中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 560-576 DOI: 10.7536/PC221016 Previous Articles   Next Articles

• Review •

Catechol Hydrogel as Wet Tissue Adhesive

Yiming Chen, Huiying Li, Peng Ni, Yan Fang(), Haiqing Liu, Yunxiang Weng()   

  1. College of Chemistry and Materials Science, Fujian Normal University,Fuzhou 350007, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: haiqingliu@fjnu.edu.cn(Haiqing Liu); wengyx20@fjnu.edu.cn(Yunxiang Weng)
  • Supported by:
    National Natural Science Foundation of China(52103108); National Natural Science Foundation of China(22175037); Key Project for Advancing Science and Technology of Fujian Province([2021]415-2021G02005); Social Development of Instructive Program of Fujian Province(2020Y0020); Education and research project for young and middle-aged teachers of Fujian Province(JAT210047)
Richhtml ( 52 ) PDF ( 727 ) Cited
Export

EndNote

Ris

BibTeX

Wet adhesion plays an important role in the gestation and development of life. The research shows that hydrogel is a kind of intelligent material with both solid and liquid properties. They have been widely used in such areas as wound closure and repair, cell engineering and tissue engineering, owing to their noteworthy versatility and bio-compatibility. However, the physiological environment is usually wet, and the hydration layer on wet tissue surface prevents hydrogel from forming interfacial adhesion bonds with tissue surface. Faced with this challenge, inspired by the fact that the catechol group of DOPA is critical group for the underwater adhesion of mussels, the structure and functional unit design of catechol hydrogel have attracted wide attention. This review introduces the structure and wet adhesion mechanism of mussel foot proteins (Mfps), and the main types of catechol derivatives are classified into natural Mfps or Mfps synthesized by genetic engineering, catechol small molecular compounds, natural polymers modified by catechol groups and synthesized functional polymers containing catechol groups. Nextly, the research progress of catechol hydrogel as wet tissue adhesive in the past decade is summarized, such as tissue wound repair materials, biological coating materials, targeted drug delivery materials and bioelectronic equipment materials. Finally, the opportunities and challenges of catechol hydrogel are prospected.

Fig.1 Distribution map of Mfps
Fig.2 Action mechanism diagram of catechol group
Fig.3 Schematic of self-assembling peptide showing sequential positions of DOPA, lysine, arginine and tyrosine residues. Peptides assemble into fibrillar networks displaying the side chains of these residues with local fibril regiospecificity
Fig.4 Molecular structure of(a) TA, (b) DA and (c) UH
Fig.5 Structures of catechol-functionalized polysaccharide
Fig.6 Structures of catechol-functionalized synthesized polymer
Fig.7 Schematic diagram of Mfp-5 mimetic polymer
Fig.8 Schematic diagram for coordinated and covalent glycopolyeptide hydrogels (i.e., R-Gels and V-Gels); HRP: Horseradish peroxidase
Fig.9 Schematic illustration of the reaction mechanisms and the coating formation processes of L-dopa, L-dopa/PEI, and DA
Fig.10 (a) Constructing soft armour-like hydrophobic adhesive layer on the surface of PAM-SDS-C18-DA prehydrogel; (b) Schematic illustration of iron triggered recombination of SDS micelle
Fig.11 DOPA-g-CS form covalent linkages with the amines and cysteine residues of mucin
Fig.12 Immobilization and pH-Responsive Release of Dox from PDA Capsules
Fig.13 Schematic illustration of the hydrogel-integrated bio-adhesive ultrasoft BMI
Fig.14 (a1) Synthesis and chemical structures of dsCD; (a2) Synthesis and chemical structures of Gel-UPy/dsCD hydrogels
[1]
Yuk H, Wu J J, Sarrafian T L, Mao X Y, Varela C E, Roche E T, Griffiths L G, Nabzdyk C S, Zhao X H. Nat. Biomed. Eng., 2021, 5(10): 1131.

doi: 10.1038/s41551-021-00769-y
[2]
Sun Z Q, Guo S S, Fässler R. J. Cell Biol., 2016, 215(4): 445.

doi: 10.1083/jcb.201609037
[3]
Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X. Nat. Commun., 2016, 8: 14230.

