中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 2081-2093 DOI: 10.7536/PC211102 Previous Articles   Next Articles

• Review •

Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials

Shiying Yang1,2,3(), Qianfeng Li3, Sui Wu3, Weiyin Zhang3   

  1. 1 The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE),Qingdao 266100, China
    3 College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: ysy@ouc.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2020MB093)
Richhtml ( 12 ) PDF ( 305 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, zero-valent Aluminum (ZVAl) has been widely used for contaminants removal in water due to its extremely low redox potential and being an excellent electron donor. However, the dense oxide film on its surface restrains the activity of ZVAl, and it is easy to form Al-(hydr)oxide on its surface during the reaction, resulting in a secondary passivation and a short reacting life for ZVAl. The research shows that ZVAl could overcome its own disadvantages after compounded with iron-based materials such as zero-valent iron, iron ore and iron-containing clay minerals. Besides changing the physical properties such as hardness and magnetism of ZVAl, it is more meaningful that its efficiency for pollutants removal from water through chemical mechanisms is improved, such as 1) speeding up the reaction rate, 2) broadening pH ranges, 3) promoting durability, and 4) enhancing reaction selectivity. Therefore, on the basis of systematically summarizing the combining mechanisms between iron-based materials and ZVAl (i.e., redox reaction, intermetallic reaction or self-propagating reaction) under different synthetic methods, this review mainly focuses on the enhancing mechanisms of ZVAl composites modified by iron-based materials for pollutants removal in water, and further on the optimization strategies such as introducing a third metal, adding non-metallic elements, polymer or ligand, and constructing a load in detail. Finally, the research direction of ZVAl composites modified by iron-based materials is prospected in order to promote further research and wider application in environmental field for the novel ZVAl based water or wastewater technology.

Contents

1 Introduction

2 Combining mechanism between iron-based materials and ZVAl

2.1 Redox reaction

2.2 Intermetallic reaction

2.3 Self-propagating reaction

3 Strengthening mechanism of ZVAl composites modified by iron-based materials in water treatment application

3.1 Speeding up the reaction rate

3.2 Widening pH ranges

3.3 Promoting durability

3.4 Enhancing reaction selectivity

4 Optimization strategies of ZVAl composites modified by iron-based materials for removing contaminants from water

4.1 Introducing a third metal

4.2 Adding non-metallic elements

4.3 Adding polymer

4.4 Adding ligand

4.5 Constructing a load

5 Conclusions and outlook

Table 1 Typical cases study on different synthesis reaction mechanisms of ZVAl composites modified by iron-based materials.
Reaction mechanism Methods Advantage Disadvantage ref
Redox reaction Chemical deposition/Co-reduction The nucleation and growth process of composites can be controlled by adjusting the reaction parameters
Controllable structure (core/shell, heterostructure, intermetallic compound or alloy), composition, size and morphology
Wasted chemical reagent
Secondary pollution
Non-uniform distribution of the second metal on the surface of the core metal
Weak combination of the two metals
29,38,43,44
Electroless plating
method
Uniform dispersion, good coating effect Poor density of the coating layer 41
Mechanical ball
milling
Mild reaction conditions
Simple process
Easily realized in projects
Uncontrollable structure and composition 45,46
Intermetallic reaction Mechanical ball
milling
Mild reaction conditions
Simple process
Easily realized in projects
Expensive and enormous energy consumption to maintain extreme reaction conditions
Lower production rate
30,47
Gas atomization To generate powders of circular form and good flowing properties Complicated apparatus and yields products in a small amount 48,49
Plasma technique Shortened catalyst preparation time
Low energy requirements
Highly distributed active species are produced
Production of uniform metal particle size
Complex methods cannot be applied on industrial scale
Catalyst deactivation problem
50,51
Melt method Iron oxide film is not easily formed on the surface of the material, and the alloy material remains active High-temperature heating and annealing for long periods of time
Difficult to obtain composites with high surface areas
52~54
Self-propagating reaction Mechanical ball
milling/Friction stir
processing
The generated frictional heat and severe plastic deformation to increase the extent and rate of in situ reactions Expensive and enormous energy consumption 55
Fig. 1 SEM images and EDS spectra of (a) ZVAl and (b) Fe/Al bimetallic particles[39]
Fig. 2 Scheme of Fe2O3 coating on Al particles.[42]
Fig. 3 Diagram of the Al/Fe and Fe/Al[23]
Fig. 4 SEM images and respective EDS analyses of mZVAl (a-a″) and Fe-mZVAlbm (b-b″)[46]
Fig. 5 The XRD analysis of Al-Fe alloys.[62]
Fig. 6 Schematic mechanisms of the Cr(VI) removal by Fe/Al[37]
Fig. 7 Arsenite and arsenate removal mechanism by Fe/Al bimetallic particles[44]
Fig. 8 The reduction of atomic hydrogen by Al-Fe alloy particles catalyzed by copper[76]
Fig. 9 The main reaction equations of EDTA involved in the Al-Fe-O2[92]
[1]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016, 28(05): 754.
( 杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016, 28(05): 754.).
[2]
Zhang Y X, Yang S Y, Zhang Y Q, Wu S, Xin J. Chem. Eng. J., 2018, 353: 760.

