J, Pei C X, Chai Z F, Shi W Q. Science China Chemistry, 2019, 49: 27.
(樊懋, 王琳, 张玉娟, 裴承新, 柴之芳, 石伟群. 中国科学:化学, 2019, 49: 27.).
[3]
Yu S J, Wang X X, Tan X L, Wang X K. Inorg. Chem. Front., 2015, 2(7): 593.

doi: 10.1039/C4QI00221K
[4]
Tofighy M A, Mohammadi T. Chem. Eng. J., 2020, 388: 124192.

doi: 10.1016/j.cej.2020.124192
[5]
Mojiri A, Ohashi A, Ozaki N, Aoi Y, Kindaichi T. J. Clean. Prod., 2020, 243: 118638.

doi: 10.1016/j.jclepro.2019.118638
[6]
Gholizadeh A M, Zarei M, Ebratkhahan M, Hasanzadeh A, Vafaei F. J. Environ. Manag., 2020, 254: 109802.

doi: 10.1016/j.jenvman.2019.109802
[7]
Yuan J, Zhang W N, Xiao Z H, Zhou X H, Zeng Q R. Chem. Eng. J., 2020, 388: 124298.

doi: 10.1016/j.cej.2020.124298
[8]
Xu C H, Shi S Y, Wang X Q, Zhou H F, Wang L, Zhu L Y, Zhang G H, Xu D. J. Hazard. Mater., 2020, 381: 120974.

doi: 10.1016/j.jhazmat.2019.120974
[9]
Sun Y B, Yang S B, Chen Y, Ding C C, Cheng W C, Wang X K. Environ. Sci. Technol., 2015, 49(7): 4255.

doi: 10.1021/es505590j
[10]
Wang Y, Chen X C, Hu X W, Wu P, Lan T, Li Y, Tu H, Liu Y, Yuan D Z, Wu Z Y, Liu Z R, Chew J W. Appl. Surf. Sci., 2021, 536: 147829.

doi: 10.1016/j.apsusc.2020.147829
[11]
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209: 783.

doi: 10.1016/j.chemosphere.2018.06.114
[12]
Park C W, Kim B H, Yang H M, Seo B K, Moon J K, Lee K W. Chemosphere, 2017, 168: 1068.

doi: 10.1016/j.chemosphere.2016.10.102
[13]
Miensah E D, Khan M M, Chen J Y, Zhang X M, Wang P, Zhang Z X, Jiao Y, Liu Y, Yang Y. Crit. Rev. Environ. Sci. Technol., 2020, 50(18): 1874.

doi: 10.1080/10643389.2019.1686946
[14]
Cui W W, Zhang X, Pearce C I, Chen Y, Zhang S, Liu W, Engelhard M H, Kovarik L, Zong M R, Zhang H L, Walter E D, Zhu Z H, Heald S M, Prange M P, de Yoreo J J, Zheng S L, Zhang Y, Clark S B, Li P, Wang Z M, Rosso K M. Environ. Sci. Technol., 2019, 53(18): 11043.

doi: 10.1021/acs.est.9b02693
[15]
Xie Y. Master’s thesis of University of Science and Technology of China, 2020.
(谢忆. 中国科学技术大学硕士论文, 2020.).
[16]
Barsoum M W, Radovic M. Annu. Rev. Mater. Res., 2011, 41: 195.

doi: 10.1146/annurev-matsci-062910-100448
[17]
Zhang J F, Cao H Y, Wang H B. J. Inorg. Mater., 2017, 32(6): 561.

doi: 10.15541/jim20160479
(张建峰, 曹惠杨, 王红兵. 无机材料学报, 2017, 32(6): 561.)
[18]
Sun Z M. Int. Mater. Rev., 2011, 56(3): 143.

doi: 10.1179/1743280410Y.0000000001
[19]
Gao Y P, Wang L B, Li Z Y, Zhou A G, Hu Q K, Cao X X. Solid State Sci., 2014, 35: 62.

doi: 10.1016/j.solidstatesciences.2014.06.014
[20]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138
[21]
Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y. J. Mater. Chem. A, 2014, 2(35): 14334.