doi: 10.1038/ncomms14230
[4]
Zhang Y S, Khademhosseini A. Science, 2017, 356(6337): eaaf3627.

doi: 10.1126/science.aaf3627
[5]
Sun H, He Y, Wang Z, Liang Q. Adv. Funct. Mater., 2021, 32(6): 2108489.

doi: 10.1002/adfm.v32.6
[6]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.

doi: 10.1038/s41578-018-0018-7
[7]
Fu F F, Wang J L, Zeng H B, Yu J. ACS Mater. Lett., 2020, 2(10): 1287.
[8]
Xu Y Y, Liu H, Cui X, Shao J, Yao P, Huang J, Qiu X, Huang C. Colloid Surface A, 2020, 593: 124622.

doi: 10.1016/j.colsurfa.2020.124622
[9]
Shu S D, Li Q, Xu W G, Tu S C, Yan L S, Zhao C W, Ding J X, Chen X S. Adv. Sci. 2018, 5(5): 1700527.

doi: 10.1002/advs.v5.5
[10]
Zhu H F, Xu G M, He Y Y, Mao H L, Kong D L, Luo K, Tang W B, Liu R, Gu Z W. Adv. Healthc. Mater., 2022, 11(15): 2200874.

doi: 10.1002/adhm.v11.15
[11]
Tavakolizadeh M, Pourjavadi A, Ansari M, Tebyanian H, Seyyed Tabaei S J, Atarod M, Rabiee N, Bagherzadeh M, Varma R S. Green Chem., 2021, 23(3): 1312.

doi: 10.1039/D0GC02719G
[12]
He X, Li Z K, Li J, Mishra D, Ren Y X, Gates I, Hu J G, Lu Q Y. Small, 2021, 17(49): 2103521.

doi: 10.1002/smll.v17.49
[13]
Liang Y P, He J H, Guo B L. ACS Nano, 2021, 15(8): 12687.

doi: 10.1021/acsnano.1c04206
[14]
Bertsch P, Diba M, Mooney D J, Leeuwenburgh S. C. G. Chem. Rev. 2023, 123(2): 834.

doi: 10.1021/acs.chemrev.2c00179
[15]
Ho H. P. B, Yuen Y, Zhao X. Chem. Eng. J. 2022, 431: 133372.

doi: 10.1016/j.cej.2021.133372
[16]
Su X, Xie W Y, Wang P D, Tian Z L, Wang H, Yuan Z Y, Liu X Z, Huang J Y. Mater. Horiz., 2021, 8(8): 2199.

doi: 10.1039/D1MH00533B
[17]
Ahn B K, Das S, Linstadt R, Kaufman Y, Martinez-Rodriguez N R, Mirshafian R, Kesselman E, Talmon Y, Lipshutz B H, Israelachvili J N, Waite J H. Nat. Commun., 2015, 6: 8663.

doi: 10.1038/ncomms9663
[18]
Stewart R J, Wang C S, Song I T, Jones J P. Adv. Colloid Interface Sci., 2017, 239: 88.

doi: 10.1016/j.cis.2016.06.008
[19]
Fan H L, Wang J H, Gong J P. Adv. Funct. Mater., 2021, 31(11): 2009334.

doi: 10.1002/adfm.v31.11
[20]
Fan X M, Fang Y, Zhou W K, Yan L Y, Xu Y H, Zhu H, Liu H Q. Mater. Horiz., 2021, 8(3): 997.

doi: 10.1039/D0MH01231A
[21]
Shin M, Shin J Y, Kim K, Yang B, Han J W, Kim N K, Cha H J. J. Colloid Interface Sci., 2020, 563: 168.

doi: 10.1016/j.jcis.2019.12.082
[22]
Waite J H. J. Exp. Biol., 2017, 220(4): 517.

doi: 10.1242/jeb.134056
[23]
Clancy S K, Sodano A, Cunningham D J, Huang S S, Zalicki P J, Shin S, Ahn B K. Biomacromolecules, 2016, 17(5): 1869.

doi: 10.1021/acs.biomac.6b00300 pmid: 27046671
[24]
Lee H, Scherer N F, Messersmith P B. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(35): 12999.

doi: 10.1073/pnas.0605552103
[25]
Li Y R, Cao Y. Nanoscale Adv., 2019, 1(11): 4246.