doi: 10.1016/j.cej.2018.07.174
[3]
Yang S Y, Zheng D, Ren T F, Zhang Y X, Xin J. Water Res., 2017, 123: 704.

doi: 10.1016/j.watres.2017.07.013
[4]
Ren T F, Yang S Y, Jiang Y T, Sun X R, Zhang Y X. Chem. Eng. J., 2018, 348: 350.

doi: 10.1016/j.cej.2018.04.216
[5]
Ren T F, Yang S Y, Wu S, Wang M Q, Xue Y C. Chem. Eng. J., 2019, 374: 100.

doi: 10.1016/j.cej.2019.05.172
[6]
Wu S, Yang S Y, Liu S J, Zhang Y X, Ren T F, Zhang Y Q. J. Colloid Interface Sci., 2020, 560: 260.

doi: 10.1016/j.jcis.2019.10.075
[7]
Jiang Y T, Yang S Y, Liu J Q, Ren T F, Zhang Y X, Sun X R. Chemosphere, 2020, 244: 125536.

doi: 10.1016/j.chemosphere.2019.125536
[8]
Jiang Y T, Yang S Y, Wang M Q, Xue Y C, Liu J Q, Li Y, Zhao D Y. Chemosphere, 2021, 279: 130520.

doi: 10.1016/j.chemosphere.2021.130520
[9]
Li Y, Zhang Y Q, Yang S Y, Xue Y C, Liu J Q, Wang M Q, Liu S J, Chen Y Y. Sci. Total. Environ., 2021, 783: 146999.

doi: 10.1016/j.scitotenv.2021.146999
[10]
Jiang B, Xin S S, Gao L, Luo S Y, Xue J L, Wu M B. Chem. Eng. J., 2017, 308: 588.

doi: 10.1016/j.cej.2016.09.098
[11]
Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43(20): 5015.

doi: 10.1016/j.watres.2009.08.015 pmid: 19729183
[12]
Liu Y, Guo J R, Chen Y, Tan N, Wang J L. Environ. Sci. Technol., 2020, 54(21): 14085.

doi: 10.1021/acs.est.0c05974
[13]
Liu Y, Tan N, Guo J R, Wang J L. J. Hazard. Mater., 2020, 396: 122751.

doi: 10.1016/j.jhazmat.2020.122751
[14]
Gong L, Qi J L, Lv N, Qiu X J, Gu Y W, Zhao J W, He F. J. Hazard. Mater., 2021, 403: 123844.

doi: 10.1016/j.jhazmat.2020.123844
[15]
Qin H J, Yin D Q, Bandstra J Z, Sun Y K, Cao G M, Guan X H. J. Hazard. Mater., 2020, 383: 121218.

