中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1431-1439 DOI: 10.7536/PC210909 Previous Articles   Next Articles

• Review •

Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine

Yajuan Wu1(), Jingwen Luo1, Yongji Huang2   

  1. 1 Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
    2 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,Lanzhou 730000, China
  • Received: Revised: Online: Published:
  • Contact: Yajuan Wu
  • Supported by:
    National Natural Science Foundation of China(22002122); Fundamental Research Funds for the Central Universities, Southwest Minzu University(2020NQN08)
Richhtml ( 47 ) PDF ( 798 ) Cited
Export

EndNote

Ris

BibTeX

Global warming and the energy crisis are posing increasingly severe risks for the economy, ecosystems and human health. As one kind of dominant greenhouse gas, carbon dioxide (CO2) contributes most to global warming, while it is also considered as an abundant, nontoxic, and renewable C1 source. Thus far, transforming CO2 into high value-added chemicals through modern technologies has attracted significant attention owing to its unique advantages. It can not only alleviate human reliance on fossil resources, but also effectively weaken the greenhouse effect. It is of great help to achieve China’s “dual-carbon” goal of “carbon peak and carbon neutrality”. N,N-Dimethylformamide (DMF), an extremely versatile solvent and important chemical intermediate, can be synthesized by using CO2 and dimethylamine as raw materials over different catalysts. Therefore, the development of efficient catalytic systems is crucial for the transformation of CO2 into high value-added products. This article reviews the current status and progress in the synthesis of DMF with CO2 and dimethylamine with respect to reducing agents, catalytic systems as well as the reaction mechanisms of these different catalytic systems. Furthermore, we conclude the frontiers and future prospects of the catalytic synthesis of DMF from CO2 and dimethylamine, providing readers a snapshot of this field.

Contents

1 Introduction

2 H2 as reducing agent

2.1 Noble catalytic system

2.2 Non-noble catalytic system

3 Other reducing agent

3.1 Hydrosilanes as reducing agent

3.2 Boranes as reducing agent

3.3 Ammonium salts as reducing agent

4 Conclusion and outlook

Fig. 1 Catalytic synthesis of DMF with dimethylamine and CO2/ H 2 [7]
Fig. 2 The reaction mechanism of DMF synthesis catalyzed by (PPh3)3RhCl[9]
Fig. 3 Reaction mechanism of Ru-catalyzed synthesis of DMF[12]
Fig. 4 Ru pincer catalyze formylation of dimethylamine with CO2/ H 2 [18]
Fig. 5 Mechanism for DMF synthesis catalyzed by Ru-Macho[23]
Fig. 6 Concept of the two-step process for the synthesis of DMF[24]
Fig. 7 Co pincer catalyze formylation of dimethylamine with CO2/ H 2 [25]
Fig. 8 Co pincer catalyze formylation of amine with CO2/ H 2 [30]
Fig. 9 Ni(Ⅱ)-catalyzed DMF synthesis from CO2/ H 2 [31]
Fig. 10 Formylation of dimethylamine catalyzed by PS-PEG-bound Ru complexes[37]
Fig. 11 Synthesis of Ru@PP-POP catalysts[38]
Fig. 12 Structure of NHCs-Ir and POMPs-NHC-Ir[47]. Copyright 2021, Wiley-VCH
Fig. 13 Structure of FeNi3/KCC-1/APTPOSS/TCT/PVA/Cu(Ⅱ) MNPs[52]
Fig. 14 Reduction of CO2 by silane as hydrogen source[56,57]
Fig. 15 Proposed reaction mechanism for dialkyl formamide and HCOOH generation by CO2 reduction[67]
[1]
He M Y, Sun Y H, Han B X. Angew. Chem. Int. Ed., 2013, 52(37): 9620.

doi: 10.1002/anie.201209384
[2]
Liu Q, Wu L P, Jackstell R, Beller M. Nat. Commun., 2015, 6: 5933.

doi: 10.1038/ncomms6933
[3]
Artz J, Müller T E, Thenert K. Chem. Rev., 2018, 118(2): 434.