doi: 10.1039/C9NA00582J
[26]
Guo Q, Chen J S, Wang J L, Zeng H B, Yu J. Nanoscale, 2020, 12(3): 1307.

doi: 10.1039/c9nr09780e pmid: 31907498
[27]
Aich P, An J, Yang B, Ko Y H, Kim J, Murray J, Cha H J, Roh J H, Park K M, Kim K. Chem. Commun., 2018, 54(89): 12642.

doi: 10.1039/C8CC07475E
[28]
Zhang W, Yang H, Liu F H, Chen T, Hu G X, Guo D H, Hou Q F, Wu X, Su Y, Wang J B. RSC Adv., 2017, 7(52): 32518.

doi: 10.1039/C7RA04228K
[29]
Fan H, Gong J P. Adv. Mater. 2021, 2102983.
[30]
Wilker J J. Nat. Chem. Biol., 2011, 7(9): 579.

doi: 10.1038/nchembio.639
[31]
Zhang K, Zhang F L, Song Y Y, Fan J B, Wang S T. Chin. J. Chem., 2017, 35(6): 811.

doi: 10.1002/cjoc.v35.6
[32]
Cui J W, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Biomacromolecules, 2012, 13(8): 2225.

doi: 10.1021/bm300835r
[33]
Xie C M, Wang X, He H, Ding Y H, Lu X. Adv. Funct. Mater., 2020, 30(25): 1909954.

doi: 10.1002/adfm.v30.25
[34]
Xu Y J, Wei K C, Zhao P C, Feng Q, Choi C K K, Bian L M. Biomater. Sci., 2016, 4(12): 1726.

doi: 10.1039/C6BM00434B
[35]
Zhang W, Wang R X, Sun Z M, Zhu X W, Zhao Q, Zhang T F, Cholewinski A, Yang F K, Zhao B X, Pinnaratip R, Forooshani P K, Lee B P. Chem. Soc. Rev., 2020, 49(2): 433.

doi: 10.1039/c9cs00285e pmid: 31939475
[36]
Teng L, Shao Z W, Bai Q, Zhang X L, He Y S, Lu J Y, Zou D R, Feng C L, Dong C M. Adv. Funct. Mater., 2021, 31(43): 2105628.

doi: 10.1002/adfm.v31.43
[37]
Li Y R, Cheng J, Delparastan P, Wang H Q, Sigg S J, DeFrates K G, Cao Y, Messersmith P B. Nat. Commun., 2020, 11: 3895.

doi: 10.1038/s41467-020-17597-4
[38]
Ivarsson M, Prenkert M, Cheema A, Wretenberg P, Andjelkov N. CARTILAGE, 2021, 13(2suppl): 663S.
[39]
Hansen D C, Zimlich K R, Bennett B N. Electrochimica Acta, 2019, 301: 411.

doi: 10.1016/j.electacta.2019.01.145
[40]
Ohkawa K, Nishida A, Ichimiya K, Matsui Y, Nagaya K, Yuasa A, Yamamoto H. Biofouling, 1999, 14(3): 181.

doi: 10.1080/08927019909378409
[41]
Zhou Y J, He Q, Zhou D. J. Food Process. Preserv., 2017, 41(3): e12962.

doi: 10.1111/jfpp.2017.41.issue-3
[42]
Choi Y S, Kang D G, Lim S, Yang Y J, Kim C S, Cha H J. Biofouling, 2011, 27(7): 729.

doi: 10.1080/08927014.2011.600830
[43]
Choi Y S, Yang Y J, Yang B, Cha H J. Microb. Cell Factories, 2012, 11(1): 139.

doi: 10.1186/1475-2859-11-139
[44]
Jeong Y S, Yang B, Yang B, Shin M, Seong J, Cha H J, Kwon I. Biotechnol. Bioeng., 2020, 117(7): 1961.

doi: 10.1002/bit.27339 pmid: 32196642
[45]
Wang J, Scheibel T. Biotechnol. J., 2018, 13(12): 1800146.

doi: 10.1002/biot.v13.12
[46]
Wei W, Petrone L, Tan Y, Cai H, Israelachvili J N, Miserez A, Waite J H. Adv. Funct. Mater., 2016, 26(20): 3496.

