中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1996-2011 DOI: 10.7536/PC210818 Previous Articles   Next Articles

• Review •

Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices

Lan Yu, Peiran Xue, Huanhuan Li(), Ye Tao, Runfeng Chen(), Wei Huang   

  1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications,Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: iamhhli@njupt.edu.cn(Huanhuan Li);iamrfchen@njupt.edu.cn(Runfeng Chen)
  • Supported by:
    National Natural Science Foundation of China(62075102); National Natural Science Foundation of China(22075149); National Natural Science Foundation of China(21604039); National Natural Science Foundation of China(61875090); National Natural Science Foundation of China(91833306); National Natural Science Foundation of China(21704042)
Richhtml ( 48 ) PDF ( 920 ) Cited
Export

EndNote

Ris

BibTeX

Thermally activated delayed fluorescence materials with circularly polarized luminescence characteristics have received extensive attention due to their application prospects in data storage, bio-imaging, and 3D display. The circularly polarized thermally activated delayed fluorescence (CP-TADF) devices based on these materials exhibit excellent circularly polarized electroluminescence performance. In this paper, starting from the molecular design strategies and luminescence mechanism of CP-TADF molecules, we comprehensively summarize their design strategies according to the different construction methods, and the chemical structures, photoelectric properties, as well as applications in electroluminescent devices are systematically reviewed. Finally, we discuss the current problems of CP-TADF materials, and our outlook on their future development prospects and challenges is also given.

Contents

1 Introduction

2 Basic luminescence parameters of circularly polarized light

3 Molecular design of CP-TADF materials and their applications in electroluminescent devices

3.1 Molecular design strategies

3.2 Intrinsically chiral CP-TADF materials

3.3 Chiral perturbation

4 Conclusion and outlook

Fig. 1 The photoluminescence mechanism of CP-TADF materials
Fig. 2 Design strategies for CP-TADF materials
Fig. 3 CP-TADF materials involving point chirality[38⇓~40]
Fig. 4 Device performance of CP-OLEDs based on TRZ-MelAc and NID-MeIAc. (a) device structure, energy level diagram and the molecular structures of the materials employed in the devices; (b) electroluminescence spectra; external quantum efficiency characteristics for optimized devices based on (c) (R)-TRZ-MeIAc and (d) (S)-NID-MeIAc[40]
Fig. 5 CP-TADF material involving planar chirality[41⇓~43]
Fig. 6 Photophysical performance of Rp/Sp-CzpPhTrz. (a) CD spectra; (b) CPL spectra[42]
Fig. 7 CP-TADF material with helical chirality[44⇓~46]
Fig. 8 Device performance of CP-OLED devices based on (P)-HAI and (M)-HAI. (a) CD and (b) CPL spectra of (P)-HAI and (M)-HAI in toluene; (c) EQE-luminance characteristics; (d) Current density- voltage-luminance characteristics[45]
Fig. 9 Binaphthol based chiral CP-TADF material[17,47⇓⇓⇓~51]
Fig. 11 CP-TADF materials based on octahydrobinaphthol[10,52⇓~54]
Fig. 12 Device performance of CP-OLED devices based on R/S-OBN-Cz. (a) EQE-brightness curve; (b) current efficiency-brightness curve and current density-brightness-voltage curve; (c) electroluminescence circular polarization spectrum; (d) gEL versus wavelength curve[10]
Fig. 13 CP-TADF materials based on biphenyl[55⇓~57]
Fig. 14 Device performance of CP-TADF materials based on R/S-BPPOACz. (a) Electroluminescence spectrum; (b) Current density-brightness-voltage curve; (c) EQE-brightness curve; (d) Current efficiency and luminescence brightness curve[56]
Fig. 15 CP-TADF materials based on 1.2-diaminocyclohexane as chiral unit and device performance of CP-OLED. (a) (S,S)-CAI-Cz and (R,R)-CAI-Cz molecular structures; (b) CD spectra of (S,S)-CAI-Cz and (R,R)-CAI-Cz and CPL spectrum; (c) EQE-luminescence brightness curve; (d) (R,R)-CAI-DMAC and (R,R)-CAI-DMAC molecular structure[58,59]
Fig. 16 CP-TADF polymers materials based on alanine as chiral unit. (a) Molecular structures of P5 (x=0.05) and P1 (x=0.1); (b) CPL spectra of P5 and P10 molecules[61]
[1]
Yang Z Y, Mao Z, Xie Z L, Zhang Y, Liu S W, Zhao J, Xu J R, Chi Z G, Aldred M P. Chem. Soc. Rev., 2017, 46(3): 915.

