中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2146-2158 DOI: 10.7536/PC211229 Previous Articles   Next Articles

• Review •

The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials

Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping(), Chen Runfeng()   

  1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Li Ping, Chen Runfeng
  • Supported by:
    National Natural Science Foundation of China(61875090); National Natural Science Foundation of China(91833306); National Natural Science Foundation of China(21772095); Key giant project of Jiangsu Educational Committee(19KJA180005); fifth 333 project of Jiangsu Province of China(BRA2019080); 1311 Talents Program of Nanjing University of Posts and Telecommunications, the Scientific Starting Fund from Nanjing University of Posts and Telecommunications (No.NUPTSF)(NY219160); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221092)
Richhtml ( 52 ) PDF ( 747 ) Cited
Export

EndNote

Ris

BibTeX

Thermally activated delayed fluorescence (TADF) materials have attracted significant attention due to their promising performance in organic light-emitting diodes (OLEDs) with theoretical 100% internal quantum efficiency through upconversion of triplet excitons into singlet excitons via reverse intersystem crossing (RISC) process. However, the experimental development of high-performance TADF materials is complicated and time-consuming. Theoretical calculations could intrinsically establish the structure-performance relationship, predict the properties and provide molecular design strategies. In this paper, aiming to develop high-performance TADF materials, started from the principle of luminescence, we systematically expound the molecular design strategies, and the calculation principles, methods and research progress of the photophysical parameters such as the single-triplet energy gap (ΔEST), the (reverse) intersystem crossing rate, absorption/emission spectrum and radiation/non-radiation rate. Finally, the opportunities and challenges faced by the theoretical research of TADF materials are discussed. Through the overview of the theoretical research of TADF materials and the outlook of the research prospects, we look forward to attracting more researchers and promoting the development and breakthrough of this field.

Fig. 1 Radiative and non-radiative transition processes of TADF materials by photoluminescence (a) and electroluminescence (b)[28]
Fig. 2 Schematic diagram relating the material parameters, device performances, and material design methods
Table 1 HF% components of different DFT functionals (short-range HF%/long-range HF%)
Fig. 3 Steps to calculate ΔEST by OHF method
Fig. 4 Molecular structures of compounds calculated by OHF method. (The blue and red denote the positive and negative charge, respectively)[48]
Table 2 Comparison of calculated E0-0(S1), E0-0(T1) and ΔEST by OHF method with experimental data
Fig. 5 Steps to calculate ΔEST by LC-ωPBELOL
Fig. 6 Schematic diagram of the potential energy surfaces (PESs) for singlet and triplet states
Fig. 7 Example molecular structures for calculating ISC and RISC rates
Table 3 ISC, RISC rates and related parameters
Fig. 8 Schematic of (a) strong vibrational coupling, (b) weak vibrational coupling[11]
Fig. 9 Schematic diagram of absorption/emission process
Fig. 10 Example molecular structures for calculating radiation and non-radiation rates
Table 4 Radiation, non-radiation rates and wavelengths
Fig. 11 Schematic diagram of the effect of3CT and3LE vibration coupling on the RISC process[69]
Table 5 The metrics commonly used and their limiting values in the case of pure CT and LE luminescence[73]
Fig. 12 Hole (blue) and electron (orange) densities for 2PXZ-OXD and 2PTZ-TAZ compounds[74]. (a and c represent the T1 state, b and d represent the S1 state)
[1]
Parker C A, Hatchard C G. Proc. Roy. Soc. Lond. Math. Phys. Sci., 1962, 269: 574.
[2]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21: 4802.

doi: 10.1002/adma.200900983
[3]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234.

doi: 10.1038/nature11687
[4]
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Adv. Mater., 2016, 28: 2777.

doi: 10.1002/adma.201505491
[5]
Jiang H, Jin J B, Chen R F, Zheng C, Huang W. Progress in Chemistry, 2016, 28(12): 1811.

doi: 10.7536/PC160520
姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 化学进展, 2016, 28(12): 1811.).