pmid: 27840600
[47]
Fichman G, Andrews C, Patel N L, Schneider J P. Adv. Mater., 2021, 33(40): 2103677.

doi: 10.1002/adma.v33.40
[48]
Laura Alfieri M, Weil T, Ng D Y W, Ball V. Adv. Colloid Interface Sci., 2022, 305: 102689.

doi: 10.1016/j.cis.2022.102689
[49]
Liang H S, Zhou B, Wu D, Li J, Li B. Adv. Colloid Interface Sci., 2019, 272: 102019.

doi: 10.1016/j.cis.2019.102019
[50]
Lin F C, Wang Z, Chen J S, Lu B L, Tang L R, Chen X R, Lin C S, Huang B, Zeng H B, Chen Y D. J. Mater. Chem. B, 2020, 8(18): 4002.

doi: 10.1039/D0TB00424C
[51]
Liu B C, Wang Y, Miao Y, Zhang X Y, Fan Z X, Singh G, Zhang X Y, Xu K G, Li B Y, Hu Z Q, Xing M. Biomaterials, 2018, 171: 83.

doi: 10.1016/j.biomaterials.2018.04.023
[52]
Su X, Luo Y, Tian Z L, Yuan Z Y, Han Y M, Dong R F, Xu L, Feng Y T, Liu X Z, Huang J Y. Mater. Horiz., 2020, 7(10): 2651.

doi: 10.1039/D0MH01344G
[53]
Hao S W, Shao C Y, Meng L, Cui C, Xu F, Yang J. ACS Appl. Mater. Interfaces, 2020, 12(50): 56509.

doi: 10.1021/acsami.0c18250
[54]
Bai Z X, Wang T Y, Zheng X, Huang Y P, Chen Y N, Dan W H. Polym. Eng. Sci., 2021, 61(1): 278.

doi: 10.1002/pen.v61.1
[55]
Jafari H, Ghaffari-Bohlouli P, Niknezhad S V, Abedi A, Izadifar Z, Mohammadinejad R, Varma R S, Shavandi A. J. Mater. Chem. B, 2022, 10(31): 5873.

doi: 10.1039/D2TB01056A
[56]
Kord Forooshani P,. Lee B P. J. Polym. Sci. A Polym. Chem., 2017, 55(1): 9.

doi: 10.1002/pola.v55.1
[57]
Fan X M, Zhou W K, Chen Y M, Yan L Y, Fang Y, Liu H Q. ACS Appl. Mater. Interfaces, 2020, 12(28): 32031.

doi: 10.1021/acsami.0c09917
[58]
Quan Hu, Liu Ouyang, Zhang Li, Li Yang. Molecules, 2019, 24(14): 2586.

doi: 10.3390/molecules24142586
[59]
Huang Y, Zhao X, Zhang Z Y, Liang Y P, Yin Z H, Chen B J, Bai L, Han Y, Guo B L. Chem. Mater., 2020, 32(15): 6595.

doi: 10.1021/acs.chemmater.0c02030
[60]
Geng H M, Cui J W, Hao J C. Acta Chimica Sinica, 2020, 78(2): 105.

doi: 10.6023/A19080301
耿慧敏, 崔基炜, 郝京诚. 化学进展. 2020, 78(2): 105.).
[61]
Zhu W Z, Peck Y, Iqbal J, Wang D A. Biomaterials, 2017, 147: 99.

doi: 10.1016/j.biomaterials.2017.09.016
[62]
Liu F F, Liu X, Chen F, Fu Q. Prog. Polym. Sci., 2021, 123: 101472.

doi: 10.1016/j.progpolymsci.2021.101472
[63]
Liu K, Dong X Z, Wang Y, Wu X P, Dai H L. Carbohydr. Polym., 2022, 298: 120047.

doi: 10.1016/j.carbpol.2022.120047
[64]
Kim K, Ryu J H, Koh M Y, Yun S P, Kim S, Park J P, Jung C W, Lee M S, Seo H I, Kim J H, Lee H. Sci. Adv., 2021, 7(13): eabc9992.