doi: 10.1039/C4TA02638A
[22]
Zhang X, Zhang Z H, Zhou Z. J. Energy Chem., 2018, 27(1): 73.

doi: 10.1016/j.jechem.2017.08.004
[23]
Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y. Electrochem. Commun., 2012, 16(1): 61.

doi: 10.1016/j.elecom.2012.01.002
[24]
Huang H Y, Jiang R M, Feng Y L, Ouyang H, Zhou N G, Zhang X Y, Wei Y. Nanoscale, 2020, 12(3): 1325.

doi: 10.1039/C9NR07616F
[25]
Xie X Q, Zhang N, Tang Z R, Anpo M, Xu Y J. Appl. Catal. B Environ., 2018, 237: 43.

doi: 10.1016/j.apcatb.2018.05.070
[26]
Li Z, Wu Y. Small, 2019, 15:10.
[27]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421 pmid: 27609888
[28]
Han M K, Yin X W, Wu H, Hou Z X, Song C Q, Li X L, Zhang L T, Cheng L F. ACS Appl. Mater. Interfaces, 2016, 8(32): 21011.

doi: 10.1021/acsami.6b06455
[29]
Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. ACS Nano, 2014, 8(9): 9606.

doi: 10.1021/nn503921j pmid: 25157692
[30]
Rasool K, Pandey R P, Rasheed P A, Buczek S, Gogotsi Y, Mahmoud K A. Mater. Today, 2019, 30: 80.

doi: 10.1016/j.mattod.2019.05.017
[31]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18): 7633.

doi: 10.1021/acs.chemmater.7b02847
[32]
Zhang Y J, Wang L, Zhang N N, Zhou Z J. RSC Adv., 2018, 8(36): 19895.

doi: 10.1039/C8RA03077D
[33]
Verger L, Xu C, Natu V, Cheng H M, Ren W C, Barsoum M W. Curr. Opin. Solid State Mater. Sci., 2019, 23(3): 149.

doi: 10.1016/j.cossms.2019.02.001
[34]
Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. J. Am. Chem. Soc., 2014, 136(11): 4113.

doi: 10.1021/ja500506k
[35]
Gu P C, Song S, Zhang S, Wei B B, Wen T, Wang X K. Acta Chim. Sinica, 2018, 76(9): 701.

doi: 10.6023/A18060245
[36]
Wang L, Song H, Yuan L Y, Li Z J, Zhang Y J, Gibson J K, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2018, 52(18): 10748.

doi: 10.1021/acs.est.8b03711 pmid: 30149698
[37]
Wang L, Song H, Yuan L Y, Li Z J, Zhang P, Gibson J K, Zheng L R, Wang H Q, Chai Z F, Shi W Q. Environ. Sci. Technol., 2019, 53(7): 3739.

doi: 10.1021/acs.est.8b07083 pmid: 30843686
[38]
Yao N Y, Xian C N. Energy Storage Sci. Technol., 2018, 7(4): 631.
(姚乃元, 仙存妮. 储能科学与技术, 2018, 7(4): 631.)
[39]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 16098.

doi: 10.1038/natrevmats.2016.98
[40]
Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L H, Haines B, May S J, Billinge S J L, Gogotsi Y. Nanoscale, 2017, 9(45): 17722.

doi: 10.1039/c7nr06721f pmid: 29134998
[41]
Karlsson L H, Birch J, Halim J, Barsoum M W, Persson P O Å. Nano Lett., 2015, 15(8): 4955.

doi: 10.1021/acs.nanolett.5b00737 pmid: 26177010
[42]
Wang X F, Shen X, Gao Y R, Wang Z X, Yu R C, Chen L Q. J. Am. Chem. Soc., 2015, 137(7): 2715.

doi: 10.1021/ja512820k
[43]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Chem. Mater., 2016, 28(1): 349.

doi: 10.1021/acs.chemmater.5b04250
[44]
Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W. Appl. Surf. Sci., 2016, 362: 406.