doi: 10.7536/PC160520
[6]
Liu L, Wei Q, Cheng Y, Ma H, Xiong S, Zhang X. J. Mater. Chem. C, 2020, 8: 5839.

doi: 10.1039/D0TC00279H
[7]
Yang M, Park I S, Yasuda T. J. Am. Chem. Soc., 2020, 142: 19468.

doi: 10.1021/jacs.0c10081
[8]
Zou S N, Peng C C, Yang S Y, Qu Y K, Yu Y J, Chen X, Jiang Z Q, Liao L S. Org. Lett., 2021, 23: 958.

doi: 10.1021/acs.orglett.0c04159
[9]
Oda S, Kumano W, Hama T, Kawasumi R, Yoshiura K, Hatakeyama T. Angew. Chem. Int. Ed., 2021, 60: 2882.

doi: 10.1002/anie.202012891
[10]
Min H, Park I S, Yasuda T. Angew. Chem. Int. Ed., 2021, 60: 7643.

doi: 10.1002/anie.202016914
[11]
Zhang Y, Zhang D, Huang T, Gillett A J, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Angew. Chem. Int. Ed., 2021, 60: 20498.

doi: 10.1002/anie.202107848
[12]
Liu G, Sasabe H, Kumada K, Matsunaga A, Katagiri H, Kido J. J. Mater. Chem. C, 2021, 9: 8308.

doi: 10.1039/D1TC01427G
[13]
Su Y M, Lin H J, Li W M. Progress in Chemistry, 2015, 27(10): 1384.
苏玉苗, 林海娟, 李文木. 化学进展, 2015, 27(10): 1384.).

doi: 10.7536/PC150304
[14]
Kim J U, Park I S, Chan C Y, Tanaka M, Tsuchiya Y, Nakanotani H, Adachi C. Nat. Commun., 2020, 11: 1765.

doi: 10.1038/s41467-020-15558-5
[15]
Rao J, Zhao C, Wang Y, Bai K, Wang S, Ding J, Wang L. ACS Omega, 2019, 4: 1861.

doi: 10.1021/acsomega.8b03296
[16]
Park I S, Matsuo K, Aizawa N, Yasuda T. Adv. Funct. Mater., 2018, 28: 1802031.

doi: 10.1002/adfm.201802031
[17]
Agou T, Matsuo K, Kawano R, Park I S, Hosoya T, Fukumoto H, Kubota T, Mizuhata Y, Tokitoh N, Yasuda T. ACS Mater. Lett., 2019, 2: 28.
[18]
Wu X, Su B K, Chen, D G,. ; Liu D, Wu C C, Huang Z X, Lin T C, Wu C H, Zhu M, Li E Y, Hung W Y, Zhu W, Chou P T. Nat. Photonics, 2021, 15: 780.

doi: 10.1038/s41566-021-00870-3
[19]
Nickel B, Klemp D. Chem. Phys., 1993, 174: 319.

doi: 10.1016/0301-0104(93)87015-F
[20]
Klemp D, Nickel B. Chem. Phys., 1983, 78: 17.

doi: 10.1016/0301-0104(83)87002-5
[21]
Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Angew. Chem. Int. Ed., 2021, 60: 14846.

doi: 10.1002/anie.202103070
[22]
Lv X, Huang R, Sun S, Zhang Q, Xiang S, Ye S, Leng P, Dias F B, Wang L. ACS Appl. Mater. Interfaces, 2019, 11: 10758.

doi: 10.1021/acsami.8b20699
[23]
Krylova V A, Djurovich P I, Conley B L, Haiges R, Whited M, T, Williams T J, Thompson M E. Chem. Commun., 2014, 50: 7176.

doi: 10.1039/C4CC02037E
[24]
Cao C, Yang G X, Tan J H, Shen D, Chen W C, Chen J X, Liang J L, Zhu Z L, Liu S H, Tong Q X, Lee C S. Mater. Today Energy, 2021, 21: 100727.
[25]
Lin B Y, Easley C J, Chen C H, Tseng P C, Lee M Z, Sher P H, Wang J K, Chiu T L, Lin C F, Bardeen C J, Lee J H. ACS Appl. Mater. Interfaces, 2017, 9: 10963.