doi: 10.1016/j.jhazmat.2019.121218
[16]
Fan P, Sun Y K, Zhou B X, Guan X H. Environ. Sci. Technol., 2019, 53(24): 14577.

doi: 10.1021/acs.est.9b04956
[17]
Liu Y, Wang J L. Sci. Total. Environ., 2019, 671: 388.

doi: 10.1016/j.scitotenv.2019.03.317
[18]
Luan F B, Liu Y, Griffin A M, Gorski C A, Burgos W D. Environ. Sci. Technol., 2015, 49(3): 1418.

doi: 10.1021/es504149y
[19]
Rahimi S, Moattari R M, Rajabi L, Derakhshan A A, Keyhani M. J. Ind. Eng. Chem., 2015, 23: 33.

doi: 10.1016/j.jiec.2014.07.039
[20]
Chen Y H, Li F A. J. Colloid Interface Sci., 2010, 347(2): 277.

doi: 10.1016/j.jcis.2010.03.050
[21]
Liu X X, Yuan S H, Zhang P, Zhu J, Tong M. J. Hazard. Mater., 2020, 386: 121945.

doi: 10.1016/j.jhazmat.2019.121945
[22]
Shen W J, Kang H L, Ai Z H. J. Hazard. Mater., 2018, 357: 408.

doi: 10.1016/j.jhazmat.2018.06.029
[23]
Ou J H, Sheu Y T, Tsang D C W, Sun Y J, Kao C M. Chemosphere, 2020, 256: 127158.

doi: 10.1016/j.chemosphere.2020.127158
[24]
Liu X, Fan J H, Ma L M. Chem. Eng. J., 2014, 236: 274.

doi: 10.1016/j.cej.2013.09.097
[25]
Meng C Q, Mao Q M, Luo L, Zhang J C, Wei J H, Yang Y, Tan M J, Peng Q H, Tang L, Zhou Y Y. Sep. Purif. Technol., 2018, 191: 314.

doi: 10.1016/j.seppur.2017.09.051
[26]
Ding Z C, Fu F L, Cheng Z H, Lu J W, Tang B. Chemosphere, 2017, 169: 297.

doi: 10.1016/j.chemosphere.2016.11.057
[27]
Ali I, Gupta V K, Khan T A, Asim M. Int. J. Electrochem. Sci., 2012, 7: 1898.
[28]
Nidheesh P V, Khatri J, Anantha Singh T S, Gandhimathi R, Ramesh S T. Chemosphere, 2018, 200: 621.

doi: S0045-6535(18)30367-9 pmid: 29510370
[29]
Xu F Y, Deng S B, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Environ. Sci. Technol., 2012, 46(8): 4576.

doi: 10.1021/es203876e
[30]
Wang C P, Yang T, Liu Y H, Ruan J J, Yang S Y, Liu X J. Int. J. Hydrog. Energy, 2014, 39(21): 10843.

doi: 10.1016/j.ijhydene.2014.05.047
[31]
Wang N, Meng H X, Dong Y M, Jia Z L, Gao L J, Chai Y J. Int. J. Hydrog. Energy, 2014, 39(30): 16936.

doi: 10.1016/j.ijhydene.2014.07.180
[32]
Zheng T, Li M C, Chao J B, Zhang J Q, Tang Y, Wan P Y, Hu Q, Coulon F, Bardos P, Yang X J. Mater. Chem. Phys., 2021, 270: 124789.

doi: 10.1016/j.matchemphys.2021.124789
[33]
Nayak S S, Wollgarten M, Banhart J, Pabi S K, Murty B S. Mater. Sci. Eng. A, 2010, 527(9): 2370.

doi: 10.1016/j.msea.2009.12.044
[34]
Mann D K, Wang Y X, Marks J D, Strouse G F, Shatruk M. Inorg. Chem., 2020, 59(17): 12625.

doi: 10.1021/acs.inorgchem.0c01731
[35]
Montoya Rangel M, Marín Ramírez J M, Tirado Mejía L, Medina Barreto M H, Cruz Muñoz B. J. Magn. Magn. Mater., 2021, 538: 168246.

