中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2540-2560 DOI: 10.7536/PC220332 Previous Articles   

• Review •

Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives

Chenyang Qi, Jing Tu()   

  1. State key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology,Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Contact: Jing Tu
  • Supported by:
    National Natural Science Foundation of China(22005231); Fundamental Research Funds for the Central Universities (Wuhan University of Technology)(2021IVA093); Fundamental Research Funds for the Central Universities (Wuhan University of Technology)(2021IVB033)
Richhtml ( 76 ) PDF ( 895 ) Cited
Export

EndNote

Ris

BibTeX

Drug-resistance bacterial and biofilm-related infectious diseases pose a significant threat to the global public health. Focusing on the drug-resistance mechanisms of bacteria to antibiotics, we aim at presenting the research progress of nanomaterial-based antibacterial agents. This review starts with clarifying nanomaterials with unique physicochemical characteristics, which act as intrinsic antibacterial agents. Subsequently, we discuss nanomaterial-based artificial enzymes, which can kill bacteria with reactive oxygen species (ROS). Furthermore, nanomaterial-based multiple synergetic modality nanoplatforms are constructed to combat infections. These multifunctional antibacterial agents, either microenvironment-oriented or external stimulants responsive, coordinate new treatments for precise medication and integration of diagnoses and treatments. In addition, the challenges and clinical prospects of these nanomaterial-based antibacterial agents are discussed, providing new perspectives of developing safer and more efficient antibacterial agents.