doi: 10.1021/acsami.6b16397
[26]
Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26: 7931.

doi: 10.1002/adma.201402532
[27]
Yao L, Yang B, Ma Y. Sci. China Chem., 2014, 57: 335.

doi: 10.1007/s11426-013-5046-y
[28]
Im Y, Kim M, Cho Y J, Seo J A, Yook K S, Lee J Y. Chem. Mater., 2017, 29: 1946.

doi: 10.1021/acs.chemmater.6b05324
[29]
Hirata S, Sakai Y, Masui K, Tanaka H, Lee S Y, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q, Shizu K, Miyazaki H, Adachi C. Nat. Mater., 2015, 14: 330.

doi: 10.1038/nmat4154 pmid: 25485987
[30]
Pershin A, Hall D, Lemaur V, Sancho-Garcia J C, Muccioli L, Zysman-Colman E, Beljonne D, Olivier Y. Nat. Commun., 2019, 10: 597.

doi: 10.1038/s41467-019-08495-5 pmid: 30723203
[31]
Teng J M, Wang Y F, Chen C F. J. Mater. Chem. C, 2020, 8: 11340.

doi: 10.1039/D0TC02682D
[32]
Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S, Monkman A P, Bryce M R, Dias F B. Adv. Opt. Mater., 2016, 4: 597.

doi: 10.1002/adom.201500689
[33]
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv. Mater., 2016, 28: 4019.

doi: 10.1002/adma.201505026
[34]
Xia G, Qu C, Zhu Y, Ye J, Ye K, Zhang Z, Wang Y. Angew. Chem. Int. Ed., 2021, 60: 9598.

doi: 10.1002/anie.202100423
[35]
Ahn D H, Kim S W, Lee H, Ko I J, Karthik D, Lee J Y, Kwon J H. Nat. Photonics, 2019, 13: 540.

doi: 10.1038/s41566-019-0415-5
[36]
Khan A, Tang X, Zhong C, Wang Q, Yang S Y, Kong F C, Yuan S, Sandanayaka A S D, Adachi C, Jiang Z Q, Liao L S. Adv. Funct. Mater., 2021, 31: 2009488.

doi: 10.1002/adfm.202009488
[37]
Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv. Mater., 2015, 27: 7236.

doi: 10.1002/adma.201501090
[38]
Lim H, Cheon H J, Woo S J, Kwon S K, Kim Y H, Kim J J. Adv. Mater., 2020, 32: 2004083.

doi: 10.1002/adma.202004083
[39]
Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat. Photonics, 2019, 13: 678.

doi: 10.1038/s41566-019-0476-5
[40]
Yuan Y, Tang X, Du X Y, Hu Y, Yu Y J, Jiang Z Q, Liao L S, Lee S T. Adv. Opt. Mater., 2019, 7: 1801536.

doi: 10.1002/adom.201801536
[41]
Tsang D P, Matsushima T, Adachi C. Sci. Rep., 2016, 6: 22463.

doi: 10.1038/srep22463
[42]
Zhang D, Cai M, Zhang Y, Zhang D, Duan L. Mater. Horiz., 2016, 3: 145.

doi: 10.1039/C5MH00258C
[43]
Cohen A J, Mori-Sánchez P, Yang W. Chem. Rev., 2012, 112: 289.

doi: 10.1021/cr200107z pmid: 22191548
[44]
Song C, Tang J, Li J, Wang Z, Li P, Zhang H. Inorg. Chem., 2018, 57: 12174.

doi: 10.1021/acs.inorgchem.8b01828
[45]
Improta R, Barone V, Scalmani G, Frisch, M J. J. Chem. Phys., 2006, 125: 054103.

doi: 10.1063/1.2222364
[46]
Runge E, Gross E. Phys. Rev. Lett., 1984, 52: 997.

doi: 10.1103/PhysRevLett.52.997
[47]
Chen J H, He L M, Wang R L. J. Phys. Chem. A, 2013, 117: 5132.

