中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1482-1495 DOI: 10.7536/PC201104 Previous Articles   Next Articles

• Review •

Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection

Dan Zhao1,2, Changtao Wang1,2(), Lei Su1,3(), Xueji Zhang3   

  1. 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
    2 College of Chemistry and Materials Engineering, Beijing Technology & Business University,Beijing 100048, China
    3 School of Biomedical Engineering, Health Science Center, Shenzhen University,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: Changtao Wang, Lei Su
  • Supported by:
    National Natural Science Foundation of China(31971382)
Richhtml ( 85 ) PDF ( 1381 ) Cited
Export

EndNote

Ris

BibTeX

Pathogenic bacteria contamination brings severe safety problems to human health. Fast, accurate and sensitive detection of pathogenic bacteria is an important way to reduce pathogenic bacteria pollution. Traditional methods for detecting pathogenic bacteria have the disadvantages of being time-consuming and laborious. Fluorescent nanomaterials have the advantages of high fluorescence intensity, good stability and excellent biocompatibility, which provide a new research approach for the application of fluorescent nanomaterials as biosensors for pathogenic bacteria detection. This review summarizes the applications of various fluorescent nanomaterials in pathogenic bacteria detection in recent years, including semiconductor quantum dots, fluorescent metal nanoclusters, carbon nanomaterials, upconversion nanoparticles and fluorescent silicon nanoparticles. It mainly focuses on the analysis and comparison of the optical properties and detection mechanisms of different types of fluorescent nanomaterials. The bioconjugation of nanomaterials plays an important role in the whole process of pathogenic bacteria detection, which is closely related to the detection specificity. This article introduces the characteristics of different recognition elements, including antibodies, aptamers, phages and antibiotics. The conjunction methods between different recognition elements and nanomaterials are also discussed. Finally, the advantages and limitations of different nanomaterials for detecting pathogenic bacteria are reviewed and the development prospects in practical application and research priorities in the future are addressed.

Contents

1 Introduction

2 Application of fluorescent nanomaterials in detection of pathogenic bacteria

2.1 Quantum dots

2.2 Metal nanoclusters

2.3 Fluorescent carbon nanomaterials

2.4 Up-conversion nanomaterials

2.5 Fluorescent silica nanomaterials

3 Recognition methods

3.1 Specific recognition

3.2 Non-specific recognition

4 Conclusion and outlook

Fig.1 The schematic illustration of overall strategy using the fluorescence based sandwich immunoassay for enumeration of E. coli[13]. Copyright 2016, Elsevier
Fig.2 Schematic of the ultrasensitive fluorescent biosensor using double-layer channel with magnetic nanoparticle and quantum dots for rapid detection of E.coli O157:H7[14]. Copyright 2018, Elsevier
Fig.3 Schematic showing steps for specific detection of Listeria monocytogenes using leucocin A (Leu A) and gold nanoclusters[24]. Copyright 2018, American Chemical Society
Fig.4 Schematic illustration of the working principle of the On-Off-On AuNCs-based fluorescent probe for rapid E. coli detection[25]. Copyright 2018, American Chemical Society
Fig.5 Schematic representation of DNA-templated fluorescent silver nanoclusters based sensing system for pathogenic bacterial detection integrated with MNP-DNAzyme-AChE complex[28]. Copyright 2018, Elsevier. (A) The MDA complex could recognize the target molecules lysed by bacteria and be cleaved to release AChE. (B) The AChE could catalyze the hydrolysis of ATCh to produce TCh and enhance the fluorescence of DNA-AgNCs
Fig.6 Illustration of the detection of pathogen bacteria with the proposed method and conventional method[35]. Copyright 2018, American Chemical Society
Fig.7 Schematic illustration of pattern recognition of bacteria based on three different receptors-functionalized CDs. (A) Fluorescence intensity of CDs was significantly reduced due to the binding with bacteria. (B) Fluorescence pattern generated from the different responses of the CDs toward bacteria[37]. Copyright 2019, Elsevier
Fig.8 Schematic illustration of the dual fluorescence resonance energy transfer from QDs-apts to CNPs for the simultaneous detection of pathogenic bacteria[38]. Copyright 2014, Springer
Fig.9 Schematic presentation of the fabrication procedure of the biosensor and the detection process[41]. Copyright 2017, American Chemical Society
Fig.10 Schematic illustration of the Multiplexed luminescence bioassay based on aptamers-modified UNCPS for the simultaneous detection of various pathogenic bacteria[46]. Copyright 2017, American Chemical Society
Fig.11 Schematic illustration of upconversion nanoparticles based FRET aptasensor for rapid and ultrasensitive bacteria detection[48]. Copyright 2017, Elsevier. (A) The amino group of the complementary DNA of aptamer and the carboxyl group of UCNPs were attached by a condensation reaction; (B) The thiol-modified DNA aptamer binds to AuNPs through the Au—S chemistry; (C) The AuNPs aptamers and complementary chain of UCNPs hybridized and the FRET was established between a donor-acceptor pair and the fluorescence of UCNPs is quenched; (D) When the target bacteria appeared in the system, the DNA aptamer binded to the bacteria, so that AuNPs and UCNPs were dissociated and the fluorescence is restored
Fig.12 Schematic representation of stepwise determination of S.aureus by specific opening of the pores of fluorescein loaded nanokeepers[57]. Copyright 2016, Elsevier
[1]
Chen J H, Andler S M, Goddard J M, Nugen S R, Rotello V M. Chem. Soc. Rev., 2017, 46(5): 1272.

