中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 411-433 DOI: 10.7536/PC210211 Previous Articles   Next Articles

• Review •

Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes

Tingting Zhang(), Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu   

  1. Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
  • Received: Revised: Online: Published:
  • Contact: Tingting Zhang
  • Supported by:
    National Natural Science Foundation of China(21401120); China Postdoctoral Science Foundation(2018M641243); Postgraduate Education Reform Project of Shanxi Province of China(2019JG126); Education Reform and Innovation Project of Shanxi Province of China(J2020122); Education Reform and Innovation Project of Shanxi Normal University(2019JGXM-01)
Richhtml ( 41 ) PDF ( 697 ) Cited
Export

EndNote

Ris

BibTeX

The emitting materials with thermally activated delayed fluorescence (TADF) characteristics have received increasing attention in recent years. As a typical d10 metal, Cu(Ⅰ) is the most widely investigated one used to construct d10 metal-organic complexes. The copper metal-organic complexes often have certain superior luminescence properties because they can harvest both singlet and triplet excitons and exhibit much higher luminescence quantum yields close to 100%. They are cost-effectiveness and comparable with phosphorescent materials in terms of device efficiency. In addition, they have lowlying metal to ligand charge transfer(MLCT) excited states with small energy difference between the lowest singlet state and the lowest triplet state (ΔEST), which is a key point to facilitate the reverse intersystem crossing (RISC) process in tuning triplet excitons to singlet excitons for TADF emission. Meanwhile, the energy difference can be adjusted by different ligands or substituents. In this paper, we summarize and analyze the structure and luminescent properties of TADF copper complexes reported in recent five years, according to the types of the coordination atoms. These complexes are classified into four classes,and the coordination atoms are mainly N, P, X (halogen), C, S(O). We mainly discuss the effects of the structures on the luminescent properties. Finally, the potential applications in organic light-emitting diodes(OLEDs) are also prospected.