doi: 10.1039/C6CS00368K
[2]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26(47): 7931.

doi: 10.1002/adma.201402532
[3]
Xu S, Yang Q Q, Wan Y F, Chen R F, Wang S, Si Y B, Yang B C, Liu D, Zheng C, Huang W. J. Mater. Chem. C, 2019, 7(31): 9523.

doi: 10.1039/C9TC03152A
[4]
Jin J B, Wang W J, Xue P R, Yang Q Q, Jiang H, Tao Y, Zheng C, Xie G H, Huang W, Chen R F. J. Mater. Chem. C, 2021, 9(7): 2291.

doi: 10.1039/D0TC05624C
[5]
Wong M Y, Zysman-Colman E. Adv. Mater., 2017, 29(22): 1605444.

doi: 10.1002/adma.201605444
[6]
Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R. Nat. Rev. Mater., 2018, 3(4): 18020.

doi: 10.1038/natrevmats.2018.20
[7]
Madayanad Suresh S, Hall D, Beljonne D, Olivier Y, Zysman-Colman E. Adv. Funct. Mater., 2020, 30(33): 1908677.

doi: 10.1002/adfm.201908677
[8]
Wu C, Liu W Q, Li K, Cheng G, Xiong J F, Teng T, Che C M, Yang C L. Angew. Chem. Int. Ed., 2021, 60(8): 3994.

doi: 10.1002/anie.202013051
[9]
Gong X, Lu C H, Lee W K, Li P, Huang Y H, Chen Z X, Zhan L S, Wu C C, Gong S L, Yang C L. Chem. Eng. J., 2021, 405: 126663.

doi: 10.1016/j.cej.2020.126663
[10]
Wu Z G, Han H B, Yan Z P, Luo X F, Wang Y, Zheng Y X, Zuo J L, Pan Y. Adv. Mater., 2019, 31(28): 1900524.

doi: 10.1002/adma.201900524
[11]
Li W, Li M K, Li W Q, Xu Z D, Gan L, Liu K K, Zheng N, Ning C Y, Chen D C, Wu Y C, Su S J. ACS Appl. Mater. Interfaces, 2021, 13(4): 5302.

doi: 10.1021/acsami.0c19302
[12]
Chen J X, Wang K, Xiao Y F, Cao C, Tan J H, Wang H, Fan X C, Yu J, Geng F X, Zhang X H, Lee C S. Adv. Funct. Mater., 2021, 31(31): 2101647.

doi: 10.1002/adfm.202101647
[13]
JimÉnez J, Cerdán L, Moreno F, Maroto B L, García-Moreno I, Lunkley J L, Muller G, de la Moya S. J. Phys. Chem. C, 2017, 121(9): 5287.

doi: 10.1021/acs.jpcc.7b00654
[14]
Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T. Appl. Phys. Lett., 2011, 98(16): 162508.

doi: 10.1063/1.3582917
[15]
Sang Y T, Han J L, Zhao T H, Duan P F, Liu M H. Adv. Mater., 2020, 32(41): 1900110.

doi: 10.1002/adma.201900110
[16]
Bai X, Sun Y M, Jiang Y Q, Zhao G J, Jiang J, Yuan C H, Liu M H. Angew. Chem. Int. Ed., 2021, 60(7): 3745.

doi: 10.1002/anie.202013550
[17]
Song F, Xu Z, Zhang Q, Zhao Z, Zhang H, Zhao W, Qiu Z, Qi C, Zhang H, Sung H H Y. Adv. Funct. Mater., 2018, 28: 1800051.

doi: 10.1002/adfm.201800051
[18]
Huo S W, Duan P F, Jiao T F, Peng Q M, Liu M H. Angew. Chem. Int. Ed., 2017, 56(40): 12174.

doi: 10.1002/anie.201706308
[19]
Orsini S, Zinna F, Biver T, di Bari L, Bonaduce I. RSC Adv., 2016, 6(98): 96176.

doi: 10.1039/C6RA14795J
[20]
Nina P M H, W F J., Ben de L, Feringa B. L. Science, 1996, 273: 1686.

doi: 10.1126/science.273.5282.1686
[21]
Nikolova L, Todorov T, Ivanov M, Andruzzi F, Hvilsted S, Ramanujam P S. Appl. Opt., 1996, 35(20): 3835.

doi: 10.1364/AO.35.003835
[22]
Shao H R, Y H., Li W, Ma H. Appl. Opt., 2006, 45: 4491.

doi: 10.1364/AO.45.004491
[23]
Schadt M, S M. Opt. Lett., 1996, 21: 1948.