doi: 10.1021/jp312470k
[48]
Huang S P, Zhang Q, Shiota Y, Nakagawa T, Kuwabara K, Yoshizawa K, Adachi C. J. Chem. Theory Comput., 2013, 9: 3872.

doi: 10.1021/ct400415r
[49]
Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

doi: 10.1002/jcc.22885
[50]
Wang C, Deng C, Wang D, Zhang Q S. J. Phys. Chem. C, 2018, 122: 7816.

doi: 10.1021/acs.jpcc.7b10560
[51]
Sun H T, Zhong C, BrÉdas J. J. Chem. Theory Comput., 2015, 11: 3851.

doi: 10.1021/acs.jctc.5b00431
[52]
Wang C, Zhang Q. J. Phys. Chem. C, 2018, 123: 4407.

doi: 10.1021/acs.jpcc.8b08228
[53]
Wang C, Zhou K, Huang S, Zhang Q. J. Phys. Chem. C, 2019, 123: 13869.

doi: 10.1021/acs.jpcc.9b01896
[54]
Moral M, Muccioli L, Son W J, Olivier Y, Sancho-Garcia J C. J. Chem. Theory Comput., 2015, 11: 168.

doi: 10.1021/ct500957s pmid: 26574215
[55]
Xu S, Yang Q, Wan Y, Chen R, Wang S, Si Y, Yang, B, Liu D, Zheng C, Huang W. J. Mater. Chem. C, 2019, 7: 9523.

doi: 10.1039/C9TC03152A
[56]
Lin L, Fan J, Cai L, Wang C K. Mol. Phys., 2017, 116: 19.

doi: 10.1080/00268976.2017.1362119
[57]
Nelsen S F, Blackstock S C, Kim Y. J. Am. Chem. Soc., 1987, 109: 677.

doi: 10.1021/ja00237a007
[58]
Pei Z, Ou Q, Mao Y, Yang J, Lande A, Plasser F, Liang W, Shuai Z, Shao Y. J. Phys. Chem. Lett., 2021, 12: 2712.

doi: 10.1021/acs.jpclett.1c00094
[59]
Reimers J R. J. Chem. Phys., 2001, 115: 9103.

doi: 10.1063/1.1412875
[60]
Lower S, El-Sayed M. Chem. Rev., 1966, 66: 199.

doi: 10.1021/cr60240a004
[61]
THOMAS L H. Nature, 1926, 117: 514.
[62]
Chen T, Zheng L, Yuan J, An Z, Chen R, Tao Y, Li H, Xie X, Huang W. Sci. Rep., 2015, 5: 10923.

doi: 10.1038/srep10923
[63]
Lu F, Kitamura N, Takaya T, Iwata K, Nakanishi T, Kurashige Y. Phys. Chem. Chem. Phys., 2018, 20: 3258.

doi: 10.1039/C7CP06811E
[64]
Serdiuk I E, Monka M, Kozakiewicz K, Liberek B, Bojarski P, Park S Y. J. Phys. Chem. B, 2021, 125: 2696.

doi: 10.1021/acs.jpcb.0c10605
[65]
Peng Q, Fan D, Duan R, Yi Y, Niu Y, Wang D, Shuai Z. J. Phys. Chem. C, 2017, 121: 13448.

doi: 10.1021/acs.jpcc.7b00692
[66]
Zhang X, Jacquemin D, Peng Q, Shuai Z, Escudero D. J. Mater. Chem. C, 2018, 122: 6340.
[67]
Niu Y, Li W, Peng Q, Geng H, Yi Y, Wang L, Nan G, Wang D, Shuai Z G. Mol. Phys., 2018, 116: 1078.

doi: 10.1080/00268976.2017.1402966
[68]
Freidzon A Y, Bagaturyants A A. J. Phys. Chem. A, 2020, 124: 7927.

doi: 10.1021/acs.jpca.0c06440
[69]
Gibson J, Monkman A P, Penfold T J. Chemphyschem, 2016, 17: 2956.