Contents

1 Introduction

2 Drug-resistance mechanisms

3 Antibiotic-free nanomaterial-based antibacterial agents

3.1 Intrinsic antibacterial agents

3.2 Nanozyme

3.3 Intelligent responsive nanomaterial-based antibacterial agents

4 Conclusion and future perspectives

Fig. 1 The statistics of the paper indexed in the ISI web of science by the topic of “nanomaterials” and “antibacterial agent”
Fig. 2 General DR mechanisms[2,6,40? ~42].(a) The DR pathways for planktonic bacteria and (b) Formation of biofilms
Fig. 3 Antibacterial mechanisms of nanomaterials[2,6,7,54,55]
Fig. 4 Schematic illustration of homogeneous synthesis of micelles with amphiphilic QC and QCS derivatives and QCS micelles for antibacterial and wound healing[72]. Copyright 2022, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 5 (a) The preparation process of M-Art M; Fe2N6O as a catalytic center in Fe-Art M for the production of·O2-and HClO through (b) POD-like and (c) HPO-like catalytic pathways; (d) SEM images after MRSA co-incubation with Fe-Art M; (e) number of MRSAs captured by different Art Ms; (g) different Art Ms act on live/dead bacteria ratios; 3D reconstructions from confocal laser scanning microscopy (CLSM) images of (f) V-Art M and (h) Fe-Art M when treated with MRSA[81]. Copyright 2021, Springer Nature
Fig. 6 (a) Synthetic process for L-Arg/GOx@CuBDC and (b) the self-activated double-cascade reaction mechanism for enhanced synergistic bacteria killing[83]. Copyright 2020, American Chemical Society
Table 1 Summary of microenvironment-responsive nanomaterial-based antibacterial agents
Fig. 7 (a) The construction and mechanism of pH-responsive nanomaterial-based antibacterial agents (rAgNAs); (b) transmittance of rAgNAs in PBS with different pH values; (c) surface charge of rAgNAs along with changes in the pH value; (d) cumulative silver ion release amount at pH=7.4 and 5.5 (n = 3)[90]. Copyright 2019, American Chemical Society
Fig. 8 (a) The synthesis process of CuFe5O8NCs and (b) anti-biofilm and immunomodulatory mechanisms[102]. Copyright 2020, American Chemical Society
Fig. 9 (a) Red light-triggered NO release from micellar nanoparticles[129] Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) visible light-mediated co-release of NO and CO from PCNO micelles[130]. Copyright 2022, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 2 Photo-derived multimodal synergistic antibacterial therapy
Synergistic antibacterial therapy Light(wavelength/power/time) Bacteria/Biofilm(Antibacterial concentration) ref
MoS2-BNN6 NO/PTT 808 nm, 1 W/cm2, 10min Ampr E. coli/E. faecalis/S. aureus(MoS2:200 μg/mL, BNN6:80 μg/mL) 133
SNP-PB NO/PTT 808 nm, 1 W/cm2, 5min S. aureus/E. coli(>2 mg/mL) 134
SNP@MOF@Au-Mal NO/PTT 808 nm, 1.5 W/cm2, 7min P. aeruginosa(80 μg/mL) 135
MPDA@GSNO NO/PTT 808 nm, 0.75 W/cm2, 10min S. aureus/E. coli 143
GNS/HPDA-BNN6 NO/PTT 808 nm, 1.5 W/cm2, 10min S. aureus/E. coli/MRSA(100 μg/mL) 132
α-CD-Ce6-NO-DA NO/PDT 660 nm, 0.2 W/cm2, 1min MRSA biofilms(Ce6:40 μg/mL, NO:80 μg/mL) 144
UCNP@PCN@LA-PVDF NO/PDT 980 nm, 2.5 W/cm2, 5min P. aeruginosa/S. aureus 145
Ce6&CO@FADP CO/PDT 665 nm, 11 W/cm2, 8min S. aureus/E. coli(200 μg/mL)S. aureus/E. coli biofilms(800 μg/mL) 146
Ce6@Arg-ADP NO/PDT 665 nm, 115 mW/cm2, 30min MRSA/E. coli(32 μg/mL); MRSA/E. coli biofilms 125
TPP-HF micelles CO/PDT 650 nm, 26 mW/cm2, 30min S. aureus/MRSA(0.1 g/L)/E. coli 136
MAO+ZI PDT/I 808 nm,1 W/cm2, 10min S. aureus 147
CuTCPP-Fe2O3 PDT/Fe3+/Cu2+ 660 nm, 20min P. gingivalis/F. nucleatum/S. aureus 148
Ti-RP-IR780-RGDC PTT/PDT 808 nm, 0.5 W/cm2, 10min S. aureus biofilms 149
MOF-PDA PTT/PDT 660 nm, 0.7 W/cm2, 20min S. aureus/E. coli 140
Ti-MoS2-IR780-PDA-RGDC PTT/PDT 808 nm, 0.5 W/cm2, 20min S. aureus biofilms 137
UCNPs@PFC-55 PTT/PDT 980 nm, 1.5 W/cm2 E. coli 150
CuS@BSA/rGO-PDA PTT/PDT 808 nm, 1 W/cm2, 10min S. aureus/E. coli 142
CuS@HKUST-PDA PTT/PDT 808 nm, 20min S. aureus/E. coli(300 mg/L) 141
SCN-Zn2+@GO PTT/PDT 808 nm, 1 W/cm2, 10min, 660 nm S. aureus/E. coli(50 μg/mL) 151
ZIF-8-ICG PTT/Zn2+ 808 nm,1 W/cm2,30min MRSA(15.6 μg/mL) 152
ZnO-CNP-TRGL PTT/Zn2+ 808 nm, 2 W/cm2, 5min S. aureus/E. coli(50 μg/mL) 153
HuA@ZIF-8 PTT/Zn2+ 808 nm, 20min S. aureus/E. coli(1000 μg/mL) 154
GNR-PDA@Zn PTT/Zn2+ 808 nm, 1.5 W/cm2, 5min S. aureus/E. coli 155
Au-Ag@SiO2 NCs PTT/Ag+ 808 nm, 1 W/cm2, 5min S. aureus/E. coli(128 μg/mL) 156
Ag-Bi@SiO2 NPs PTT/Ag+ 808 nm,1 W/cm2, 15min MRSA(128 μg/mL)/MRSA biofilms 157
Au/Ag NRs PTT/Ag+ 1064 nm, 0.8 W/cm2, 10min MRSA(100 μM Ag) 158
PB@PDA@Ag PTT/Ag+ 808 nm, 1 W/cm2, 5min S. aureus/MRSA/MRSA biofilms/E. coli/Ampr E. coli(200 μg/mL PB) 159
GSNCs-Cyh PTT/Ag+ 1064 nm, 0.75 W/cm2, 10min MRSA/MDR E. coli 160
C-Zn/Ag PTT/Zn2+/Ag+ 808 nm, 3 W/cm2, 10min S. aureus/E. coli(0.16 mg/mL) 161
CNSs@FeS2 PTT/Fe2+ 808 nm, 2.5 W/cm2, 10min S. aureus/E. coli/S. typhimurium/P. aeruginosa/S. mutants/M. albicans(500 μg/mL) 162
CP@WS2 NFs PTT/CDT 808 nm, 1 W/cm2, 10min S. aureus/E. coli(100 μg/mL) 163
Au/MoO3-x PTT/CDT 808 nm, 1 W/cm2, 10min MRSA(128 μg/mL) 164
RCF PTT/CDT 1064 nm, 0.5 W/cm2, 5min MRSA(256 μg/mL)/S. aureus(256 μg/mL)/E. coli(128 μg/mL) 165
Ni@Co-NC PTT/CDT 808 nm,1 W/cm2, 5min MRSA(62.5 μg/mL) 166
Cu SASs/NPC PTT/CDT 808 nm, 1 W/cm2, 10min E. coli/MRSA(300 μg/mL) 167
AI-MPDA PTT/PDT/NO 808 nm,1 W/cm2, 10min S. aureus biofilms(0.2 mg/mL) 35
GNR@mSiO2-SNO/ICG PTT/PDT/NO 808 nm, 1 W/cm2, 5min P. gingivalis/F. nucleatum/S. gordonii biofilm 168
ICG&CO@G3KBPY PTT/PDT/CO 808 nm, 1 W/cm2, 5min MRSA/MRSA biofilms(150 μg/mL) 169
DNase-AuNCs PTT/PDT/DNase I 808 nm, 2 W/cm2, 10min S. aureus/P. aeruginosa/S. epidermidis/E. coli biofilms(400 μg/mL) 170
MoS2/ICG/Ag PTT/PDT/Ag+ 808 nm, 1 W/cm2, 10min S. aureus(150 μg/mL)/E. coli(250 μg/mL) 171
AgB NDs PTT/PDT/Ag+ 808 nm, 1 W/cm2, 5min MRSA(250 μg/mL) 172
CuFe2O4/GO PTT/PDT/CDT 808 nm, 1 W/cm2, 10min S. aureus/E. coli 173
Ag-PCN@Ti3C2-BC PTT/PDT/Ag+ 780 nm S. aureus/E. coli 174
ZnO/CDots/g-C3N4 PTT/PDT/Zn2+ visible light, 1 W/cm, 15min S. aureus/E. coli(200 μg/mL) 175
CuS/GO PTT/PDT/Cu2+ 0.2 W/cm2, 15min S. aureus/E. coli 176
ZnDMZ PTT/PDT/Zn2+ 660 nm, 0.45 W/cm2, 20min S. aureus 177
MoO3-x NDs PTT/PDT/CDT 808 nm, 2 W/cm2, 20min MRSA/ESBL-producing E. coli(90 μg/mL) 178
ICG-ZnS NPs PTT/H2S/Zn2+ 808 nm, 1 W/cm2, 10min MRSA biofilm(32 μg/mL) 100
DNase-CO@MPDA NPs PTT/CO/DNase I 808 nm, 1 W/cm2, 10min MRSA biofilms(200 μg/mL) 179
Fe3O4@MoS2-Ag PTT/CDT/Ag+ 808 nm, 1 W/cm2, 15min S. aureus/B. subtilis/MRSA/C. albicans 180
SM@CuFeSe2 PTT/CDT/immunity 808 nm, 4 W/cm2, 15min S. aureus 181
FPMLC PTT/carvacrol/LYZ 808 nm, 3 W/cm2, 10min S. aureus/E. coli(100 μg/mL) 182
CuS/Cur PTT/PDT/SDT/Cur/Cu2+ 808 nm, 0.5 W/cm2, 15min S. aureus/E. coli(2 mg/mL) 183
Fig. 10 (a) Fabrication of core-shell UCNPs@PFC-55; (b) the RET process from UCNPs“core” to PFC-55“shell” for achieving NIR-response photothermal and photodynamic effects[150]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 11 (a) Preparation of RCF nanohybrid and the antibacterial mechanism; (b) photographs of bacterial colonies formed by MRSA treated with RCF (0~1024 μg/mL) with or without NIR irradiation and H2O2; (c) the corresponding bacterial viabilities of MRSA after treatment with RCF in different groups determined by the plate counting method[165]. Copyright 2021, American Chemical Society
Fig. 12 (a) The preparation of DNase-CO@MPDA NPs; (b) the MRSA biofilm elimination mechanism based on DNase I participation and CO-potentiated PTT[179]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 13 Fabrication and antibacterial mechanism of pathogen receptor membrane-coated (112)- and (100)-faceted CuFeSe2 nanocrystals[181]. Copyright 2021, American Chemical Society
Fig. 14 (a) Synthesis of RBC-HNTM-Pt@Au, sonocatalytic mechanism, and the treatment of osteomyelitis by efficient SDT; (b) number of MRSA colonies treated under different conditions and (c) the corresponding SEM images and fluorescent staining images of live/dead bacteria; (d) the amount of MRSA protein leaked after treatment under different conditions; (e) number of MRSA colonies and (f),(g) cell viability (1 and 3 days) after treatment with US + 1-RBC-HNTM-Pt@Au, US + 2-RBC-HNTM-Pt@Au, and US + 3-RBC-HNTM-Pt@Au[190]. Copyright 2021, American Chemical Society
[1]
Wang Y, Yang Y N, Shi Y R, Song H, Yu C Z. Adv. Mater., 2020, 32(18): 1904106.

doi: 10.1002/adma.201904106
[2]
Gupta A, Mumtaz S, Li C H, Hussain L, Rotello V M. Chem. Soc. Rev., 2019, 48(2): 415.

doi: 10.1039/C7CS00748E
[3]
Liu Y, Shi L Q, Su L. Z, van der Mei H C, Jutte P C, Ren Y J, Busscher H J. Chem. Soc. Rev., 2019, 48(2): 428.

doi: 10.1039/C7CS00807D
[4]
Paterson D L, Harris P N A. Lancet Infect. Dis., 2016, 16(2): 132.

doi: 10.1016/S1473-3099(15)00463-6 pmid: 26603171
[5]
Sommer M O A, Dantas G. Curr. Opin. Microbiol., 2011, 14(5): 556.

doi: 10.1016/j.mib.2011.07.005
[6]
Makabenta J M V, Nabawy A, Li C H, Schmidt-Malan S, Patel R, Rotello V M. Nat. Rev. Microbiol., 2021, 19(1): 23.