doi: 10.1364/OL.21.001948
[24]
Peeters E, Christiaans M P T, Janssen R A J, SChoo H F M, Dekkers H P J M, Meijer E W. J. Am. Chem. Soc., 1997, 119: 9909.

doi: 10.1021/ja971912c
[25]
Wan L, Wade J, Salerno F, Arteaga O, Laidlaw B, Wang X H, Penfold T, Fuchter M J, Campbell A J. ACS Nano, 2019, 13(7): 8099.

doi: 10.1021/acsnano.9b02940 pmid: 31241299
[26]
Zinna F, Pasini M, Galeotti F, Botta C, di Bari L, Giovanella U. Adv. Funct. Mater., 2017, 27(1): 1603719.

doi: 10.1002/adfm.201603719
[27]
Zhang X Y, Zhang Y, Zhang H P, Quan Y W, Li Y Z, Cheng Y X, Ye S H. Org. Lett., 2019, 21(2): 439.

doi: 10.1021/acs.orglett.8b03620
[28]
Zhang D W, Li M, Chen C F. Chem. Soc. Rev., 2020, 49(5): 1331.

doi: 10.1039/C9CS00680J
[29]
Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F. Nano Lett., 2012, 12(12): 6328.

doi: 10.1021/nl303445u
[30]
Han J M, Guo S, Lu H, Liu S J, Zhao Q, Huang W. Adv. Opt. Mater., 2018, 6(17): 1800538.

doi: 10.1002/adom.201800538
[31]
Harada T, Hayakawa H, Watanabe M, Takamoto M. Rev. Sci. Instrum., 2016, 87(7): 075102.

doi: 10.1063/1.4954725
[32]
James P, Riehlfederick S. Richardson. Chemical Reviews, 1986, 86.
[33]
Harada T. Polym. J., 2018, 50(8): 679.
[34]
Sanchez-Carnerero E M, Agarrabeitia A R, Moreno F, Maroto B L, Muller G, Ortiz M J, de la Moya S. ChemInform, 2015, 21, 13488.
[35]
Tanaka H, Inoue Y, Mori T. ChemPhotoChem, 2018, 2(5): 386.

doi: 10.1002/cptc.201800015
[36]
Zinna F, di Bari L. Chirality, 2015, 27(1): 1.

doi: 10.1002/chir.22382
[37]
Li X N, Xie Y J, Li Z. Adv. Photonics Res., 2021, 2(4): 2000136.

doi: 10.1002/adpr.202000136
[38]
Imagawa T, Hirata S, Totani K, Watanabe T, Vachaa M. Chem. Commun., 2015, 51: 13268.

doi: 10.1039/C5CC04105H
[39]
Hao F Y, Shi Y Z, Wang K, Xiong S Y, Fan X C, Wu L, Zheng C J, Li Y Q, Ou X M, Zhang X H. Dyes Pigments, 2020, 178: 108336.

doi: 10.1016/j.dyepig.2020.108336
[40]
Ni F, Huang C W, Tang Y K, Chen Z X, Wu Y X, Xia S P, Cao X S, Hsu J H, Lee W K, Zheng K L, Huang Z Y, Wu C C, Yang C L. Mater. Horiz., 2021, 8(2): 547.

doi: 10.1039/D0MH01521K
[41]
Zhang M Y, Li Z Y, Lu B, Wang Y, Ma Y D, Zhao C H. Org. Lett., 2018, 20(21): 6868.

doi: 10.1021/acs.orglett.8b02995
[42]
Sharma N, Spuling E, Mattern C M, Li W B, Fuhr O, Tsuchiya Y, Adachi C, Bräse S, Samuel I D W, Zysman-Colman E. Chem. Sci., 2019, 10(27): 6689.

doi: 10.1039/c9sc01821b pmid: 31367323
[43]
Liao C, Zhang Y, Ye S H, Zheng W H. ACS Appl. Mater. Interfaces, 2021, 13(21): 25186.

doi: 10.1021/acsami.1c04779
[44]
Yang S Y, Wang Y K, Peng C C, Wu Z G, Yuan S, Yu Y J, Li H, Wang T T, Li H C, Zheng Y X, Jiang Z Q, Liao L S. J. Am. Chem. Soc., 2020, 142(41): 17756.

doi: 10.1021/jacs.0c08980
[45]
Li M, Wang Y F, Zhang D W, Zhang D D, Hu Z Q, Duan L, Chen C F. Sci. China Mater., 2021, 64(4): 899.