doi: 10.1039/C6CS00313C
[2]
Stephen Inbaraj B, Chen B H. J. Food Drug Anal., 2016, 24(1): 15.

doi: S1021-9498(15)00078-2 pmid: 28911398
[3]
Turner A P F. Chem. Soc. Rev., 2013, 42(8): 3184.

doi: 10.1039/c3cs35528d
[4]
Majdinasab M, Hayat A, Marty J L. Trac Trends Anal. Chem., 2018, 107: 60.

doi: 10.1016/j.trac.2018.07.016
[5]
Sai-Anand G, Sivanesan A, Benzigar M R, Singh G, Gopalan A I, Baskar A V, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Bull. Chem. Soc. Jpn., 2019, 92(1): 216.

doi: 10.1246/bcsj.20180280
[6]
Chen L Y, Hwang E, Zhang J. Sensors, 2018, 18(5): 1440.

doi: 10.3390/s18051440
[7]
Walekar L, Dutta T, Kumar P, Ok Y S, Pawar S, Deep A, Kim K H. Trac Trends Anal. Chem., 2017, 97: 458.

doi: 10.1016/j.trac.2017.10.012
[8]
He X P, Hu X L, James T D, Yoon J, Tian H. Chem. Soc. Rev., 2017, 46(22): 6687.

doi: 10.1039/C6CS00778C
[9]
Mao S, Chang J B, Zhou G H, Chen J H. Small, 2015, 11(40): 5336.

doi: 10.1002/smll.v11.40
[10]
Zhang L J, Xia L, Xie H Y, Zhang Z L, Pang D W. Anal. Chem., 2019, 91(1): 532.

doi: 10.1021/acs.analchem.8b04721
[11]
Xu L Z. Doctoral Dissertation of Zhejiang University, 2016.
(徐李舟. 浙江大学博士论文, 2016)
[12]
Sutarlie L, Ow S Y, Su X D. Biotechnol. J., 2017, 12(4): 1500459.
[13]
Dogan Ü, Kasap E, Cetin D, Suludere Z, Boyaci I H, Türkyılmaz C, Ertas N, Tamer U. Sens. Actuat. B: Chem., 2016, 233: 369.

doi: 10.1016/j.snb.2016.04.081
[14]
Xue L, Zheng L Y, Zhang H L, Jin X, Lin J H. Sens. Actuat. B: Chem., 2018, 265: 318.

doi: 10.1016/j.snb.2018.03.014
[15]
Kim G, Moon J H, Moh C Y, Lim J G. Biosens. Bioelectron., 2015, 67: 243.