doi: 10.1038/s41579-020-0420-1
[7]
Pardhi D M, Karaman D S, Timonen J, Wu W, Zhang Q, Satija S, Mehta M, Charbe N, McCarron P A, Tambuwala M M, Bakshi H A, Negi P, Aljabali A A, Dua K, Chellappan D K, Behera A, Pathak K, Watharkar R B, Rautio J, Rosenholm J M. Int. J. Pharm., 2020, 586(30): 119531.

doi: 10.1016/j.ijpharm.2020.119531
[8]
Willyard C. Nature, 2017, 543: 15.

doi: 10.1038/nature.2017.21550
[9]
O’Neill J. AMR Review, 2015.
[10]
Plackett B. Nature, 2020, 586: S50.

doi: 10.1038/d41586-020-02884-3
[11]
Chen B, Li F F, Zhu X K, Xie W, Hu X, Zan M H, Li X K, Li Q Y, Guo S S, Zhao X Z,. Jiang Y A, Cao Z J, Liu W. Biomater. Sci., 2021, 9(3): 826.

doi: 10.1039/D0BM01397H
[12]
Xu C, Akakuru O U, Ma X H, Zheng J P, Zheng J J, Wu A G. Bioconjugate Chem., 2020, 31(7): 1708.

doi: 10.1021/acs.bioconjchem.0c00297
[13]
Makvandi P, Wang C Y, Zare E N, Borzacchiello A, Niu L N, Tay F R. Adv. Funct. Mater., 2020, 30(22): 1910021.

doi: 10.1002/adfm.201910021
[14]
Natan M, Banin E. FEMS Microbiol. Rev., 2017, 41(3): 302.

doi: 10.1093/femsre/fux003
[15]
P.Linklater D, P.Ivanova E. Nano Today, 2022, 43: 101404.

doi: 10.1016/j.nantod.2022.101404
[16]
Xie Y Z Y, Liu Y, Yang J C, Liu Y, Hu F P, Zhu K, Jiang X Y. Angew. Chem. Int. Ed., 2018, 57(15): 3958.

doi: 10.1002/anie.201712878
[17]
Elbourne A, Cheeseman S, Atkin P,. Truong N P, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville C F, Dickey M D, Crawford R J, Kalantar-Zadeh K, Chapman J, Daeneke T, Truong V K. ACS Nano, 2020, 14(1): 802.

doi: 10.1021/acsnano.9b07861 pmid: 31922722
[18]
Mukherjee A, Barman R, Das B, Ghosh S. Chem. Mater. 2021, 33(22): 8656.

doi: 10.1021/acs.chemmater.1c02392
[19]
Wang L, Li S X, Yin J X, Yang J C, Li Q Z, Zheng W F, Liu S Q, Jiang X Y. Nano Lett., 2020, 20(7): 5036.

doi: 10.1021/acs.nanolett.0c01196 pmid: 32463246
[20]
Jiang Y J, Zheng W, Tran K, Kamilar E, Bariwal J, Ma H, Liang H J. Nat Commun., 2022, 13(1): 197.

doi: 10.1038/s41467-021-27193-9
[21]
Huang Y Y, Ren J S, Qu X G. Chem. Rev., 2019, 119(6): 4357.

doi: 10.1021/acs.chemrev.8b00672
[22]
Zhao Y, Meng X Q, Yan X Y, Fan K L. Chin. J. Appl. Chem., 2021, 38(5): 524.
(赵越, 孟祥芹, 阎锡蕴, 范克龙. 应用化学, 2021, 38(5): 524.).

doi: 10.19894/j.issn.1000-0518.210174
[23]
Wang X H, Shan M Y, Zhang S K, Chen X, Liu W T, Chen J Z, Liu X Y. Adv. Sci., 2022: 2104843.
[24]
Wang Z, Liu X Y, Duan Y W, Huang Y. Biomaterials, 2022, 280: 121249.

doi: 10.1016/j.biomaterials.2021.121249
[25]
Xiao Y, Xu, M R, lv N, Cheng C, Huang P, Li J B, Hu Y, Sun M. Acta Biomater. 2021, 121: 291.
[26]
Pan X T, Wu N, Tian S Y, Guo J, Wang C H, Sun Y, Huang Z Z, Chen F Z, Wu Q Y, Jing Y, Yin Z, Zhao B H, Xiong X L, Liu H Y, Zhou D S. Adv. Funct. Mater., 2022: 2112145.
[27]
Li W Y, Wen W Y, Wu X P, Zhao Y N, Dai H L. Biomater. Sci., 2020, 8(16): 4492.

doi: 10.1039/D0BM00673D
[28]
Zhang Y, He Y, Shi C X, Sun M D, Yang C, Li H J, Chen F M, Chang Z M, Zheng X, Wang Z, Dong W F, She J J, Shao D. ACS Sustainable Chem. Eng. 2020, 8(3): 1695.

doi: 10.1021/acssuschemeng.9b07576
[29]
Tu J, Boyle A L, Friedrich H, Bomans P H H, Bussmann J, Sommerdijk N A J M, Jiskoot W, Kros A. ACS Appl. Mater. Interfaces, 2016, 8(47): 32211.

doi: 10.1021/acsami.6b11324
[30]
Huang T, Holden J A, Reynolds E C, Heath D E, O’Brien-Simpson N M, O’Connor A J. ACS Appl. Mater. Interfaces, 2020, 12(50): 55696.

doi: 10.1021/acsami.0c17550
[31]
Dong Y L, Zhao S Y, Wang C R, Liu W S, Zhang Y M, Deng L D, Zhang J H, Huang P H, Wang W W, Dong A J. J. Mater. Chem. B, 2021, 9(2): 357.

doi: 10.1039/D0TB02233K
[32]
Li H, Wang P L, Guo W B, Huang X M, Tian X H, Wu G R, Xu B, Li F F, Yan C, Liang X J, Lei H M. ACS Nano, 2019, 13(6): 6770.

doi: 10.1021/acsnano.9b01346
[33]
Huo J J, Jia Q Y, Huang H, Zhang J, Li P, Dong X C, Huang W. Chem. Soc. Rev., 2021, 50(15): 8762.

doi: 10.1039/D1CS00074H
[34]
Ran B, Wang Z K, Cai W L, Ran L, Xia W X, Liu W J, Peng X J. J. Am. Chem. Soc. 2021, 143(43): 17891.

doi: 10.1021/jacs.1c08679
[35]
Yuan Z, Lin C C, He Y, Tao B L, Chen M W, Zhang J X, Liu P, Cai K Y. ACS Nano, 2020, 14(3): 3546.

doi: 10.1021/acsnano.9b09871 pmid: 32069025
[36]
Jia C Y, Guo Y X, Wu F G. Small, 2022, 18(6): 2103868.

doi: 10.1002/smll.202103868
[37]
Duan S, Wu R N, Xiong Y H, Ren H M, Lei C Y, Zhao Y Q, Zhang X Y, Xu F J. Prog. Mater. Sci., 2022, 125: 100887.

doi: 10.1016/j.pmatsci.2021.100887
[38]
Clatworthy A E, Pierson E, Hung D T. Nat. Chem. Biol., 2007, 3(9): 541.

pmid: 17710100
[39]
Li X S, Bai H T, Yang Y C, Yoon J Y, Wang S, Zhang X. Adv. Mater., 2019, 31(5): 1805092.
[40]
Qi Y, Ren S S, Che Y, Ye J W, Ning G L. Acta Chim. Sinica, 2020, 78(7): 613.

doi: 10.6023/A20040126
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲. 化学学报, 2020, 78(7): 613.).