doi: 10.1002/cphc.201600662 pmid: 27338655
[70]
Etherington M K, Gibson J, Higginbotham H F, Penfold T J, Monkman A P. Nat. Commun., 2016, 7: 13680.

doi: 10.1038/ncomms13680 pmid: 27901046
[71]
Park S W, Yang J H, Choi H, Rhee Y M, Kim D. J. Phys. Chem. A, 2020, 124: 10384.

doi: 10.1021/acs.jpca.0c09439 pmid: 33245236
[72]
Samanta P K, Kim D, Coropceanu V, BrÉdas J L. J. Am. Chem. Soc., 2017, 139: 4042.

doi: 10.1021/jacs.6b12124 pmid: 28244314
[73]
Olivier Y, Sancho-Garcia J C, Muccioli L, D’Avino G, Beljonne D. J. Phys. Chem. Lett., 2018, 9: 6149.

doi: 10.1021/acs.jpclett.8b02327 pmid: 30265539
[74]
Olivier Y, Moral M, Muccioli L, Sancho-García J C. J. Mater. Chem. C, 2017, 5: 5718.

doi: 10.1039/C6TC05075A
[75]
Huet L, Perfetto A, Muniz-Miranda F, Campetella M, Adamo C, Ciofini I. J. Chem. Theory Comput., 2020, 16: 4543.

doi: 10.1021/acs.jctc.0c00296
[76]
Chen X K, Kim D, BrÉdas J L. Acc. Chem. Res., 2018, 51: 2215.

doi: 10.1021/acs.accounts.8b00174
[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[3] Zhuke Gong, Hui Xu. Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials [J]. Progress in Chemistry, 2022, 34(11): 2432-2461.
[4] Jiang He, Jin Jibiao, Chen Runfeng, Zheng Chao, Huang Wei. Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures [J]. Progress in Chemistry, 2016, 28(12): 1811-1823.
[5] Qie Jia, Li Ming, Liu Li, Liang Yinghua, Cui Wenquan*. Research of Photocatalyst g-C3N4 Using First Principles [J]. Progress in Chemistry, 2016, 28(10): 1569-1577.
[6] Zhong Bofan, Wang Shirong, Xiao Yin, Li Xianggao. Bipolar Blue Fluorescent Materials for Organic Light-Emitting Devices [J]. Progress in Chemistry, 2015, 27(8): 986-1001.
[7] Tian Zhimei, Liu Wangdan, Cheng Longjiu. Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters [J]. Progress in Chemistry, 2015, 27(12): 1743-1753.
[8] Liu Shaoming, Yu Bo, Zhang Wenqiang, Zhu Jianxin, Zhai Yuchun, Chen Jing. Atomic-Scale Insights into the Oxygen Ionic Transport Mechanisms of Oxygen Electrode in Solid Oxide Cells:A Review [J]. Progress in Chemistry, 2014, 26(09): 1570-1585.
[9] Dongqi Wang, Wilfred F. van Gunsteren. Recent Advances in Computational Actinide Chemistry [J]. Progress in Chemistry, 2011, 23(7): 1566-1581.
[10] Zhu Chongqiang Yang Chunhui Sun Liang. the Research of Point Defects in CdGeAs2 Nonlinear Optical Crystals [J]. Progress in Chemistry, 2010, 22(0203): 315-321.
[11] gepin yin pengjian zuo. Progress on First Principle Calculations of Cathode in Li-Ion Batteries [J]. Progress in Chemistry, 2008, 20(11): 1827-1833.
[12] Liu Wenjian**. New Advances in Relativistic Quantum Chemistry [J]. Progress in Chemistry, 2007, 19(06): 833-851.
[13] . Recent Progress in Density Functional Theory and Its Numerical Methods [J]. Progress in Chemistry, 2005, 17(02): 192-202.
[14] Dai Ying,Li Lemin. Applications of Density Functional Theory to Dealing with Excited States and Multiplets of Molecules [J]. Progress in Chemistry, 2001, 13(03): 167-.