doi: 10.1016/j.bios.2014.08.023
[16]
Ebrahim S, Reda M, Hussien A, Zayed D. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2015, 150: 212.

doi: 10.1016/j.saa.2015.05.042
[17]
Yu J L, Su J, Zhang J, Wei X T, Guo A L. RSC Adv., 2017, 7(29): 17819.

doi: 10.1039/C7RA00821J
[18]
Wang B B, Wang Q, Cai Z X, Ma M H. LWT Food Sci. Technol., 2015, 61(2): 368.

doi: 10.1016/j.lwt.2014.12.016
[19]
Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. Biosens. Bioelectron., 2015, 74: 562.

doi: 10.1016/j.bios.2015.06.076 pmid: 26188679
[20]
Danesh N M, Bostan H B, Abnous K, Ramezani M, Youssefi K, Taghdisi S M, Karimi G. Trac Trends Anal. Chem., 2018, 99: 117.

doi: 10.1016/j.trac.2017.12.009
[21]
Jin R C, Zeng C J, Zhou M, Chen Y X. Chem. Rev., 2016, 116(18): 10346.

doi: 10.1021/acs.chemrev.5b00703
[22]
Li Y L. Master's Dissertation of Hunan University Master's Dissertation of Hunan University, 2016.
(李艳乐. 湖南大学硕士论文, 2016)
[23]
Cheng C, Yang L, Zhong M, Deng W F, Tan Y M, Xie Q J, Yao S Z. Anal., 2018, 143(17): 4067.

doi: 10.1039/C8AN00987B
[24]
Hossein-Nejad-ariani H, Kim T, Kaur K. ACS Appl. Nano Mater., 2018, 1(7): 3389.

doi: 10.1021/acsanm.8b00600
[25]
Yan R, Shou Z X, Chen J, Wu H, Zhao Y, Qiu L, Jiang P J, Mou X Z, Wang J H, Li Y Q. ACS Sustainable Chem. Eng., 2018, 6(4): 4504.

doi: 10.1021/acssuschemeng.8b00112
[26]
Hodgkinson V, Petris M J. J. Biol. Chem., 2012, 287(17): 13549.

doi: 10.1074/jbc.R111.316406 pmid: 22389498
[27]
Zheng L B, Ye X Y, Qi P, Zhang D, Sun Y. Microchimica Acta, 2019, 186(6): 382.

doi: 10.1007/s00604-019-3427-4
[28]
Zheng L B, Qi P, Zhang D. Sens. Actuat. B: Chem., 2018, 276: 42.

doi: 10.1016/j.snb.2018.08.078
[29]
Du Y, Guo S J. Nanoscale, 2015,8.
[30]
Cui F C, Ye Y L, Ping J F, Sun X L. Biosens. Bioelectron., 2020, 156: 112085.

doi: 10.1016/j.bios.2020.112085
[31]
Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Small, 2015, 11(14): 1620.

doi: 10.1002/smll.201402648 pmid: 25521301
[32]
Chung S, Revia R A, Zhang M Q. Adv. Mater., 2021, 33(22): 1904362.

doi: 10.1002/adma.v33.22
[33]
Shi X B, Wei W, Fu Z D, Gao W L, Zhang C Y, Zhao Q, Deng F M, Lu X Y. Talanta, 2019, 194: 809.

doi: 10.1016/j.talanta.2018.11.005
[34]
Nandi S, Ritenberg M, Jelinek R. Anal., 2015, 140(12): 4232.

doi: 10.1039/C5AN00471C
[35]
Yang L, Deng W F, Cheng C, Tan Y M, Xie Q J, Yao S Z. ACS Appl. Mater. Interfaces, 2018, 10(4): 3441.

doi: 10.1021/acsami.7b18714
[36]
Bhaisare M L, Gedda G, Khan M S, Wu H F. Anal. Chimica Acta, 2016, 920: 63.

doi: 10.1016/j.aca.2016.02.025
[37]
Zheng L B, Qi P, Zhang D. Sens. Actuat. B: Chem., 2019, 286: 206.