doi: 10.6023/A20040126
[41]
Walsh C. Nature, 2000, 406(6797): 775.

doi: 10.1038/35021219
[42]
Rabin N, Zheng Y, Opoku-Temeng C, Du Y X, Bonsu E, Sintim H O. Future Med. Chem., 2015, 7(4): 493.

doi: 10.4155/fmc.15.6 pmid: 25875875
[43]
Singh B N, Prateeksha, Upreti D K, Singh B R, Defoirdt T, Gupta V K, Souza A O D, Singh H B, Barreira J C M, Ferreira I C F R, Vahabi K. Crit. Rev. Biotechnol., 2017, 37(4): 525.

doi: 10.1080/07388551.2016.1199010
[44]
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Science, 2002, 295(5559): 1487.

pmid: 11859186
[45]
Oubekka S D, Briandet R, Fontaine-Aupart M P, Steenkeste K. Antimicrob. Agents Chemother., 2012, 56(6): 3349.

doi: 10.1128/AAC.00216-12 pmid: 22450986
[46]
Bjarnsholt T. APMIS, 2013, 121(s136): 1.
[47]
Flemming H C, Wingender J, Szewzyk U, Steinberg P, Rice S A, Kjelleberg S. Nat. Rev. Microbiol., 2016, 14(9): 563.

doi: 10.1038/nrmicro.2016.94
[48]
Saidin S, Jumat M A, Amin N A A M, Al-Hammadi, A S S. Mater. Sci. Eng., C, 2021, 118:111382.

doi: 10.1016/j.msec.2020.111382
[49]
Chen Z W, Wang Z Z, Ren J S, Qu X G. Acc. Chem. Res., 2018, 51(3): 789.

doi: 10.1021/acs.accounts.8b00011
[50]
Wei T, Yu Q, Chen H. Adv. Healthcare Mater., 2019, 8(3): 1801381.

doi: 10.1002/adhm.201801381
[51]
Gupta D, Singh A, Khan A U. Nanoscale Res. Lett., 2017, 12(1): 454.

doi: 10.1186/s11671-017-2222-6
[52]
Altun E, Aydogdu M O, Chung E, Ren G G, Homer-Vanniasinkam S, Edirisinghe M. Appl. Phys. Rev., 2021, 8: 041303.

doi: 10.1063/5.0060299
[53]
Ahmad N, Nordin N A H M, Jaafar J, Ismail A F, Ramli M K N B. J. Environ. Chem. Eng., 2021, 9: 105887.

doi: 10.1016/j.jece.2021.105887
[54]
Ma W S, Cui Y, Zhao Y Y, Zheng W F, Zhang W, Jiang X Y, Zhang W J. Acta Biophys. Sin., 2010, 26(08): 638.
(马万顺, 崔燕, 赵玉云, 郑文富, 张伟, 蒋兴宇, 张文杰. 生物物理学报, 2010, 26(08): 638).
[55]
Wang L L, Hu C, Shao L Q. Int. J. Nanomed., 2017, 12: 1227.

doi: 10.2147/IJN.S121956
[56]
Cui J W, Wu D P, Li Z Y, Zhao G A, Wang, J S, Wang L, Niu B X. Ceram. Int., 2021, 47, 15759.

doi: 10.1016/j.ceramint.2021.02.148
[57]
Ivanova A, Ivanova K, Hoyo J, Heinze T, Sanchez-Gomez S, Tzanov T. ACS Appl. Mater. Interfaces, 2018, 10(4): 3314.

doi: 10.1021/acsami.7b16508
[58]
Bhatia E, Banerjee R. J. Mater. Chem. B, 2020, 8(22): 4890.

doi: 10.1039/D0TB00158A
[59]
Xu Q, Chang M L, Zhang Y, Wang E D, Xing M, Gao L, Huan Z G, Guo F, Chang J. ACS Appl. Mater. Interfaces, 2020, 12(28): 31255.

doi: 10.1021/acsami.0c08890
[60]
Zhang X C, Zhang Z C, Shu Q M, Xu C, Zheng Q Q, Guo Z, Wang C, Hao Z X, Liu X, Wang G Q, Yan W J, Chen H P, Lu C Y. Adv. Funct. Mater. 2021, 31(14): 2008720.

doi: 10.1002/adfm.202008720
[61]
Ivanova A, Ivanova K, Tied A, Heinze T, Tzanov T. Adv. Funct. Mater., 2020, 30(24): 2001284.

doi: 10.1002/adfm.202001284
[62]
Lin Y H, Xu J L, Hu J Y, Wang L H, Ong S L, Leadbetter J R, Zhang L H. Mol. Microbiol. 2003, 47(3): 849.

doi: 10.1046/j.1365-2958.2003.03351.x
[63]
Khalid S J, Ain Q, Khan S J, Jalil A, Siddiqui F M, Ahmad T, Badshah M, Adnan F. Saudi J. Biol. Sci. 2022, 29: 1673.

doi: 10.1016/j.sjbs.2021.10.064
[64]
Xin Q, Shah H, Nawaz A, Xie W J, Akram M Z, Batool A, Tian L Q, Jan S U, Boddula R, Guo B D, Liu, Q, Gong J R. Adv. Mater., 2019, 31(45): 1804838.

doi: 10.1002/adma.201804838
[65]
Wang H J, Song Z Y, Gu J J, Li S J, Wu Y, Han H Y. ACS Biomater. Sci. Eng., 2019, 5(9): 4739.

doi: 10.1021/acsbiomaterials.9b00583
[66]
Wang Y, Zhao Y N, Wu J L, Li M, Tan J, Fu W S, Tang H, Zhang P. Nano Lett., 2021, 21(22): 9433.

doi: 10.1021/acs.nanolett.1c02697 pmid: 34752115
[67]
Song Z Y, Wang H J, Wu Y, Gu J J, Li S J, Han H Y. ACS Omga, 2018, 3(10):14517.
[68]
Liang J S, Zeng J M, Li J J, She J Q, Tan R X, Liu B. Progress in Chemistry, 2019, 31(9): 1263.
(梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 化学进展, 2019, 31(9): 1263.).

doi: 10.7536/PC190222
[69]
Zhang H, Liu J, Cui K, Jiang T, Ma Z. Progress in Chemistry, 2019, 31(5): 681.

doi: 10.7536/PC180930
(张浩, 刘静, 崔崑, 姜涛, 马志. 化学进展, 2019, 31(5): 681.).

doi: 10.7536/PC180930
[70]
Li H, Zhao Y Y, Peng H N. Progress in Chemistry, 2018, 30(8): 1228.
(李红, 赵媛媛, 彭浩南. 化学进展, 2018, 30(8): 1228.).

doi: 10.7536/PC180201
[71]
Guo L X, Wang H P, Wang Y X, Liu F, Feng L H. ACS Appl. Mater. Interfaces, 2020, 12(19): 21254.

doi: 10.1021/acsami.9b19921
[72]
Xie F, Jiang L, Xiao X M, Lu Y W, Liu R H, Jiang W, Cai J. Small, 2022, 18(12):2104885.

doi: 10.1002/smll.202104885
[73]
Mei L Q, Zhu S, Liu Y P, Yin W Y, Gu Z J, Zhao Y L. Chem. Eng. J., 2021, 418: 129431.

doi: 10.1016/j.cej.2021.129431
[74]
Gao L Z, Zhuang J, Zie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. Nature Nanotech., 2007, 2(9): 577.

doi: 10.1038/nnano.2007.260
[75]
Ali A, Ovais M, Zhou H G, Rui Y K, Chen C Y. Biomaterials, 2021, 275: 120951.