doi: 10.1016/j.jmmm.2021.168246
[36]
Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73(5): 692.

doi: 10.1016/j.chemosphere.2008.07.005 pmid: 18701127
[37]
Fu F L, Cheng Z H, Dionysiou D D, Tang B. J. Hazard. Mater., 2015, 298: 261.

doi: 10.1016/j.jhazmat.2015.05.047
[38]
Wang D S, Li Y D. Adv. Mater., 2011, 23(9): 1044.

doi: 10.1002/adma.201003695
[39]
Xiang S H, Cheng W C, Nie X Q, Ding C C, Yi F C, Asiri A M, Marwani H M. J. Taiwan Inst. Chem. Eng., 2018, 85: 186.

doi: 10.1016/j.jtice.2018.01.039
[40]
Cheng Z P, Li F S, Yang Y, Wang Y, Chen W F. Mater. Lett., 2008, 62(12/13): 2003.

doi: 10.1016/j.matlet.2007.11.003
[41]
Liu H C, Zhang J D, Gou J Y, Ding C K. Mater. Sci. Technol., 2017, 33(10): 1180.

doi: 10.1080/02670836.2016.1271933
[42]
Liu H C, Zhang J D, Gou J Y, Sun Y Y. Adv. Powder Technol., 2017, 28(12): 3241.

doi: 10.1016/j.apt.2017.10.005
[43]
Lien H L, Yu C H, Kamali S, Sahu R S. Sci. Total. Environ., 2019, 673: 480.

doi: 10.1016/j.scitotenv.2019.04.116
[44]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.

doi: 10.1016/j.watres.2016.03.020
[45]
Yang R, Cai J, Yang H. Sci. Total Environ., 2021, 773: 145661.

doi: 10.1016/j.scitotenv.2021.145661
[46]
Wu S, Yang S Y, Li Q F, Wang M Q, Xue Y C, Zhao D Y. Chemosphere, 2021, 274: 129767.

doi: 10.1016/j.chemosphere.2021.129767
[47]
Suryanarayana C. Prog. Mater. Sci., 2001, 46(1/2): 1.

doi: 10.1016/S0079-6425(99)00010-9
[48]
Choi K D, Kim S H, Jang P W, Yoon W Y, Byun J Y. J. Alloys Compd., 2021, 854: 157241.

doi: 10.1016/j.jallcom.2020.157241
[49]
Binns C. Surf. Sci. Rep., 2001, 44(1/2): 1.

doi: 10.1016/S0167-5729(01)00015-2
[50]
Aluha J, Bere K, Abatzoglou N, Gitzhofer F. Plasma Chem. Plasma Process., 2016, 36(5): 1325.

doi: 10.1007/s11090-016-9734-1
[51]
Katoh R, Nonaka K, Sumiyama K, Peng D L, Hihara T. Mater. Trans., 2008, 49(8): 1830.

doi: 10.2320/matertrans.MRA2007280
[52]
Zhang J Q, Wu J, Chao J B, Shi N J, Li H F, Hu Q, Yang X J. J. Contam. Hydrol., 2019, 227: 103541.

doi: 10.1016/j.jconhyd.2019.103541
[53]
Xu J, Pu Y, Yang X J, Wan P Y, Wang R, Song P, Fisher A. Environ. Technol., 2018, 39(22): 2882.

doi: 10.1080/09593330.2017.1369577
[54]
Novet T, Johnson D C. J. Am. Chem. Soc., 1991, 113(9): 3398.

doi: 10.1021/ja00009a027
[55]
AzimiRoeen G, Kashani-Bozorg S F, Nosko M, Lotfian S. Met. Mater. Int., 2020, 26(9): 1441.

doi: 10.1007/s12540-019-00393-1
[56]
Ferrando R, Jellinek J, Johnston R L. Chem. Rev., 2008, 108(3): 845.

doi: 10.1021/cr040090g
[57]
Chen Z L, Mao Q J, Lu S Y, Buekens A, Xu S X, Wang X, Yan J H. Chemosphere, 2017, 180: 130.