doi: 10.1126/sciadv.abc9992
[65]
Zhong Y J, Seidi F, Wang Y L, Zheng L, Jin Y C, Xiao H N. Carbohydr. Polym., 2022, 298: 120103.

doi: 10.1016/j.carbpol.2022.120103
[66]
Sun C Y, Zeng X L, Zheng S H, Wang Y L, Li Z Y, Zhang H N, Nie L L, Zhang Y F, Zhao Y B, Yang X L. Chem. Eng. J., 2022, 427: 130843.

doi: 10.1016/j.cej.2021.130843
[67]
An S, Jeon E J, Han S Y, Jeon J, Lee M J, Kim S, Shin M, Cho S W. Small, 2022, 18(41): 2202729.

doi: 10.1002/smll.v18.41
[68]
Li Y P, Li L, Zhang Z P, Cheng J R, Fei Y S, Lu L B. Chem. Eng. J., 2021, 420: 129736.

doi: 10.1016/j.cej.2021.129736
[69]
Kim S, Moon J M, Choi J S, Cho W K, Kang S M. Adv. Funct. Mater., 2016, 26(23): 4099.

doi: 10.1002/adfm.v26.23
[70]
Osman A, Lin E H, Hwang D S. Carbohydr. Polym., 2023, 299: 120172.

doi: 10.1016/j.carbpol.2022.120172
[71]
Zhang H, Zhao T Y, Newland B, Liu W G, Wang W, Wang W X. Prog. Polym. Sci., 2018, 78: 47.

doi: 10.1016/j.progpolymsci.2017.09.002
[72]
Brubaker C E, Kissler H, Wang L J, Kaufman D B, Messersmith P B. Biomaterials, 2010, 31(3): 420.

doi: 10.1016/j.biomaterials.2009.09.062 pmid: 19811819
[73]
Hu S S, Pei X B, Duan L L, Zhu Z, Liu Y H, Chen J Y, Chen T, Ji P, Wan Q B, Wang J. Nat. Commun., 2021, 12: 1689.

doi: 10.1038/s41467-021-21989-5
[74]
Mazzotta M G, Putnam A A, North M A, Wilker J J. J. Am. Chem. Soc., 2020, 142(10): 4762.

doi: 10.1021/jacs.9b13356 pmid: 32069400
[75]
Ma C, Pang H W, Cai L P, Huang Z H, Gao Z H, Li J Z, Zhang S F. J. Clean. Prod., 2021, 308: 127309.

doi: 10.1016/j.jclepro.2021.127309
[76]
David B Tiu B, Delparastan P, Ney M R, Gerst M, Messersmith P B. ACS Appl. Mater. Interfaces, 2019, 11(31): 28296.

doi: 10.1021/acsami.9b08429
[77]
Mu Y B, Wu X, Pei D F, Wu Z L, Zhang C, Zhou D S, Wan X B. ACS Biomater. Sci. Eng., 2017, 3(12): 3133.

doi: 10.1021/acsbiomaterials.7b00673
[78]
Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H. Adv. Funct. Mater., 2017, 27(8): 1604894.

doi: 10.1002/adfm.v27.8
[79]
Gan D L, Xu T, Xing W S, Ge X, Fang L M, Wang K F, Ren F Z, Lu X. Adv. Funct. Mater., 2019, 29(1): 1805964.

doi: 10.1002/adfm.v29.1
[80]
Zhao N Y, Yuan W Z. Compos. B Eng., 2022, 230: 109525.

doi: 10.1016/j.compositesb.2021.109525
[81]
Ma Z W, Bao G Y, Li J Y. Adv. Mater., 2021, 33(24): 2007663.

doi: 10.1002/adma.v33.24
[82]
Deng K, Yuk H, Guo C F, Zhao X, Wu J, Varela C E, Chen X, Roche E T. Nat. Mater. 2020, 20: 229.

doi: 10.1038/s41563-020-00814-2
[83]
Luo J, Yang J J, Zheng X R, Ke X, Chen Y T, Tan H, Li J S. Adv. Healthcare Mater., 2020, 9(4): 1901423.

doi: 10.1002/adhm.v9.4
[84]
Peng H T, Shek P N. Expert Rev. Med. Devices, 2010, 7(5): 639.