doi: 10.1016/j.biomaterials.2021.120951
[76]
Fan X, Yang F, Nie C X, Ma L, Cheng C, Haag R. Adv. Mater., 2021, 33(33): 2100637.

doi: 10.1002/adma.202100637
[77]
Shan J Y, Li X, Yang K L, Xiu W J, Wen Q R, Zhang Y Q, Yuwen L H, Weng L X, Teng Z G, Wang L H. ACS Nano, 2019, 13(12): 13797.

doi: 10.1021/acsnano.9b03868
[78]
Tasia W, Lei C, Cao Y X, Ye Q S, He Y, Xu C. Nanoscale, 2020, 12(4): 2328.

doi: 10.1039/C9NR08467C
[79]
Liu Z W, Wang F M, Ren J S, Qu X G. Biomaterials, 2019, 208: 21.

doi: 10.1016/j.biomaterials.2019.04.007
[80]
Wu K l, Zhu D D, Dai X L, Wang W N, Zhong X Y, Fang Z B, Peng C, Wei X W, Qian H S, Chen X L, Wang X W, Zha Z B, Cheng L. Nano Today, 2022, 43: 101380.

doi: 10.1016/j.nantod.2022.101380
[81]
Long Y P, Li L, Xu T, Wu X Z, Gao Y, Huang J B, He C, Ma T, Ma L, Cheng C, Zhao C S. Nat Commun., 2021, 12(1): 6143.

doi: 10.1038/s41467-021-26456-9
[82]
Gaut J P, Yeh G C, Tran H D, Byun J, Henderson J P, Richter G M, Brennan M L, Lusis A J, Belaaouaj A, Hotchkiss R S, Heinecke J W. Proc Natl Acad Sci U S A., 2001, 98(21): 11961.

pmid: 11593004
[83]
Cheng X Q, Zhang S, Liu H H, Chen H M, Zhou J H, Chen Z W, Zhou X, Xie Z X, Kuang Q, Zheng N S. ACS Appl Mater Interfaces, 2020, 12(33): 36996.

doi: 10.1021/acsami.0c12159
[84]
Zhang Y, Lai L G, Liu Y J, Chen B N, Yao J, Zheng P W, Pan Q S, Zhu W F. ACS Appl Mater Interfaces, 2022, 14(5): 6453.

doi: 10.1021/acsami.1c23808
[85]
Wang Y J, Huang X L, Chen J J, Liang Y B, Xiong M H. Mater. Rep., 2019, 33(01): 5.
(王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 材料导报, 2019, 33(01): 5.).
[86]
Wang D B W, Kuzma M L, Lan X Y, He T C, Dong C, Liu Z W, Yang J. Adv. Drug Delivery Rev., 2021, 179: 114036.

doi: 10.1016/j.addr.2021.114036
[87]
Gao Y F, Wang J, Chai M Y, Li X, Deng Y Y, Jin Q, Ji J. ACS Nano, 2020, 14(5): 5686.

doi: 10.1021/acsnano.0c00269
[88]
Ji H W, Dong K, Yan Z Q, Ding C, Chen Z W, Ren J S, Qu X G. Small, 2016, 12(45): 6200.

doi: 10.1002/smll.201601729
[89]
Wang J H, Chen X Y, Zhao Y, Yang Y M, Wang W J, Wu C, Yang B Z, Zhang Z T, Zhang L S, Liu Y, Du X C, Li W F, Qiu L, Jiang P J, Mou X Z, Li Y Q. ACS Nano, 2019, 13(10): 11686.

doi: 10.1021/acsnano.9b05608
[90]
Wu J H, Li F Y, Hu X, Lu J X, Sun X L, Gao J Q, Ling D S. ACS Cent. Sci., 2019, 5(8): 1366.

doi: 10.1021/acscentsci.9b00359
[91]
Qiao Z Z, Yao Y, Song S M, Yin M H, Luo J B. J Mater Chem B, 2019, 7(5):830.

doi: 10.1039/C8TB02917B
[92]
Xie X L, Sun T C, Xue J Z, Miao Z H, Yan X, Fang W W, Li Q, Tang R P, Lu Y, Tang L X, Zha Z B, He T. Adv. Funct. Mater., 2020, 30(17): 2000511.

doi: 10.1002/adfm.202000511
[93]
Xiu W J, Gan S Y, Wen Q R, Qiu Q, Dai S L, Dong H, Li Q, Yuwen L H, Weng L X, Teng Z G, Mou Y B, Wang L H. Research, 2020, 2020: 9426453.
[94]
Wang C Y, Zhao W, Cao B, Wang Z X, Zhou Q, Lu S Y, Lu L G, Zhan M X, Hu X L. Chem. Mater., 2020, 32(18): 7725.

doi: 10.1021/acs.chemmater.0c02055
[95]
Qiao Z Z, Yao Y, Song S M, Yin M H, Yang M, Yan D P, Yang L J, Luo J B. J. Mater. Chem. B, 2020, 8(15): 3138.

doi: 10.1039/D0TB00298D
[96]
Liu M L, He D F, Yang T, Liu W, Mao L, Zhu Y, Wu J, Luo G X, Deng J. J Nanobiotechnology. 2018, 16(1): 23.

doi: 10.1186/s12951-018-0348-z
[97]
Xu Q, Jiang F, Guo G Y, Wang E D, Younis M R, Zhang Z W B, Zhang F Y, Huan Z g, Fan C, Yang C, Shen H, Chang J. Nano Today, 2021, 41: 101330.

doi: 10.1016/j.nantod.2021.101330
[98]
Xu X Y, Fan M L, Yu Z H, Zhao Y, Zhang H B, Wang J, Wu M Z, Sun F, Xu X Y, Ding C M, Li J S. Chem. Eng. J., 2022, 429: 132491.

doi: 10.1016/j.cej.2021.132491
[99]
Zhang W, Zhou Y N, Fan Y T, Cao R, Xu Y Y, Weng Z Z, Ye J, He C, Zhu Y, Wang X L. Adv. Mater. 2022, 34: 2105738.

doi: 10.1002/adma.202105738
[100]
Zhang Y, Yue T X, Gu W T, Liu A D, Cheng M Y, Zheng H Y, Bao D D, Li F Z, Pao J G. J Nanobiotechnology. 2022, 20(1): 55.

doi: 10.1186/s12951-022-01262-7
[101]
Li M, Lan X, Han X M, Shi S, Sun H, Kang Y, Dan J, Sun J, Zhang W T, Wang J L. ACS Appl. Mater. Interfaces, 2021, 13(25): 29269.

doi: 10.1021/acsami.1c03409
[102]
Guo G Y, Zhang H L, Shen H, Zhu C Z, He R K, Tang J, Wang Y, Jiang X Y, Wang J X, Bu W B, Zhang X L. ACS Nano, 2020, 14(10): 13391.

doi: 10.1021/acsnano.0c05255
[103]
Yang N, Guo H, Cao C Y, Wang X R, Song X J, Wang W J, Yang D L, Xi L, Mou X Z, Dong X C. Biomaterials, 2021, 275: 120918.

doi: 10.1016/j.biomaterials.2021.120918
[104]
Liu Y N, Lin A G, Liu J W, Chen X, Zhu X F, Gong Y C, Yuan G L, Chen L M, Liu J. ACS Appl. Mater. Interfaces, 2019, 11(30): 26590.