doi: 10.1016/j.apsusc.2015.11.089
[45]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. J. Am. Chem. Soc., 2014, 136(17): 6385.

doi: 10.1021/ja501520b pmid: 24678996
[46]
Tang Q, Zhou Z, Shen P W. J. Am. Chem. Soc., 2012, 134(40): 16909.

doi: 10.1021/ja308463r
[47]
Ronchi R M, Arantes J T, Santos S F. Ceram. Int., 2019, 45(15): 18167.

doi: 10.1016/j.ceramint.2019.06.114
[48]
Salim O, Mahmoud K A, Pant K K, Joshi R K. Mater. Today Chem., 2019, 14: 100191.
[49]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.

doi: 10.1021/nn204153h
[50]
Sinha A, Dhanjai, Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R. Trac Trends Anal. Chem., 2018, 105: 424.

doi: 10.1016/j.trac.2018.05.021
[51]
Sun Y J, Chen D S, Liang Z Q. Mater. Today Energy, 2017, 5: 22.
[52]
Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, Barsoum M W. Adv. Funct. Mater., 2016, 26(18): 3118.

doi: 10.1002/adfm.201505328
[53]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10): 9507.

doi: 10.1021/acsnano.5b03591 pmid: 26208121
[54]
Alhabeb M, Maleski K, Mathis T S, Sarycheva A, Hatter C B, Uzun S, Levitt A, Gogotsi Y. Angew. Chem. Int. Ed., 2018, 57(19): 5444.

doi: 10.1002/anie.201802232
[55]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970
[56]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7): 2374.

doi: 10.1021/cm500641a
[57]
Li M, Huang Q. Journal of Inorganic Materials, 2020, 35:1.
(李勉, 黄庆. 无机材料学报, 2020, 35:1.).
[58]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.

doi: 10.1021/jacs.9b00574
[59]
Hantanasirisakul K, Xiao X, Urbankowski P, Anasori B, Tan T L, Frey N, Shenoy V B, Gogotsi Y. Abstr. Pap. Am. Chem. Soc., 2019, 258: 2.
[60]
Xie X H, Xue Y, Li L, Chen S G, Nie Y, Ding W, Wei Z D. Nanoscale, 2014, 6(19): 11035.

doi: 10.1039/C4NR02080D
[61]
Gu P C, Xing J L, Wen T, Zhang R, Wang J, Zhao G X, Hayat T, Ai Y J, Lin Z, Wang X K. Environ. Sci.: Nano, 2018, 5(4): 946.
[62]
Peng C, Wei P, Chen X, Zhang Y L, Zhu F, Cao Y H, Wang H J, Yu H, Peng F. Ceram. Int., 2018, 44(15): 18886.

doi: 10.1016/j.ceramint.2018.07.124
[63]
Zheng W, Sun Z M, Zhang P G, Tian W B, Wang Y, Zhang Y M. Material Review, 2017, 31: 1.
(郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31: 1.).
[64]
Ihsanullah I. Chem. Eng. J., 2020, 388: 124340.

doi: 10.1016/j.cej.2020.124340
[65]
Wang L, Tao W Q, Yuan L Y, Liu Z R, Huang Q, Chai Z F, Gibson J K, Shi W Q. Chem. Commun., 2017, 53(89): 12084.

doi: 10.1039/C7CC06740B
[66]
Li S X, Wang L, Peng J, Zhai M L, Shi W Q. Chem. Eng. J., 2019, 366: 192.

doi: 10.1016/j.cej.2019.02.056
[67]
Fard A K, Mckay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh M A. Chem. Eng. J., 2017, 317: 331.

doi: 10.1016/j.cej.2017.02.090
[68]
Shahzad A, Nawaz M, Moztahida M, Jang J, Tahir K, Kim J, Lim Y, Vassiliadis V S, Woo S H, Lee D S. Chem. Eng. J., 2019, 368: 400.

doi: 10.1016/j.cej.2019.02.160
[69]
Zhang Q R, Du Q, Jiao T F, Zhang Z X, Wang S F, Sun Q N, Gao F M. Sci. Rep., 2013, 3: 2551.