doi: 10.1016/j.snb.2019.01.147
[38]
Duan N, Wu S J, Dai S L, Miao T T, Chen J, Wang Z P. Microchimica Acta, 2015, 182(5/6): 917.

doi: 10.1007/s00604-014-1406-3
[39]
Safardoust-Hojaghan H, Salavati-Niasari M, Amiri O, Hassanpour M. J. Mol. Liq., 2017, 241: 1114.

doi: 10.1016/j.molliq.2017.06.106
[40]
Dong Y Q, Shao J W, Chen C Q, Li H, Wang R X, Chi Y W, Lin X M, Chen G N. Carbon, 2012, 50(12): 4738.

doi: 10.1016/j.carbon.2012.06.002
[41]
Chen S F, Chen X Q, Zhang L J, Gao J J, Ma Q. ACS Appl. Mater. Interfaces, 2017, 9(6): 5430.

doi: 10.1021/acsami.6b12455
[42]
Tajik S, Dourandish Z, Zhang K Q, Beitollahi H, Le Q V, Jang H W, Shokouhimehr M. RSC Adv., 2020, 10(26): 15406.

doi: 10.1039/D0RA00799D
[43]
Feng A L, You M L, Tian L M, Singamaneni S, Liu M, Duan Z F, Lu T J, Xu F, Lin M. Sci. Rep., 2015, 5(1): 7779.

doi: 10.1038/srep07779
[44]
DaCosta M V, Doughan S, Han Y, Krull U J. Anal. Chimica Acta, 2014, 832: 1.

doi: 10.1016/j.aca.2014.04.030
[45]
Liang G F, Wang H J, Shi H, Wang H T, Zhu M X, Jing A H, Li J H, Li G D. J. Nanobiotechnology, 2020, 18(1): 154.

doi: 10.1186/s12951-020-00713-3
[46]
Wu S J, Duan N, Shi Z, Fang C C, Wang Z P. Anal. Chem., 2014, 86(6): 3100.

doi: 10.1021/ac404205c
[47]
Kurt H, Yüce M, Hussain B, Budak H. Biosens. Bioelectron., 2016, 81: 280.

doi: 10.1016/j.bios.2016.03.005
[48]
Jin B R, Wang S R, Lin M, Jin Y, Zhang S J, Cui X Y, Gong Y, Li A, Xu F, Lu T J. Biosens. Bioelectron., 2017, 90: 525.

doi: 10.1016/j.bios.2016.10.029
[49]
Han Y X, Chen Y L, Liu J J, Niu X Y, Ma Y X, Ma S D, Chen X G. Sens. Actuat. B: Chem., 2018, 263: 508.

doi: 10.1016/j.snb.2018.02.163
[50]
Yang S B, Li Y S. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(3):e1603.
[51]
Ma S D, Chen Y L, Feng J, Liu J J, Zuo X W, Chen X G. Anal. Chem., 2016, 88(21): 10474.

doi: 10.1021/acs.analchem.6b02448
[52]
Ruedas-Rama M J, Walters J D, Orte A, Hall E A H. Anal. Chimica Acta, 2012, 751: 1.

doi: 10.1016/j.aca.2012.09.025
[53]
Zhang X D, Chen X K, Kai S Q, Wang H Y, Yang J J, Wu F G, Chen Z. Anal. Chem., 2015, 87(6): 3360.

doi: 10.1021/ac504520g
[54]
Wu C L, Hong J Q, Guo X Q, Huang C B, Lai J P, Zheng J S, Chen J B, Mu X, Zhao Y B. Chem. Commun., 2008(6): 750.
[55]
Bhardwaj N, Bhardwaj S K, Nayak M K, Mehta J, Kim K H, Deep A. Trac Trends Anal. Chem., 2017, 97: 120.

doi: 10.1016/j.trac.2017.09.010
[56]
Zhao X, Bagwe R P, Tan W. Adv. Mater., 2004, 16(2): 173.