doi: 10.1016/j.chemosphere.2017.04.004
[58]
Irankhah A, Fattahi S M S, Salem M. Int. J. Hydrog. Energy, 2018, 43(33): 15739.

doi: 10.1016/j.ijhydene.2018.07.014
[59]
Zhang Y F, Yang B, Fan J H, Ma L M. RSC Adv., 2016, 6(80): 76867.

doi: 10.1039/C6RA12889K
[60]
Yang R, Chang Q Q, Li N, Yang H. Chem. Eng. J., 2022, 433: 133682.

doi: 10.1016/j.cej.2021.133682
[61]
Weidlich T, Prokeš L, Pospíšilová D. Open Chem., 2013, 11(6): 979.

doi: 10.2478/s11532-013-0231-6
[62]
Xu J, Pu Y, Qi W K, Yang X J, Tang Y, Wan P Y, Fisher A. Chemosphere, 2017, 166: 197.

doi: 10.1016/j.chemosphere.2016.09.102
[63]
Yang Z, Ma X W, Shan C, Guan X H, Zhang W M, Lv L, Pan B C. J. Hazard. Mater., 2019, 368: 698.

doi: S0304-3894(19)30112-8 pmid: 30739022
[64]
LÓpez-Miranda J L, Rosas G. Int. J. Hydrog. Energy, 2016, 41(6): 4054.

doi: 10.1016/j.ijhydene.2016.01.012
[65]
Jiang W M, Li G Y, Jiang Z L, Wu Y, Fan Z T. Mater. Sci. Technol., 2018, 34(12): 1519.

doi: 10.1080/02670836.2018.1465620
[66]
Abul M R, Cochrane R F, Mullis A M. J. Mater. Sci. Technol., 2022, 104: 41.

doi: 10.1016/j.jmst.2021.05.085
[67]
Takacs L. Int. J Self-Propag. High-Temp. Synth., 2009, 18(4): 276.

doi: 10.3103/S1061386209040086
[68]
Takacs L. Prog. Mater. Sci., 2002, 47(4): 355.

doi: 10.1016/S0079-6425(01)00002-0
[69]
Akhgar B N, Pourghahramani P. Int. J. Miner. Process., 2017, 164: 1.

doi: 10.1016/j.minpro.2017.05.002
[70]
Akhgar B N, Pourghahramani P. J. Alloys Compd., 2016, 657: 144.

doi: 10.1016/j.jallcom.2015.10.014
[71]
He Y L, Sun H L, Liu W J, Yang W J, Lin A J. Environ. Technol., 2020, 41(14): 1867.

doi: 10.1080/09593330.2018.1551431
[72]
Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302: 437.

doi: 10.1016/j.jhazmat.2015.09.041
[73]
Samadi M T, Asgari G, Rahmani A R, Ghavami Z. Avicenna J. Environ. Heal. Eng., 2017, 4(2): 29.
[74]
Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16): 16686.

doi: 10.1007/s11356-016-6628-y
[75]
Raut S S, Shetty R, Raju N M, Kamble S P, Kulkarni P S. Chemosphere, 2020, 250: 126298.

doi: 10.1016/j.chemosphere.2020.126298
[76]
Hou M T, Tang Y, Xu J, Pu Y, Lin A J, Zhang L L, Xiong J P, Yang X J, Wan P Y. J. Environ. Chem. Eng., 2015, 3(4): 2401.

doi: 10.1016/j.jece.2015.08.014
[77]
Pacanowski S, Wachowiak M, Jabłoński B, Szymański B, Smardz L. Int. J. Hydrog. Energy, 2021, 46(1): 806.

doi: 10.1016/j.ijhydene.2020.09.175
[78]
Raso R, García L, Ruiz J, Oliva M, Arauzo J. Appl. Catal. B Environ., 2021, 283: 119598.

doi: 10.1016/j.apcatb.2020.119598
[79]
Wan H Y, Islam M S, Qian D, Ormsbee L, Bhattacharyya D. Chem. Eng. J., 2020, 394: 125013.