doi: 10.1038/srep02551
[70]
Guo J X, Peng Q M, Fu H, Zou G D, Zhang Q R. J. Phys. Chem. C, 2015, 119(36): 20923.

doi: 10.1021/acs.jpcc.5b05426
[71]
Wang C, Wang Y, Ge R L, Song X D, Xing X Q, Jiang Q K, Lu H, Hao C, Guo X W, Gao Y N, Jiang D L. Chem. Eur. J., 2018, 24(3): 585.

doi: 10.1002/chem.201705405
[72]
Wang S H, Liu Y L, Lu Q F, Zhuang H P. J. Mol. Liq., 2020, 297: 7.
[73]
Ling L X, Fan M H, Wang B J, Zhang R G. Energy Environ. Sci., 2015, 8(11): 3109.

doi: 10.1039/C5EE02255J
[74]
Kim K H, Kabir E, Jahan S A. J. Hazard. Mater., 2016, 306: 376.

doi: S0304-3894(15)30231-4 pmid: 26826963
[75]
Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud K A, Lee D S. J. Hazard. Mater., 2018, 344: 811.

doi: S0304-3894(17)30848-8 pmid: 29172167
[76]
Padak B, Wilcox J. Carbon, 2009, 47(12): 2855.

doi: 10.1016/j.carbon.2009.06.029
[77]
Xu H M, Jia J P, Guo Y F, Qu Z, Liao Y, Xie J K, Shangguan W F, Yan N Q. J. Hazard. Mater., 2018, 342: 69.

doi: 10.1016/j.jhazmat.2017.08.011
[78]
Ji W C, Shen Z M, Tang Q L, Yang B W, Fan M H. Chem. Eng. J., 2016, 289: 349.

doi: 10.1016/j.cej.2015.12.090
[79]
Zhang B K, Liu J, Yang Y J, Chang M. Chem. Eng. J., 2015, 280: 354.

doi: 10.1016/j.cej.2015.06.056
[80]
Chen M, Li F G, Hu L W, Yang T, Yang Q, Tao M X, Deng Y W. Environ. Eng. Sci., 2019, 36(10): 1307.

doi: 10.1089/ees.2019.0013
[81]
Guo X, Fei G T, Su H, Zhang L D. J. Phys. Chem. C, 2011, 115(5): 1608.

doi: 10.1021/jp1091653
[82]
Ying Y L, Liu Y, Wang X Y, Mao Y Y, Cao W, Hu P, Peng X S. ACS Appl. Mater. Interfaces, 2015, 7(3): 1795.

doi: 10.1021/am5074722
[83]
Zou G D, Guo J X, Peng Q M, Zhou A G, Zhang Q R, Liu B Z. J. Mater. Chem. A, 2016, 4(2): 489.

doi: 10.1039/C5TA07343J
[84]
Tang Y, Yang C H, Que W X. J. Adv. Dielect., 2018, 8(5): 1850035.

doi: 10.1142/S2010135X18500352
[85]
Xie X Q, Chen C, Zhang N, Tang Z R, Jiang J J, Xu Y J. Nat. Sustain., 2019, 2(9): 856.

doi: 10.1038/s41893-019-0373-4
[86]
Wan H Y, Nan L, Geng H K, Zhang W, Shi H H. Processes, 2021, 9(3): 524.

doi: 10.3390/pr9030524
[87]
Lei T, Sun C M. Proceedings of the 4th National Conference on Applied Geochemistry, 2012, 359.
(雷婷, 孙传敏. 第四届全国应用地球化学学术会议论文集, 2012, 359.).
[88]
Feng X F, Yu Z X, Long R X, Li X H, Shao L Y, Zeng H J, Zeng G Y, Zuo Y H. Sep. Purif. Technol., 2020, 253: 117525.

doi: 10.1016/j.seppur.2020.117525
[89]
Jiang D M, Yang Y H, Huang C T, Huang M Y, Chen J J, Rao T D, Ran X Y. J. Hazard. Mater., 2019, 373: 131.