doi: 10.1021/acs.chemrev.7b00435
[4]
Muzart J. Tetrahedron, 2009, 65(40): 8313.

doi: 10.1016/j.tet.2009.06.091
[5]
Weissermel K, Arpe H J. Industrial Organic Chemistry. 3rd ed. Wiley-VCH: Weinheim, 1997.
[6]
Tu T, Shen Y J, Zheng Q S. CN 111205198, 2020.
( 涂涛, 申雅靓, 郑庆舒. CN 111205198, 2020.).
[7]
Haynes P, Slaugh L H, Kohnle J F. Tetrahedron Lett., 1970, 11(5): 365.

doi: 10.1016/0040-4039(70)80086-7
[8]
Kudo K, Phala H, Sugita N, Takezaki Y. Chem. Lett., 1977, 6(12): 1495.

doi: 10.1246/cl.1977.1495
[9]
Heng P, Kiyoshi K, Nobuyuki S. Bull. Inst. Chem. Res., Kyoto Univ., 1981, 59(2): 88.
[10]
Schreiner S, Yu J Y, Vaska L. J. Chem. Soc., Chem. Commun., 1988(9): 602.
[11]
Schreiner S, Yu J Y, Vaska L. Inorganica Chimica Acta, 1988, 147(2): 139.

doi: 10.1016/S0020-1693(00)83362-9
[12]
Ishida H, Tanaka H, Tanaka K, Tanaka T. Chem. Lett., 1987, 16(4): 597.

doi: 10.1246/cl.1987.597
[13]
Jessop P G, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc., 1994, 116(19): 8851.

doi: 10.1021/ja00098a072
[14]
Jessop P G, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc., 1996, 118(2): 344.

doi: 10.1021/ja953097b
[15]
Kröcher O, Köppel R A, Baiker A. Chem. Commun., 1997(5): 453.
[16]
Kayaki Y, Suzuki T, Ikariya T. Chem. Lett., 2001, 30(10): 1016.

doi: 10.1246/cl.2001.1016
[17]
Behr A, Ebbinghaus P, Naendrup F. Chem. Eng. Technol., 2004, 27(5): 495.

doi: 10.1002/ceat.200403221
[18]
Zhang L, Han Z B, Zhao X Y, Wang Z, Ding K L. Angew. Chem. Int. Ed., 2015, 54(21): 6186.

doi: 10.1002/anie.201500939 pmid: 25850597
[19]
Ding K L, Zhang L, Han Z B, Wang Z, Zhao X Y. CN , 2016.
( 丁奎岭, 张磊, 韩召斌, 王正, 赵晓宇. CN 105985254, 2016.).
[20]
Ding K L, Qiu J, Yan T, Zhang L, Wang Z. CN 109553641, 2017.
( 丁奎岭, 邱佳, 闫涛, 张磊, 王正. CN 109553641, 2017.).
[21]
Kuhlmann R, Schmitz S, Haβmann K, Prüllage A, Behr A. Appl. Catal. A Gen., 2017, 539: 90.

doi: 10.1016/j.apcata.2017.03.037
[22]
Kuhlmann R, Prüllage A, Künnemann K, Behr A, Vorholt A J. J. CO2 Util., 2017, 22: 184.
[23]
Kuhlmann R, Nowotny M, Künnemann K U, Behr A, Vorholt A J. J. Catal., 2018, 361: 45.

doi: 10.1016/j.jcat.2018.02.006
[24]
Kuhlmann R, Künnemann K U, Hinderink L, Behr A, Vorholt A J. ACS Sustainable Chem. Eng., 2019, 7(5): 4924.

doi: 10.1021/acssuschemeng.8b05477
[25]
Minato M, Zhou D Y, Sumiura K I, Hirabayashi R, Yamaguchi Y, Ito T. Chem. Commun., 2001(24): 2654.
[26]
Minato M, Zhou D Y, Sumiura K I, Oshima Y, Mine S, Ito T, Kakeya M, Hoshino K, Asaeda T, Nakada T, Osakada K. Organometallics, 2012, 31(14): 4941.