doi: 10.1021/acsami.9b07866
[105]
Lin X D, Fang Y, Hao Z, Wu H T, Zhao M Y, Wang S, Liu Y Q. Small, 2021, 17(51): 2103303.

doi: 10.1002/smll.202103303
[106]
Li Z, Lu S, Liu W Z, Dai T, Ke J X, Li X J, Li R F, Zhang Y X, Chen Z, Chen X Y. Angew Chem Int Ed., 2021, 60(35): 19201.

doi: 10.1002/anie.202103943
[107]
Lin A G, Liu Y N, Zhu X F, Chen X, Liu J W, Zhou Y H, Qin X Y, Liu J. ACS Nano, 2019, 13(12): 13965.

doi: 10.1021/acsnano.9b05766
[108]
Shi Y T, Cao Y F, Cheng J, Yu W W, Liu M S, Yin J J, Huang C S, Liang X Q, Zhou H C, Liu H B, Yang Z, Fang Y, Wei H, Zhao G H. Adv. Funct. Mater., 2022, 2111148.
[109]
Yan L X, Wang B B, Zhao X, Chen L J, Yan X P. ACS Appl Mater Interfaces, 2021, 13(51): 60955.

doi: 10.1021/acsami.1c21318
[110]
Zhang L F, Zhang L, Deng H, Li H, Tang W T, Guan L Y, Qiu Y, Donovan M J, Chen Z, Tan W H. Nat. Commun., 2021, 12(1): 2002.

doi: 10.1038/s41467-021-22286-x
[111]
Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky L, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. Science, 2021, 372(6547): 1169.

doi: 10.1126/science.abd8377
[112]
Kumari N, Kumar S, Karmacharya M, Dubbu S, Kwon T, Singh V, Chae K H, Kumar A, Cho Y K, Lee I S. Nano Lett., 2021, 21(1): 279.

doi: 10.1021/acs.nanolett.0c03639 pmid: 33306397
[113]
Wei G Q, Yang G, Wang Y, Jiang H Z, Fu Y Y, Yue G, Ju R. Theranostics, 2020, 10(26): 12241.

doi: 10.7150/thno.52729
[114]
Xu X M, Liu X M, Tan L, Cui Z D, Yang X J, Zhu S L, Li Z Y, Yuan X B, Zheng Y F, Yeung K W K, Chu P K, Wu S L. Acta Biomater., 2018, 77: 352.

doi: 10.1016/j.actbio.2018.07.030
[115]
Aksoy I, Küçükkeçeci H, Sevgi F, Metin Ö, Patir I H. ACS Appl. Mater. Interfaces, 2020, 12(24): 26822.

doi: 10.1021/acsami.0c02524
[116]
Wu S M, Xu C, Zhu Y W, Zheng L, Zhang L D, Hu Y, Yu B R, Wang Y G, Xu F J. Adv. Funct. Mater., 2021, 31(33): 2103591.

doi: 10.1002/adfm.202103591
[117]
Zhang H, Zhu Y N, Li Y, Qi X Y, Yang J, Qi H S, Li Q S, Ma Y M, Zhang Y, Zhang X, Zhang L. Adv. Funct. Mater., 2021, 31(42): 2104799.

doi: 10.1002/adfm.202104799
[118]
Yang J, Tu J, Lamers G E M, Olsthoorn R C L, Kros A. Adv. Healthcare Mater., 2017, 6(20): 1700759.

doi: 10.1002/adhm.201700759
[119]
Li R, Chen T T, Pan X L. ACS Nano, 2021, 15(3): 3808.

doi: 10.1021/acsnano.0c09617
[120]
Tu J, Wang T X, Shi W, Wu G S, Tian X H, Wang Y H, Ge D T, Ren L. Biomaterials, 2012, 33(31): 7903.

doi: 10.1016/j.biomaterials.2012.07.025
[121]
Bagchi D, Bhattacharya A, Dutta T, Nag S, Wulferding D, Lemmens P, Pal S K. ACS Appl. Bio Mater., 2019, 2(4): 1772.

doi: 10.1021/acsabm.9b00223
[122]
Chen H, Li S L, Wu M, Kenry, Huang Z M, Lee C S, Liu B. Angew. Chem. Int. Ed. 2020, 59(2): 632.

doi: 10.1002/anie.201907343 pmid: 31670869
[123]
Younis M R, He G, Qu J L, Lin J, Huang P, Xia X H. Adv. Sci., 2021, 8(21): 2102587.

doi: 10.1002/advs.202102587
[124]
Ren Y W, Han Y J, Li Z Y, Liu X M, Zhu S L, Liang Y Q, Yeung K W K, Wu S L. Bioact. Mater., 2020, 5: 201.
[125]
Zhu J W, Tian J, Yang C, Chen J P, Wu L H, Fan M L, Cai X J. Small, 2021, 17(32): 2101495.

doi: 10.1002/smll.202101495
[126]
Fei Y, Wu J B, An H W, Zhu K, Peng B, Cai J Q, Zhang Y H, Li L L, Wang H, Huang Z J. J. Med. Chem., 2020, 63(17): 9127.

doi: 10.1021/acs.jmedchem.9b01832
[127]
Park D, Kim J, Lee Y M, Park J, Kim W J. Adv. Healthcare Mater., 2016, 5(16): 2019.

doi: 10.1002/adhm.201600150
[128]
He Q J, Chen D Y, Fan M J. J. Inorg. Mater., 2018, 33(8): 811.

doi: 10.15541/jim20170529
(何前军, 陈丹阳, 范明俭. 无机材料学报, 2018, 33(8): 811.)

doi: 10.15541/jim20170529
[129]
Shen Z Q, Zheng S Q, Xiao S Y, Shen R, Liu S Y, Hu J M. Angew Chem Int Ed., 2021, 60(37): 20452.

doi: 10.1002/anie.202107155
[130]
Gao L, Cheng J, Shen Z Q, Zhang G Y, Liu S Y, Hu J M. Angew. Chem. Int. Ed., 2022, 61(3): e202112782.
[131]
Ren Y W, Liu H P, Liu X M, Zheng Y F, Li Z Y, Li C Y, Yeung K W K, Zhu S L, Liang Y Q, Cui Z D, Wu S L. Cell Rep. Phys. Sci. 2020, 1(11): 100245.
[132]
Liang Z Y, Liu W K, Wang Z Q, Zheng P L, Liu W, Zhao J F, Zhong Y L, Zhang Y, Lin J, Xue W, Yu S M. Acta Biomater., 2022.
[133]
Gao Q, Zhang X, Yin W Y, Ma D Q, Xie C J, Zheng L R, Dong X H, Mei L Q, Yu J, Wang C Z, Gu Z J, Zhao Y L. Small, 2018, 14(45): 1802290.

doi: 10.1002/smll.201802290
[134]
Wang W Y, Ding D J, Zhou K P, Zhang M, Zhang W F, Yan F, Cheng N. J. Mater. Sci. Technol., 2021, 93: 17.

doi: 10.1016/j.jmst.2021.03.037
[135]
Wu Y, Deng G Y, Jiang K, Wang H J, Song Z Y, Han H Y. Biomaterials, 2021, 268: 120588.

doi: 10.1016/j.biomaterials.2020.120588
[136]
Cheng J, Gan G H, Shen Z Q, Gao L, Zhang G Y, Hu J M. Angew Chem Int Ed., 2021, 60(24): 13513.

doi: 10.1002/anie.202104024
[137]
Li M, Li L Q, Su K, Liu X M, Zhang T J, Liang Y Q, Jing D D, Yang X J, Zheng D, Cui Z D, Li Z Y, Zhu S L, Yeung K W K, Zheng Y F, Wang X B, Wu S L. Adv. Sci., 2019, 6(17): 1900599.