doi: 10.1002/(ISSN)1521-4095
[57]
Borsa B A, Tuna B G, Hernandez F J, Hernandez L I, Bayramoglu G, Arica M Y, Ozalp V C. Biosens. Bioelectron., 2016, 86: 27.

doi: 10.1016/j.bios.2016.06.023
[58]
Wang Q Y, Kang Y J. Nanoscale Res. Lett., 2016, 11(1): 150.

doi: 10.1186/s11671-016-1359-z
[59]
Chen Z Z, Cai L, Chen M Y, Lin Y, Pang D W, Tang H W. Biosens. Bioelectron., 2015, 66: 95.

doi: 10.1016/j.bios.2014.11.007
[60]
Na M, Zhang S P, Liu J J, Ma S D, Han Y X, Wang Y, He Y X, Chen H L, Chen X G. J. Hazard. Mater., 2020, 386: 121956.

doi: 10.1016/j.jhazmat.2019.121956
[61]
Thévenot D R, Toth K, Durst R A, Wilson G S. Biosens. Bioelectron., 2001, 16(1/2): 121.

doi: 10.1016/S0956-5663(01)00115-4
[62]
Silva N F D, Magalhães J M C S, Freire C, Delerue-Matos C. Biosens. Bioelectron., 2018, 99: 667.

doi: 10.1016/j.bios.2017.08.019
[63]
Biju V. Chem. Soc. Rev., 2014, 43(3): 744.

doi: 10.1039/C3CS60273G
[64]
Tao X Q, Wang X, Liu B W, Liu J W. Biosens. Bioelectron., 2020, 168: 112537.

doi: 10.1016/j.bios.2020.112537
[65]
Tombelli S, Minunni M, Mascini M. Biomol. Eng., 2007, 24(2): 191.

pmid: 17434340
[66]
Labuda J, Brett A M O, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J. Pure Appl. Chem., 2010, 82(5): 1161.

doi: 10.1351/PAC-REP-09-08-16
[67]
Tombelli S, Minunni M, Mascini M. Biosens. Bioelectron., 2005, 20(12): 2424.

pmid: 15854817
[68]
Lim Y C, Kouzani A Z, Duan W. J.Biomed. Nanotechnol., 2010, 6(2): 93.
[69]
Kim Y S, Chung J, Song M Y, Jurng J, Kim B C. Biosens. Bioelectron., 2014, 54: 195.

doi: 10.1016/j.bios.2013.11.003
[70]
Zhang X Y, Khan I M, Ji H, Wang Z P, Tian H L, Cao W B, Mi W Y. Polymers, 2020, 12(1): 152.

doi: 10.3390/polym12010152
[71]
Duan N, Wu S J, Zhu C Q, Ma X Y, Wang Z P, Yu Y, Jiang Y. Anal. Chimica Acta, 2012, 723: 1.

doi: 10.1016/j.aca.2012.02.011
[72]
Duan N, Wu S J, Yu Y, Ma X Y, Xia Y, Chen X J, Huang Y K, Wang Z P. Anal. Chimica Acta, 2013, 804: 151.

doi: 10.1016/j.aca.2013.09.047
[73]
Yi J C, Xiao W, Li G Y, Wu P, He Y Y, Chen C M, He Y F, Ding P, Kai T H. Appl. Microbiol. Biotechnol., 2020, 104(23): 9877.

doi: 10.1007/s00253-020-10940-1
[74]
Farooq U, Yang Q L, Ullah M W, Wang S Q. Biosens. Bioelectron., 2018, 118: 204.

doi: S0956-5663(18)30569-4 pmid: 30081260
[75]
van der Merwe R G, van Helden P D, Warren R M, Sampson S L,van Pittius N C G. Anal., 2014, 139(11): 2617.

doi: 10.1039/C4AN00208C
[76]
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Drug Discov. Today, 2018, 23(2): 448.

doi: S1359-6446(17)30297-0 pmid: 29158194
[77]
Edgar R, McKinstry M, Hwang J, Oppenheim A B, Fekete R A, Giulian G, Merril C, Nagashima K, Adhya S. PNAS, 2006, 103(13): 4841.