doi: 10.1016/j.jhazmat.2019.01.096
[90]
Zhou J, Zhou H J, Zhang Y Z, Wu J, Zhang H M, Wang G Z, Li J X. Chem. Eng. J., 2020, 398: 125460.

doi: 10.1016/j.cej.2020.125460
[91]
Huang Y J, Yang L T, Zhao F, Guo G Y, Wu L S. J. Radioanal. Nucl. Chem., 2021, 327(2): 789.

doi: 10.1007/s10967-020-07562-2
[92]
Abojassim A A, Neama H H. Water Supply, 2020, 20(8): 3194.

doi: 10.2166/ws.2020.207
[93]
Haakonde T, Yabe J, Choongo K, Chongwe G, Islam M S. Mine Water Environ., 2020, 39(4): 735.

doi: 10.1007/s10230-020-00731-5
[94]
Wang L, Yuan L Y, Chen K, Zhang Y J, Deng Q H, Du S Y, Huang Q, Zheng L R, Zhang J, Chai Z F, Barsoum M W, Wang X K, Shi W Q. ACS Appl. Mater. Interfaces, 2016, 8(25): 16396.

doi: 10.1021/acsami.6b02989
[95]
Zhang Y J, Zhou Z J, Lan J H, Ge C C, Chai Z F, Zhang P H, Shi W Q. Appl. Surf. Sci., 2017, 426: 572.

doi: 10.1016/j.apsusc.2017.07.227
[96]
Wang Y H, Xue J M, Nie G, Guo X. Chem. Phys. Lett., 2020, 750: 137444.

doi: 10.1016/j.cplett.2020.137444
[97]
Attia L A, Youssef M A, Abdel Moamen O A. Sep. Sci. Technol., 2021, 56(2): 217.

doi: 10.1080/01496395.2019.1708111
[98]
Lu Z H, Hao Z Q, Wang J, Chen L. J. Ind. Eng. Chem., 2016, 34: 374.
[99]
Zhang P, Wang L, Yuan L Y, Lan J H, Chai Z F, Shi W Q. Chem. Eng. J., 2019, 370: 1200.

doi: 10.1016/j.cej.2019.03.286
[100]
Zhang P C, Wang L, Du K, Wang S Y, Huang Z W, Yuan L Y, Li Z J, Wang H Q, Zheng L R, Chai Z F, Shi W Q. J. Hazard. Mater., 2020, 396: 122731.

doi: 10.1016/j.jhazmat.2020.122731
[101]
Zheng J M, Song L. Hangzhou Agricultural Science and Technology, 2006, 33.
(郑洁敏, 宋亮. 杭州农业科技, 2006, 33.).
[102]
Jun B M, Jang M, Park C M, Han J, Yoon Y. Nucl. Eng. Technol., 2020, 52(6): 1201.

doi: 10.1016/j.net.2019.11.020
[103]
Khan A R, Husnain S M, Shahzad F, Mujtaba-ul-Hassan S, Mehmood M, Ahmad J, Mehran M T, Rahman S. Dalton Trans., 2019, 48(31): 11803.

doi: 10.1039/C9DT01965K
[104]
Hassan M U, Lee S, Mehran M T, Shahzad F, Husnain S M, Ryu H J. J. Nucl. Mater., 2021, 543: 152566.

doi: 10.1016/j.jnucmat.2020.152566
[105]
Mu W J, Du S Z, Yu Q H, Li X L, Wei H Y, Yang Y C. Dalton Trans., 2018, 47(25): 8375.

doi: 10.1039/C8DT00917A
[106]
Jun B M, Park C M, Heo J, Yoon Y. J. Environ. Manag., 2020, 256: 109940.

doi: 10.1016/j.jenvman.2019.109940
[107]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23:4248.

doi: 10.1002/adma.201102306
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[6] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[7] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[8] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[11] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[12] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[13] Yousen Xu, Zhen Zhang, Biao Tang, Guofu Zhou. Ti3C2-MXene for Interfacial Solar Steam Generation [J]. Progress in Chemistry, 2021, 33(11): 2033-2055.
[14] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.
[15] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.