doi: 10.1002/advs.201900599
[138]
Yuan Z, Tao B L, He Y, Liu J, Liu C C, Shen X K, Ding Y, Yu Y L, Mu C Y, Liu P, Cai K Y. Biomaterials, 2019, 217: 119290.

doi: 10.1016/j.biomaterials.2019.119290
[139]
Huang B, Tan L, Liu X M, Li J, Wu S L. Bioact. Mater., 2019, 4: 17.

doi: 10.1016/j.bioactmat.2018.11.002 pmid: 30533553
[140]
Han D L, Li Y, Yeung K W K, Zheng Y F, Cui Z D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. J. Mater. Sci. Technol., 2021, 61: 83.
[141]
Han D L, Yu P L, Liu X M, Xu Y D, Wu S L. Rare Met., 2022, 41(2): 663.

doi: 10.1007/s12598-021-01786-1
[142]
Zhang Z J, Wang Y K, Teng W S Y, Zhou X Z, Ye Y X, Zhou H, Sun H X, Wang F Q, Liu A, Lin P, Cui W G, Yu X H, Wu Y, Ye Z M. Biomaterials, 2021, 274: 120853.

doi: 10.1016/j.biomaterials.2021.120853
[143]
Xu K, Yuan Z, Ding Y, He Y, Li K, Lin C C, Tao B L, Yang Y L, Li X, Liu P, Cai K Y. Appl. Mater. Today, 2021, 24:101155.
[144]
Hu D F, Deng Y Y, Jia F, Jin Q, Ji J. ACS Nano, 2020, 14(1): 347.

doi: 10.1021/acsnano.9b05493
[145]
Sun J, Fan Y, Ye W, Tian L M, Niu S C, Ming W H, Zhao J, Ren L Q. Chem. Eng. J., 2021, 417: 128049.

doi: 10.1016/j.cej.2020.128049
[146]
Ma W, Chen X Y, Fu L Q, Zhu J W, Fan M N, Chen J P, Yang C, Yang G Z, Wu L H, Mao G X, Yang X, Mou X Z, Gu Z W, Cai X J. ACS Appl. Mater. Interfaces, 2020, 12(20): 22479.

doi: 10.1021/acsami.0c01967
[147]
Teng W S Y, Zhang Z J, Wang Y K, Ye Y X, Yinwang E, Liu A, Zhou X Z, Xu J X, Zhou C W, Sun H X, Wang F Q, Zhang L L, Cheng C G, Li P, Wu Y, Gou Z R, Yu X H, Ye Z M. Small, 2021, 17(35): 2102315.

doi: 10.1002/smll.202102315
[148]
Li J, Song S, Meng J S, Tan L, Liu X M, Zheng Y F, Li Z Y, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Zhang X C, Wu S L. J. Am. Chem. Soc., 2021, 143(37) 15427.

doi: 10.1021/jacs.1c07875
[149]
Tan L, Li J, Liu X M, Cui Z D, Yang X J, Zhu S L, Li Z Y, Yuan X B, Zheng Y F, Yeung K W K, Pan H B, Wang X B, Wu S L. Adv. Mater., 2018, 30(31): 1801808.

doi: 10.1002/adma.201801808
[150]
Liu B T, Pan X T, Zhang D Y, Wang R, Chen J Y, Fang H R, Liu T F. Angew. Chem. Int. Ed., 2021, 60(49): 25701.

doi: 10.1002/anie.202110028
[151]
Li Y, Liu X M, Tan L, Cui Z D, Yang X J, Zheng Y F, Yeung K W K, Chu P K, Wu S L. Adv. Funct. Mater., 2018, 28(30): 1800299.

doi: 10.1002/adfm.201800299
[152]
Wu B Y, Fu J T, Zhou Y X, Shi Y, Wang J, Feng X Q, Zhao Y T, Zhou G L, Lu C, Quan G L, Pan X, Wu C B. Pharmaceutics, 2019, 11(9): 463.

doi: 10.3390/pharmaceutics11090463
[153]
Yang Y, Deng Y Y, Huang J B, Fan X, Cheng C, Nie C X, Ma L, Zhao W F, Zhao C S. Adv. Funct. Mater., 2019, 29(33): 1900143.

doi: 10.1002/adfm.201900143
[154]
Liu Z W, Tan L, Liu X M, Liang Y Q, Zheng Y F, Yeung K W K, Cui Z D, Zhu S L, Li Z Y, Wu S L. Colloids Surf. B, 2020, 188: 110781.

doi: 10.1016/j.colsurfb.2020.110781
[155]
Yang T T, Wang D H, Liu X Y. J. Mater. Chem. B, 2020, 8(3): 406.

doi: 10.1039/C9TB02258A
[156]
Wu S M, Li A H, Zhao X Y, Zhang C L, Yu B R, Zhao N N, Xu F J. ACS Appl. Mater. Interfaces, 2019, 11(19): 17177.

doi: 10.1021/acsami.9b01149
[157]
Cao C Y, Ge W, Yin J J, Yang D L, Wang W J, Song X J, Hu Y L, Yin J, Dong X C. Small, 2020, 16(24): 2000436.

doi: 10.1002/smll.202000436
[158]
Mei Z H, Gao D Y, Hu D H, Zhou H C, Ma, T, Huang L, Liu X, Zheng R Q, Zheng H R, Zhao P, Zhao J Q, Sheng Z H. Biomaterials, 2020, 251: 120092.

doi: 10.1016/j.biomaterials.2020.120092
[159]
Tong C Y, Zhong X H, Yang Y J, Liu X, Zhong G W, Xiao C, Liu B, Wang W, Yang X P. Biomaterials, 2020, 243: 119936.

doi: 10.1016/j.biomaterials.2020.119936
[160]
Qin Z J, Zheng Y K, Du T Y, Wang Y H, Gao H M, Quan J F, Zhang Y, Du Y, Yin L H, Wang X M, Jiang H. Chem. Eng. J., 2021, 414: 128779.

doi: 10.1016/j.cej.2021.128779
[161]
Yang Y, Wu X Z, He C, Huang J B, Yin S Q, Zhou M, Ma L, Zhao W F, Qiu L, Cheng C, Zhao C S. ACS Appl. Mater. Interfaces, 2020, 12(12): 13698.

doi: 10.1021/acsami.0c01666
[162]
Xi J Q, An L F, Huang Y L, Jiang J, Wang Y Q, Wei G, Xu Z L, Fan L, Gao L Z. Small, 2021, 17(13): 2005473.

doi: 10.1002/smll.202005473
[163]
Xie X H, Wang R, Zhang X X, Ren Y R, Du T, Ni Y S, Yan H L, Zhang L, Sun J, Zhang W T, Wang J D. Appl. Catal. B, 2021, 295:120315.

doi: 10.1016/j.apcatb.2021.120315
[164]
Cao M Y, Chang Z S, Tan J S, Wang X N, Zhang P F, Lin S, Liu J Q, Li A H. ACS Appl Mater Interfaces, 2022, 14(11): 13025.

doi: 10.1021/acsami.1c23676
[165]
Liu Z W, Zhao X Y, Yu B R, Zhao N N, Zhang C, Xu F J. ACS Nano, 2021, 15(4): 7482.