doi: 10.1021/om200646c
[27]
Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson P J, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed., 2010, 49(50): 9777.

doi: 10.1002/anie.201004263
[28]
Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc., 2012, 134(51): 20701.

doi: 10.1021/ja307924a
[29]
Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Chem. Eur. J., 2012, 18(1): 72.

doi: 10.1002/chem.201101343
[30]
Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal., 2017, 7(4): 2500.

doi: 10.1021/acscatal.7b00116
[31]
Affan M A, Jessop P G. Inorg. Chem., 2017, 56(12): 7301.

doi: 10.1021/acs.inorgchem.7b01242
[32]
Affan M A, Schatte G, Jessop P G. Inorg. Chem., 2020, 59(19): 14275.

doi: 10.1021/acs.inorgchem.0c01401
[33]
Kröcher O, Köppel R A, Baiker A. Chem. Commun., 1996(13): 1497.
[34]
Kröcher O, Köppel R A, Fr?ba M, Baiker A. J. Catal., 1998, 178(1): 284.

doi: 10.1006/jcat.1998.2151
[35]
Schmid L, Baiker A. Stud. Surf. Sci. Catal., 2000, 557.
[36]
Krocher O, Koppel R A, Baiker A J. Mol. Catal. A: Chem., 1999, 140(2): 185.

doi: 10.1016/S1381-1169(98)00224-6
[37]
Kayaki Y, Shimokawatoko Y, Ikariya T. Adv. Synth. Catal., 2003, 345(12): 175.

doi: 10.1002/adsc.200390007
[38]
Gunasekar G H, Padmanaban S, Park K, Jung K D, Yoon S. ChemSusChem, 2020, 13(7): 1735.

doi: 10.1002/cssc.201903364
[39]
Wang G Q, Jiang M, Ji G J, Sun Z, Li C Y, Yan L, Ding Y J. ACS Sustainable Chem. Eng., 2020, 8(14): 5576.

doi: 10.1021/acssuschemeng.9b07471
[40]
Zhang K, Zong L B, Jia X F. Adv. Synth. Catal., 2021, 363(5): 1335.

doi: 10.1002/adsc.202001336
[41]
Cui X J, Zhang Y, Deng Y Q, Shi F. Chem. Commun., 2014, 50(2): 189.

doi: 10.1039/C3CC46427J
[42]
Zhang Y J, Wang H L, Yuan H K, Shi F. ACS Sustainable Chem. Eng., 2017, 5(7): 5758.

doi: 10.1021/acssuschemeng.7b00363
[43]
Dai X C, Wang B, Wang A Q, Shi F. Chin. J. Catal., 2019, 40(8): 1141.

doi: 10.1016/S1872-2067(19)63397-8
[44]
Bi Q Y, Lin J D, Liu Y M, Xie S H, He H Y, Cao Y. Chem. Commun., 2014, 50(65): 9138.

doi: 10.1039/C4CC02973A
[45]
Kumar S, Kumar P, Deb A, Maiti D, Jain S L. Carbon, 2016, 100: 632.

doi: 10.1016/j.carbon.2016.01.018
[46]
Zhang Y, Wang J Q, Zhu H B, Tu T. Chem. Asian J., 2018, 13(20): 3018.

doi: 10.1002/asia.201800953
[47]
Shen Y J, Zheng Q S, Chen Z N, Wen D H, Clark J H, Xu X, Tu T. Angew. Chem. Int. Ed., 2021, 60(8): 4125.

doi: 10.1002/anie.202011260
[48]
Schaub T, Paciello R, Pazicky M, Fachinetti G, Preti D. US 2013102807, 2013.
[49]
Mu J C, Liu J F, Ran Z Z, Arif M, Gao M, Wang C, Ji S F. Ind. Eng. Chem. Res., 2020, 59(14): 6543.

doi: 10.1021/acs.iecr.0c00242
[50]
Liu J L, Guo C K, Zhang Z F, Jiang T, Liu H Z, Song J L, Fan H L, Han B X. Chem. Commun., 2010, 46(31): 5770.