doi: 10.1586/erd.10.40
[85]
Mehdizadeh M, Yang J. Macromol. Biosci., 2013, 13(3): 271.

doi: 10.1002/mabi.201200332
[86]
Seyednejad H, Imani M, Jamieson T, Seifalian A M. Br. J. Surg., 2008, 95(10): 1197.

doi: 10.1002/bjs.6357 pmid: 18763249
[87]
Klimo P, Khalil A, Slotkin J R, Smith E R, Scott R M, Goumnerova L C. Oper. Neurosurg., 2007, 60(4): 305.

doi: 10.1227/01.NEU.0000255416.55560.D2
[88]
Fortelny R H, Petter-Puchner A H, Walder N, Mittermayr R, Öhlinger W, Heinze A, Redl H. Surg. Endosc., 2007, 21(10): 1781.

doi: 10.1007/s00464-007-9243-7 pmid: 17356940
[89]
Chen T, Chen Y J, Rehman H U, Chen Z, Yang Z, Wang M, Li H, Liu H Z. ACS Appl. Mater. Interfaces, 2018, 10(39): 33523.

doi: 10.1021/acsami.8b10064
[90]
Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford J L, Fares M M, Mithieux S M, Weiss A S. Biomaterials, 2017, 139: 229.

doi: S0142-9612(17)30322-8 pmid: 28579065
[91]
Guan T, Li J Y, Chen C Y, Liu Y. Adv. Sci., 2022, 9(10): 2104165.

doi: 10.1002/advs.v9.10
[92]
Xu M, Khan A, Wang T J, Song Q, Han C M, Wang Q Q, Gao L L, Huang X, Li P, Huang W. ACS Appl. Bio Mater., 2019, 2(8): 3329.

doi: 10.1021/acsabm.9b00353
[93]
Zhao X, Guo B L, Wu H, Liang Y P, Ma P X. Nat. Commun., 2018, 9: 2784.

doi: 10.1038/s41467-018-04998-9 pmid: 30018305
[94]
Liang Y Q, Li Z L, Huang Y, Yu R, Guo B L. ACS Nano, 2021, 15(4): 7078.

doi: 10.1021/acsnano.1c00204
[95]
Guo S, Ren Y K, Chang R, He Y M, Zhang D, Guan F X, Yao M H. ACS Appl. Mater. Interfaces, 2022, 14(30): 34455.

doi: 10.1021/acsami.2c08870
[96]
Cheng H, Shi Z, Yue K, Huang X S, Xu Y C, Gao C H, Yao Z Q, Zhang Y S, Wang J. Acta Biomater., 2021, 124: 219.

doi: 10.1016/j.actbio.2021.02.002 pmid: 33556605
[97]
Álvarez-Lerma F, Olaechea-Astigarraga P, Palomar-Martínez M, Catalan M, Nuvials X, Gimeno R, Gracia-Arnillas M P, Seijas-Betolaza I. J. Hosp. Infect., 2018, 100(3): e204.

doi: 10.1016/j.jhin.2018.04.027 pmid: 29751023
[98]
Arciola C R, Campoccia D, Montanaro L. Nat. Rev. Microbiol., 2018, 16(7): 397.

doi: 10.1038/s41579-018-0019-y pmid: 29720707
[99]
Long L, Fan Y Q, Yang X, Ding X K, Hu Y, Zhang G C, Xu F J. Chem. Eng. J., 2022, 444: 135426.

doi: 10.1016/j.cej.2022.135426
[100]
Lu B Y, Han X, Zou D, Luo X, Liu L, Wang J Y, Maitz M F, Yang P, Huang N, Zhao A S. Mater. Today Bio, 2022, 16: 100392.
[101]
Zhao X X, Alexander Irvine S, Agrawal A, Cao Y, Lim P Q, Tan S Y, Venkatraman S S. Acta Biomater., 2015, 26: 159.

doi: 10.1016/j.actbio.2015.08.024
[102]
Yuk H, Zhang T, Lin S T, Alberto Parada G, Zhao X H. Nat. Mater., 2016, 15(2): 190.

doi: 10.1038/nmat4463
[103]
Li X, Su X L. J. Mater. Chem. B, 2018, 6(29): 4714.