doi: 10.1021/acsnano.1c00894
[166]
Fan X, Wu X Z, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. Angew. Chem. Int. Ed., 2022, 61(8): e202113833.
[167]
Wang X W, Shi Q Q, Zha Z B, Zhu D D, Zheng L R, Shi L X, Wei X W, Lian L, Wu K L, Cheng L. Bioact. Mater., 2021, 6: 4389.
[168]
Qi M L, Ren X, Li W, Sun Y, Sun X L, Li C Y, Yu S Y, Xu L, Zhou Y M, Song S Y, Dong B, Wang L. Nano Today, 2022, 43: 101447.

doi: 10.1016/j.nantod.2022.101447
[169]
Cai X J, Tian J, Wu J W, Chen J P, Li L, Yang C, Chen J L, Chen D F. Chem. Eng. J., 2021, 426: 131919.

doi: 10.1016/j.cej.2021.131919
[170]
Xie Y Z Y, Zheng W F, Jiang X Y. ACS Appl. Mater. Interfaces, 2020, 12(8): 9041.

doi: 10.1021/acsami.9b21777
[171]
Li H, Gong M H, Xiao J Y, Hai L, Luo Y Z, He L D, Wang Z F, Deng L, He D G. Chem. Eng. J., 2022, 429: 132600.

doi: 10.1016/j.cej.2021.132600
[172]
Tang H Z, Qu X H, Zhang W K, Chen X, Zhang S T, Xu Y, Yang H T, Wang Y, Yang J P, Yuan W E, Yue B. Adv. Mater., 2022, 34(12): 2107300.

doi: 10.1002/adma.202107300
[173]
Zhang J C, Gao X Y, Ma D C, He S, Du B W, Yang W Z, Xie K N, Xie L, Deng L. Chem. Eng. J., 2021, 422: 130094.

doi: 10.1016/j.cej.2021.130094
[174]
Nie X L, Wu S L, Huang F L, Li W, Qiao H, Wang Q Q, Wei Q F. Chem. Eng. J., 2021, 416: 129072.

doi: 10.1016/j.cej.2021.129072
[175]
Xiang Y M, Zhou Q L, Li Z Y, Cui Z D, Liu X M, Liang Y Q, Zhu S L, Zheng Y F, Yeung K W K, Wu S L. J. Mater. Sci. Technol., 2020, 57: 1.

doi: 10.1016/j.jmst.2020.05.016
[176]
Lv R, Liang Y Q, Li Z Y, Zhu S L, Cui Z D, Wu S L. Rare Met., 2022, 41(2):639.

doi: 10.1007/s12598-021-01759-4
[177]
Wang C F, Luo Y, Liu X M, Cui Z D, Zheng Y F, Liang Y Q, Li Z Y, Zhu S L, Lei J, Feng X B, Wu S L. Bioact. Mater., 2022, 13: 200.
[178]
Zhang Y, Li D X, Tan J S, Chang Z S, Liu X Y, Ma W S, Xu Y H. Small, 2021, 17(1): 2005739.

doi: 10.1002/smll.202005739
[179]
Yuan Z, Lin C C, Dai L L, He Y, Hu J W, Xu K, Tao B L, Liu P, Cai K Y. Small, 2021, 17(13): 2007522.

doi: 10.1002/smll.202007522
[180]
Wei F, Cui X Y, Wang Z, Dong C C, Li J D, Han X J. Chem. Eng. J., 2021, 408: 127240.

doi: 10.1016/j.cej.2020.127240
[181]
Hou X, Zeng H, Chi X, Hu X G. Nano Lett. 2021, 21(23): 9966.

doi: 10.1021/acs.nanolett.1c03427
[182]
Nong W K, Chen Y L, Lv D Y, Yan Y T, Zheng X, Shi X M, Xu Z, Guan W L, Wu J, Guan Y G. Chem. Eng. J., 2022, 431: 134003.

doi: 10.1016/j.cej.2021.134003
[183]
Liu H P, Li J F, Liu X M, Li Z Y, Zhang Y, Liang Y Q, Zheng Y F, Zhu S L, Cui Z D, Wu S L. ACS Nano, 2021, 15(11): 18505.

doi: 10.1021/acsnano.1c08409
[184]
Xiao Z M, Zuo W B, Chen L P, Wu L, Liu N, Liu J X, Jin Q Y, Zhao Y L, Zhu X. ACS Appl. Mater. Interfaces, 2021, 13(37): 43925.

doi: 10.1021/acsami.1c10341
[185]
Pang X, Li D F, Zhu J, Cheng J L, Liu G. Nano-Micro Lett., 2020 12(1): 144.
[186]
Su K, Tan L, Liu X M, Cui Z D, Zheng Y F, Li B, Han Y, Li Z Y, Zhu S L, Liang Y Q, Feng X B, Wang X B, Wu S L. ACS Nano, 2020, 14(2): 2077.

doi: 10.1021/acsnano.9b08686
[187]
Lei J, Wang C F, Feng X B, Ma L, Liu X M, Luo Y, Tan L, Wu S L, Yang C. Chem. Eng. J., 2022, 435: 134624.

doi: 10.1016/j.cej.2022.134624
[188]
Pang X, Liu X, Cheng Y, Zhang C, Ren E, Liu C, Zhang Y, Zhu J, Chen X Y, Liu G. Adv. Mater., 2019, 31(35): 1902530.

doi: 10.1002/adma.201902530
[189]
Song M L, Cheng Y, Tian Y, Chu C C, Zhang C, Lu Z X, Chen X Y, Pang X, Liu G. Adv. Funct. Mater., 2020, 30(43): 2003587.

doi: 10.1002/adfm.202003587
[190]
Yu Y, Tan L, Li Z Y, Liu X M, Zheng Y F, Feng X B, Liang Y Q, Cui Z D, Zhu S L, Wu S L. ACS Nano, 2021, 15(6): 10628.

doi: 10.1021/acsnano.1c03424
[191]
Guan W, Tan L, Liu X M, Cui Z D, Zheng Y F, Yeung K W K, Zheng D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. Adv. Mater., 2021, 33(5): 2006047.

doi: 10.1002/adma.202006047
[192]
Zhang T Q, Huang Z M, Shen J X, Chen G Q, Shen L J, Ai F, Gu Y K, Yao W, Zhang Y Y, Guo R P, Chen M S, Huang J H. Therap Adv Gastroenterol., 2019, 12: 1756284819862966.
[193]
Fu J N, Li Y, Zhang Y, Liang Y Q, Zheng Y F, Li Z Y, Zhu S L, Li C Y, Cui Z D, Wu S L. Adv. Mater., 2021, 33(41): 2102926.

doi: 10.1002/adma.202102926
[194]
Qiao Y Q, Liu X M, Li B, Han Y, Zheng Y F, Yeung K W K, Li C Y, Cui Z D, Liang Y Q, Li C Y, Zhu S L, Wang X B, Wu S L. Nat Commun., 2020, 11(1): 4446.

doi: 10.1038/s41467-020-18268-0
[195]
Liu R, Sang L H, Wang T Y, Liu Y H, Wang Z R, Li J, Wang D K. Colloids Surf. B, 2021, 207: 112018.

doi: 10.1016/j.colsurfb.2021.112018
[196]
Wei S B, Qiao Y Q, Wu Z C, Liu X M, Li Y, Cui Z D, Li C Y, Zheng Y F, Liang Y Q, Li Z Y, Zhu S L, Wang H R, Wang X B, Che R C, Wu S L. Nano Today, 2021, 37: 101090.

doi: 10.1016/j.nantod.2021.101090
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[13] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[14] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[15] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.