doi: 10.1039/c0cc00751j
[51]
Kumar S, Jain S L. RSC Adv., 2014, 4(109): 64277.

doi: 10.1039/C4RA12151A
[52]
Rahele Z, Seyed Mahdi S, Mahboobeh Z, Seyed Mohsen S. Catal. Lett., 2018, 148(8): 2487.

doi: 10.1007/s10562-018-2475-4
[53]
Wu Y J, Wang T, Wang H L, Wang X Z, Dai X C, Shi F. Nat. Commun., 2019, 10: 2599.

doi: 10.1038/s41467-019-10633-y
[54]
Yang J, Wang L J, Sun A L, Zhiani R. Catal. Lett., 2021, 151(2): 573.

doi: 10.1007/s10562-020-03307-8
[55]
Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T. Angew. Chem. Int. Ed., 2012, 51(1): 187.

doi: 10.1002/anie.201105516
[56]
Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. J. Am. Chem. Soc., 2012, 134(6): 2934.

doi: 10.1021/ja211527q
[57]
Cantat T, Gomes C, Jacquent O. US 2014018567, 2014.
[58]
Motokura K, Takahashi N, Kashiwame D, Yamaguchi S, Miyaji A, Baba T. Catal. Sci. Technol., 2013, 3(9): 2392.

doi: 10.1039/c3cy00375b
[59]
Fang C, Lu C L, Liu M H, Zhu Y L, Fu Y, Lin B L. ACS Catal., 2016, 6(11): 7876.

doi: 10.1021/acscatal.6b01856
[60]
Nale D B, Bhanage B M. Synlett, 2016, 27(09): 1413.

doi: 10.1055/s-0035-1561571
[61]
Saptal V B, Bhanage B M. ChemSusChem, 2016, 9(15): 1980.

doi: 10.1002/cssc.201600467
[62]
Ghosh S, Ghosh A, Biswas S, Sengupta M, Roy D, Islam S M. ChemistrySelect, 2019, 4(13): 3961.

doi: 10.1002/slct.201900138
[63]
Wang P B, He Q, Zhang H, Sun Q D, Cheng Y J, Gan T, He X H, Ji H B. Catal. Commun., 2021, 149: 106195.

doi: 10.1016/j.catcom.2020.106195
[64]
Nale D B, Rath D, Parida K M, Gajengi A, Bhanage B M. Catal. Sci. Technol., 2016, 6(13): 4872.

doi: 10.1039/C5CY02277K
[65]
Saptal V B, Sasaki T, Bhanage B M. ChemCatChem, 2018, 10(12): 2593.

doi: 10.1002/cctc.201800185
[66]
Saptal V B, Juneja G, Bhanage B M. New J. Chem., 2018, 42(19): 15847.

doi: 10.1039/C8NJ02816H
[67]
Kobayashi K, Kikuchi T, Kitagawa S, Tanaka K. Angew. Chem. Int. Ed., 2014, 53(44): 11813.

doi: 10.1002/anie.201406553 pmid: 25199795
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[6] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[7] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[8] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[9] Hong Su, Yejun Han. Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis [J]. Progress in Chemistry, 2019, 31(2/3): 433-441.
[10] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[11] Liying Liu, He Gong, Zhe Wang, Gang Li, Tao Du. Application of Pressure Swing Adsorption Technology to Capture CO2 in Highly Humid Flue Gas [J]. Progress in Chemistry, 2018, 30(6): 872-878.
[12] Shuang Guo, Zhiqiang Chen, Xiaofei Ren, Yongmin Zhang*, Xuefeng Liu*. CO2-Responsive Emulsion Systems [J]. Progress in Chemistry, 2017, 29(7): 695-705.
[13] Yongming Zhu, Yunpeng Jiang, Huili Hu*. Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage [J]. Progress in Chemistry, 2017, 29(11): 1422-1434.
[14] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
[15] Fang Mengxiang, Zhou Xuping, Wang Tao, Luo Zhongyang. Solvent Development in CO2 Chemical Absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814.