doi: 10.1007/s40843-020-1496-7
[46]
Zhang Y P, Liang X, Luo X F, Song S Q, Li S, Wang Y, Mao Z P, Xu W Y, Zheng Y X, Zuo J L, Pan Y. Angew. Chem. Int. Ed., 2021, 60(15): 8435.

doi: 10.1002/anie.202015411
[47]
Feuillastre S, Pauton M, Gao L H, Desmarchelier A, Riives A J, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G. J. Am. Chem. Soc., 2016, 138(12): 3990.

doi: 10.1021/jacs.6b00850 pmid: 26967372
[48]
Sun S B, Wang J, Chen L F, Chen R F, Jin J B, Chen C L, Chen S F, Xie G H, Zheng C, Huang W. J. Mater. Chem. C, 2019, 7(46): 14511.

doi: 10.1039/C9TC04941J
[49]
Wang Y X, Zhang Y, Hu W R, Quan Y W, Li Y Z, Cheng Y X. ACS Appl. Mater. Interfaces, 2019, 11(29): 26165.

doi: 10.1021/acsami.9b07005
[50]
Frederic L, Desmarchelier A, Favereau L F, Pieters G. Adv. Funct. Mater., 2021, 31: 2010281.

doi: 10.1002/adfm.202010281
[51]
Yan Z P, Liu T T, Wu R X, Liang X, Li Z Q, Zhou L, Zheng Y X, Zuo J L. Adv. Funct. Mater., 2021, 31(38): 2103875.

doi: 10.1002/adfm.202103875
[52]
Wu Z G, Yan Z P, Luo X F, Yuan L, Liang W Q, Wang Y, Zheng Y X, Zuo J L, Pan Y. J. Mater. Chem. C, 2019, 7(23): 7045.

doi: 10.1039/c9tc01632e
[53]
Xie F M, Zhou J X, Zeng X Y, An Z D, Li Y Q, Han D X, Duan P F, Wu Z G, Zheng Y X, Tang J X. Adv. Optical Mater., 2021, 9(9): 2100017.

doi: 10.1002/adom.202100017
[54]
Xu Y C, Wang Q Y, Cai X L, Li C L, Wang Y. Adv. Mater., 2021, 33(21): 2100652.

doi: 10.1002/adma.202100652
[55]
Li M, Wang Y F, Zhang D D, Duan L, Chen C F. Angew. Chem. Int. Ed., 2020, 59(9): 3500.

doi: 10.1002/anie.201914249
[56]
Wang Y F, Li M, Zhao W L, Shen Y F, Lu H Y, Chen C F. Chem. Commun., 2020, 56(65): 9380.

doi: 10.1039/D0CC03822A
[57]
Tu Z L, Yan Z P, Liang X, Chen L, Wu Z G, Wang Y, Zheng Y X, Zuo J L, Pan Y. Adv. Sci., 2020, 7(15): 2000804.

doi: 10.1002/advs.202000804
[58]
Li M, Li S H, Zhang D D, Cai M H, Duan L, Fung M K, Chen C F. Angew. Chem. Int. Ed., 2018, 57(11): 2889.

doi: 10.1002/anie.201800198
[59]
Wang Y F, Lu H Y, Chen C, Li M, Chen C F. Org. Electron., 2019, 70: 71.

doi: 10.1016/j.orgel.2019.03.020
[60]
Li H, Li H H, Wang W, Tao Y, Wang S, Yang Q Q, Jiang Y B, Zheng C, Huang W, Chen R F. Angew. Chem. Int. Ed., 2020, 59(12): 4756.

doi: 10.1002/anie.201915164
[61]
Hu Y B, Song F Y, Xu Z, Tu Y J, Zhang H K, Cheng Q, Lam J W Y, Ma D G, Tang B Z. ACS Appl. Polym. Mater., 2019, 1(2): 221.

doi: 10.1021/acsapm.8b00118
[1] Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang. Design and Application of Chiral Plasmonic Core-Shell Nanostructures [J]. Progress in Chemistry, 2023, 35(8): 1168-1176.
[2] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[3] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[4] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[5] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[6] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[7] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[8] Lujie Song, Youping Wu, Jianping Deng. Enantioselective Release of Chiral Drugs [J]. Progress in Chemistry, 2021, 33(9): 1550-1559.
[9] Yingying Wei, Lin Chen, Junli Wang, Shiping Yu, Xuguang Liu, Yongzhen Yang. Synthesis and Applications of Chiral Carbon Quantum Dots [J]. Progress in Chemistry, 2020, 32(4): 381-391.
[10] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[11] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[12] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[13] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[14] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[15] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.