doi: 10.1073/pnas.0601211103
[78]
Chen J H, Duncan B, Wang Z Y, Wang L S, Rotello V M, Nugen S R. Nanoscale, 2015, 7(39): 16230.

doi: 10.1039/C5NR03779D
[79]
Oda M, Morita M, Unno H, Tanji Y. Appl. Environ. Microbiol., 2004, 70(1): 527.

doi: 10.1128/AEM.70.1.527-534.2004
[80]
Meile S, Sarbach A, Du J M, Schuppler M, Saez C, Loessner M J, Kilcher S. Appl. Environ. Microbiol., 2020, 86(11): e00442. DOI: 10.1128/aem.00442-20

doi: 10.1128/aem.00442-20
[81]
Tokonami S, Iida T. Anal. Chimica Acta, 2017, 988: 1.

doi: 10.1016/j.aca.2017.07.034
[82]
Li Z M, Ma J Y, Ruan J, Zhuang X. Nanoscale Res. Lett., 2019, 14(1): 195.

doi: 10.1186/s11671-019-3005-z
[83]
Li J, Wu L J, Guo S S, Fu H E, Chen G N, Yang H H. Nanoscale, 2013, 5(2): 619.

doi: 10.1039/C2NR32704J
[84]
Chen J H, Jiang Z W, Ackerman J D, Yazdani M, Hou S, Nugen S R, Rotello V M. Anal., 2015, 140(15): 4991.

doi: 10.1039/C5AN00637F
[85]
Raj V, Vijayan A N, Joseph K. Sens. Bio Sens. Res., 2015, 5: 33.
[86]
Zhang C Y, Wang C W, Xiao R, Tang L, Huang J, Wu D, Liu S W, Wang Y, Zhang D, Wang S Q, Chen X M. J. Mater. Chem. B, 2018, 6(22): 3751.

doi: 10.1039/C8TB00504D
[87]
Zheng L B, Wan Y, Yu L M, Zhang D. Talanta, 2016, 146: 299.

doi: 10.1016/j.talanta.2015.08.056
[88]
You Q, Zhang X D, Wu F G, Chen Y. Sens. Actuat. B: Chem., 2019, 281: 408.

doi: 10.1016/j.snb.2018.10.103
[89]
Zhong D, Zhuo Y, Feng Y J, Yang X M. Biosens. Bioelectron., 2015, 74:546.

doi: 10.1016/j.bios.2015.07.015 pmid: 26188677
[90]
Liu J L, Lu L L, Xu S Y, Wang L Y. Talanta, 2015, 134: 54.

doi: 10.1016/j.talanta.2014.10.058
[91]
Chandra S, Mahto T K, Chowdhuri A R, Das B, Sahu S K. Sens. Actuat. B: Chem., 2017, 245: 835.

doi: 10.1016/j.snb.2017.02.017
[92]
Chandra S, Chowdhuri A R, Mahto T K, Samui A, Sahu S K. RSC Adv., 2016, 6(76): 72471.

doi: 10.1039/C6RA15778E
[93]
Cooper R M, Leslie D C, Domansky K, Jain A, Yung C, Cho M, Workman S, Super M, Ingber D E. Lab Chip, 2014, 14(1): 182.

doi: 10.1039/c3lc50935d pmid: 24169822
[94]
El-Boubbou K, Gruden C, Huang X F. J. Am. Chem. Soc., 2007, 129(44): 13392.

doi: 10.1021/ja076086e
[95]
Wolfbeis O S. Chem. Soc. Rev., 2015, 44(14): 4743.

doi: 10.1039/c4cs00392f pmid: 25620543
[96]
Muniandy S, Teh S J, Thong K L, Thiha A, Dinshaw I J, Lai C W, Ibrahim F, Leo B F. Crit. Rev. Anal. Chem., 2019, 49(6): 510.

doi: 10.1080/10408347.2018.1561243 pmid: 30648398
[1] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[2] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[3] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[4] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[5] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[6] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[7] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[8] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[9] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[10] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[11] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[12] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[13] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[14] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[15] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.