doi: 10.1016/j.cej.2020.125013
[80]
Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1/2): 76.

doi: 10.1016/j.jhazmat.2011.02.001
[81]
Huang C C, Lien H L. Water Sci. Technol., 2010, 62(1): 202.

doi: 10.2166/wst.2010.303
[82]
Gui L, Gillham R W, Odziemkowski M S. Environ. Sci. Technol., 2000, 34(16): 3489.

doi: 10.1021/es9909778
[83]
Lin C J, Lo S L, Liou Y H. J. Hazard. Mater., 2004, 116(3): 219.

doi: 10.1016/j.jhazmat.2004.09.005
[84]
Zhao W R, Zhu X, Wang Y, Ai Z Y, Zhao D Y. Chem. Eng. J., 2014, 254: 410.

doi: 10.1016/j.cej.2014.05.144
[85]
Zhang Q. Environ. Technol., 2015, 36(4): 515.

doi: 10.1080/09593330.2014.952678
[86]
Yang Z, Gong X B, Peng L, Yang D, Liu Y. Chemosphere, 2018, 208: 665.

doi: 10.1016/j.chemosphere.2018.06.016
[87]
Chen Y, Hu L, Tan N, Yang X Y, Ceng H W, Liu Y. China Environ. Sci., 2021, 41(10): 4645.
( 陈勇, 胡鹭, 谭旎, 杨昕昱, 曾泓文, 刘咏. 中国环境科学, 2021, 41(10): 4645.).
[88]
Liu Y, Yang Z, Gong X B, Tan N, Wang Z R. CN 107552052B, 2020.
( 刘咏, 杨照, 龚小波, 谭妮, 王真然. CN 107552052B, 2020.).
[89]
Jin X Y, Zhuang Z C, Yu B, Chen Z X, Chen Z L. Carbohydr. Polym., 2016, 136: 1085.

doi: 10.1016/j.carbpol.2015.10.002
[90]
Wang K X, Ma H, Pu S Y, Yan C, Wang M T, Yu J, Wang X K, Chu W, Zinchenko A. J. Hazard. Mater., 2019, 362: 160.

doi: 10.1016/j.jhazmat.2018.08.067
[91]
Cheng H M, Zhu Q, Wang A W, Weng M M, Xing Z P. Environ. Res., 2020, 184: 109336.

doi: 10.1016/j.envres.2020.109336
[92]
Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.

doi: 10.1016/j.cej.2014.10.082
[93]
Fu F L, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194.

doi: 10.1016/j.jhazmat.2013.12.062
[94]
Ismadji S, Tong D S, Soetaredjo F E, Ayucitra A, Yu W H, Zhou C H. Appl. Clay Sci., 2016, 119: 146.

doi: 10.1016/j.clay.2015.08.022
[95]
Zhou S W, Zhang C B, Hu X F, Wang Y H, Xu R, Xia C H, Zhang H, Song Z G. Appl. Clay. Sci., 2014, 95: 275.

doi: 10.1016/j.clay.2014.04.024
[96]
Liu Y, Chen Y, Da Y F, Xie F, Wang J L. Appl. Catal. B Environ., 2022, 304: 121003.

doi: 10.1016/j.apcatb.2021.121003
[97]
Agstam-Norlin O, Lannergård E E, Rydin E, Futter M N, Huser B J. Water Res., 2021, 200: 117267.

doi: 10.1016/j.watres.2021.117267
[98]
Yu Z Y, Yu H W, Zhao G J, Wang L Y, Sun R F, Inorg. Chem. Ind., 2021, 1.
( 于子扬, 于贺伟, 赵改菊, 王鲁元, 孙荣峰, 无机盐工业, 2021, 1.).
[1] Shiying Yang, Zhen Yang. Mechanism of Phase Transition on Zero-Valent Aluminum Surface and Its Effect on Pollutant Removal [J]. Progress in Chemistry, 2023, 35(7): 1030-1039.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[4] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[7] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[8] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[15] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.