doi: 10.1039/C8TB01078A
[104]
Fullenkamp D E, Rivera J G, Gong Y K, Lau K H A, He L H, Varshney R, Messersmith P B. Biomaterials, 2012, 33(15): 3783.

doi: 10.1016/j.biomaterials.2012.02.027 pmid: 22374454
[105]
García-Fernández L, Cui J X, Serrano C, Shafiq Z, Gropeanu R A, Miguel V S, Ramos J I, Wang M, Auernhammer G K, Ritz S, Golriz A A, Berger R, Wagner M, del Campo A. Adv. Mater., 2013, 25(4): 529.

doi: 10.1002/adma.201203362
[106]
Ryu J H, Messersmith P B, Lee H. ACS Appl. Mater. Interfaces, 2018, 10(9): 7523.

doi: 10.1021/acsami.7b19865
[107]
Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248): 628.

doi: 10.1126/science.aab0556 pmid: 26250681
[108]
Statz A R, Meagher R J, Barron A E, Messersmith P B. J. Am. Chem. Soc., 2005, 127(22): 7972.

doi: 10.1021/ja0522534
[109]
Yang S J, Zou L Y, Liu C, Zhong Q, Ma Z Y, Yang J, Ji J, Müller-Buschbaum P, Xu Z K. ACS Appl. Mater. Interfaces, 2020, 12(48): 54094.

doi: 10.1021/acsami.0c16142
[110]
Li J, Celiz A D, Yang J, Yang Q, Wamala I, Whyte W, Seo B R, Vasilyev N V, Vlassak J J, Suo Z, Mooney D J. Science, 2017, 357(6349): 378.

doi: 10.1126/science.aah6362 pmid: 28751604
[111]
Wan X Z, Gu Z, Zhang F L, Hao D Z, Liu X, Dai B, Song Y Y, Wang S T. NPG Asia Mater., 2019, 11: 49.

doi: 10.1038/s41427-019-0150-x
[112]
Yang J W, Bai R B, Chen B H, Suo Z G. Adv. Funct. Mater., 2020, 30(2): 1901693.

doi: 10.1002/adfm.v30.2
[113]
Pan M F, Nguyen K C T, Yang W S, Liu X, Chen X Z, Major P W, Le L H, Zeng H B. Chem. Eng. J., 2022, 434: 134418.

doi: 10.1016/j.cej.2021.134418
[114]
Ma L, Su B H, Cheng C, Yin Z H, Qin H, Zhao J M, Sun S D, Zhao C S. J. Membr. Sci., 2014, 470: 90.

doi: 10.1016/j.memsci.2014.07.030
[115]
Ma L, Cheng C, Nie C X, He C, Deng J, Wang L R, Xia Y, Zhao C S. J. Mater. Chem. B, 2016, 4(19): 3203.

doi: 10.1039/C6TB00636A
[116]
Fu M J, Liang Y J, Lv X, Li C N, Yang Y Y, Yuan P Y, Ding X. J. Mater. Sci. Technol., 2021, 85: 169.

doi: 10.1016/j.jmst.2020.12.070
[117]
Barthelat F. J. Mech. Phys. Solids, 2014, 73: 22.

doi: 10.1016/j.jmps.2014.08.008
[118]
Rego S J, Vale A C, Luz G M, Mano J F, Alves N M. Langmuir, 2016, 32(2): 560.

doi: 10.1021/acs.langmuir.5b03508
[119]
Zhang C, Wu B H, Zhou Y S, Zhou F, Liu W M, Wang Z K. Chem. Soc. Rev., 2020, 49(11): 3605.

doi: 10.1039/c9cs00849g pmid: 32393930
[120]
Kim K, Kim K, Ryu J H, Lee H. Biomaterials, 2015, 52: 161.

doi: 10.1016/j.biomaterials.2015.02.010
[121]
Lim S, Park T Y, Jeon E Y, Joo K I, Cha H J. Biomaterials, 2021, 278: 121171.

doi: 10.1016/j.biomaterials.2021.121171
[122]
Ren Y Z, Zhao X, Liang X F, Ma P X, Guo B L. Int. J. Biol. Macromol., 2017, 105: 1079.

doi: 10.1016/j.ijbiomac.2017.07.130
[123]
De Koker S, Hoogenboom R, De Geest B G. Chem. Soc. Rev., 2012, 41(7): 2867.

doi: 10.1039/c2cs15296g
[124]
Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40(7): 4244.

doi: 10.1039/c1cs15026j
[125]
Kaur G, Arora M, Ravi Kumar M N V. J. Pharmacol. Exp. Ther., 2019, 370(3): 529.

doi: 10.1124/jpet.118.255828 pmid: 31010845
[126]
Macedo A S, Castro P M, Roque L, ThomÉ N G, Reis C P, Pintado M E, Fonte P. J. Control. Release, 2020, 320: 125.

doi: 10.1016/j.jconrel.2020.01.006
[127]
Rich S I, Wood R J, Majidi C. Nat. Electron., 2018, 1(2): 102.

doi: 10.1038/s41928-018-0024-1
[128]
Li S N, Cong Y, Fu J. J. Mater. Chem. B, 2021, 9(22): 4423.

doi: 10.1039/D1TB00523E
[129]
Wang X, Sun X T, Gan D L, Soubrier M, Chiang H Y, Yan L W, Li Y Q, Li J J, Yu S, Xia Y, Wang K F, Qin Q Z, Jiang X X, Han L, Pan T S, Xie C M, Lu X. Matter, 2022, 5(4): 1204.

doi: 10.1016/j.matt.2022.01.012
[130]
Sun J Y, Keplinger C, Whitesides G M, Suo Z G. Adv. Mater., 2014, 26(45): 7608.

doi: 10.1002/adma.v26.45
[131]
Han L, Liu K Z, Wang M H, Wang K F, Fang L M, Chen H T, Zhou J, Lu X. Adv. Funct. Mater., 2018, 28(3): 1704195.

doi: 10.1002/adfm.v28.3
[132]
Liao M H, Wan P B, Wen J R, Gong M, Wu X X, Wang Y G, Shi R, Zhang L Q. Adv. Funct. Mater., 2017, 27(48): 1703852.

doi: 10.1002/adfm.v27.48
[133]
Won H J, Ryplida B, Kim S G, Lee G, Ryu J H, Park S Y. ACS Nano, 2020, 14(7): 8409.

doi: 10.1021/acsnano.0c02517
[134]
Di X, Hang C, Xu Y, Ma Q Y, Li F F, Sun P C, Wu G L. Mater. Chem. Front., 2020, 4(1): 189.

doi: 10.1039/C9QM00582J
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[5] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[6] Guilong Wang, Xin Cui, Ying Chen, Zhen-feng Hu, Xiubing Liang, Fuxue Chen. Underwater Biomimetic Adhesive Based on Mussel Inspiration [J]. Progress in Chemistry, 2021, 33(12): 2378-2391.
[7] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[8] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[9] Qiuling Yu, Zheng Li, Chunyan Dou, Yiping Zhao, Jixian Gong, Jianfei Zhang. Design and Application of pH Sensitive and Intelligent Hydrogels [J]. Progress in Chemistry, 2020, 32(2/3): 179-189.
[10] Xi Su, Chuang Ge, Li Chen, Yi Xu. Hydrogel-Based Sensing Detection of Bacteria [J]. Progress in Chemistry, 2020, 32(12): 1908-1916.
[11] Zixuan Cai, Bin Zhang, Liyang Jiang, Yunyi Li, Guohe Xu, Jingjun Ma. Intelligent-Responsive Hydrogels-Based Controlled Drug Release Systems and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1653-1668.
[12] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[13] Chunyan Dou, Zheng Li, Guidong He, Jixian Gong, Xiuming Liu, Jianfei Zhang. Preparation and Application of γ-Polyglutamic Acid Hydrogel [J]. Progress in Chemistry, 2018, 30(8): 1161-1171.
[14] Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*. Functionalization of High-Strength Hydrogels with Regular Network Structures [J]. Progress in Chemistry, 2017, 29(7): 706-719.
[15] Ping Wang, Qiaofeng Yang, Chuanzhuang Zhao*. Molecular Design and Intelligent Material Construction of Light-Responsive Microgel [J]. Progress in Chemistry, 2017, 29(7): 750-756.
Viewed
Full text


Abstract

Catechol Hydrogel as Wet Tissue Adhesive