Contents

1 Introduction

2 TADF copper complexes with N and P coordination atoms

2.1 Mononuclear copper complexes with N and P coordination atoms

2.2 Binuclear copper complexes with N and P coordination atoms

3 TADF copper complexes with N, P, X (halogen) coordination atoms

3.1 Mononuclear copper complexes with N, P, X (halogen) coordination atoms

3.2 Binuclear copper complexes with N, P, X (halogen) coordination atoms

3.3 Polynuclear copper complexes with N, P, X (halogen) coordination atoms

4 TADF copper complexes with N, P, C coordination atoms

4.1 Copper complexes containing carbine ligands

4.2 Copper complex containing (iso-) cyanide ligand

5 TADF copper complexes with N, P, O(S) coordination atoms

5.1 Mononuclear copper complexes with N, P, O(S) coordination atoms

5.2 Binuclear copper complexes with N, P, O(S) coordination atoms

5.3 Polynuclear copper complexes with N, P, O(S) coordination atoms

6 TADF copper complexes by theoretical studying and designing

7 Summary and outlook

Table 1 Ligands and photophysical properties of mononuclear copper complexes with N and P coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE
(cd/A)
ref
1 POP, N^N 0.08d ~290, ~350 464 82 28 - - 31
2 POP, N^N 0.10d ~290, ~350 477 99 29 - - 31
3 POP, N^N 0.14d ~290, ~370 479 83 25 - - 31
4 POP, N^N 0.20d ~290, ~350 471 84 37 - - 31
5 POP, N^N 0.10d ~290, ~370 481 87 25 - - 31
6 POP, PNNA 0.12 ~270, ~370 493 60.9 145 5.83 14.01 32
7 PNNA, Xantphos 0.12 ~270, ~370 475 40.7 51 7.42 20.24 32
8 POP, ECAF 0.09 231, 288, 354 550 22.4 5.7 14.81 47.03 33
9 POP, EHCAF 0.09 231, 288, 354 549 18.5 5.7 11.17 35.61 33
10 POP, PCAF 0.09 243, 291, 348 556 20.0 5.7 6.67 21.33 33
11 POP, czpzpy 0.18 - 518 98 23 6.34 17.34 34
12 POP, pptz 0.04 283, 342 512 27.82 13.0 - 2.1 35
13 DPEPhos, PyrTet - 260, 281 512 - 11.5 - - 22
14 DPEPhos, DPS 0.04 ~280, ~350, 525 4 - - - 36
15 DPEPhos, DPSO2 0.05 ~260, ~420, 575 < 1 - - - 36
16c POP, phen 0.21 390 560 13 2.1 - - 37
17c POP, TDZP 0.14 395 594 6 1.2 - - 37
18c POP, PhenSe 0.12 400 605 8 0.8 - - 37
20 neocuproine, dppnc 0.14d 265, 303, 393 497 38.9 15.3 15.2 48.1 39
21 neocuproine, dppnc 0.20d 272, 327, 447 588 6.6 5.5 9.0 24.5 39
22 neocuproine, dppnc 0.26d 293, 312, 339, 370, 490 657 4.2 2.1 10.2 11.3 39
23 PPh3, czpzpy 0.13 ~270, ~310, ~370 495 45 134 - - 34
24 PPh3, pptz 0.09 277, 362 490 89.87 23.6 - 1.0 35
25 PPh3, Phen, 0.24 350 550 11 2.7 - - 37
26 PPh3, TDZP, 0.21 370 577 4 1.1 - - 37
27 PPh3, PhenSe 0.14 380 592 8 1.1 - - 37
28 P3, SCN 0.08 - 520 57 4.8 - - 40
29 P4, SCN 0.21d - 543 27 4.9 - - 40
Fig. 1a Structure diagram of complexes 1~18
Fig. 1b Structure diagram of complexes 19~29
Table 2 Ligands and photophysical properties of binuclear copper complexes with N and P coordination atoms
Fig. 2 Structure diagram of complexes 30~40
Table 3 Ligands and photophysical properties of mononuclear copper complexes with N, P, X (halogen) coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
41 POP, 4-NH2py, I 0.18 229, ~310 464 25 8.4 - - 44
42 POP, 4-Me2py, I 0.08 229, 258, ~310 448 20 9.4 - - 44
43 PPh3, dpmb, I 0.10 ~280, ~350 479 53 5.1 - - 45
44 PPh3, dpmb, Br 0.13 ~280, ~350 465 28 5.7 - - 45
45 PPh3, dpmb, Cl 0.15 ~280, ~350 464 23 4.3 - - 45
46 PPh3, dpmt, I 0.20 ~286, 312, 360 447 11 752 - - 46
47 PPh3, dpmt, Br 0.06 ~286, 312, 360 457 11 432 - - 46
48 PPh3, dpmt, Cl 0.10 ~286, 312, 360 460 5 114 2.47 - 46
49 PPh3, dpts, I 0.10 ~253, ~280, ~390 485 41 36.4 - - 47
50 PPh3, dpts, Br 0.10 ~253, ~280, ~390 506 52 48.9 7.74 - 47
51 PPh3, dpts, Cl 0.12 ~253, ~280, ~390 535 29 20.8 - - 47
52 PPh3, dppt, I 0.07 ~269, 305, ~395 515 18 9.0 - - 47
53 PPh3, dppt, Br 0.08 ~269, 305, ~395 535 7 10.0 - - 47
54 PPh3, dppt, Cl 0.06 ~269, 305, ~395 516 3 4.2 - - 47
55 LMe, Cl 0.08 ~300, ~370 517 38 4.6 21.1 67.7 48
56 LMe, Br 0.10 ~300, ~370 512 55 8.0 21.3 65.3 48
57 LMe, I 0.10 ~300, ~370 473 59 7.1 21.2 62.4 48
58 LEt, Br 0.07 ~300, ~370 487 80 6.5 22.5 69.4 48
59 LiPr, Br 0.09 ~300, ~370 486 95 8.9 18.6 55.6 48
60 PPh3, py, Cl 0.09 - 498 98 12 - - 49
61 PPh3, py, Br 0.10 - 483 95 22 - - 49
62 PPh3, py, I 0.10 - 485 90 19 - - 49
63 PPh3, nap, Cl 0.09 - 636 16 1.5 - - 49
64 PPh3, nap, Br 0.08 - 608 44 3.5 - - 49
65 PPh3, nap, I 0.07 - 571 70 5.0 - - 49
66 PPh3, 4-NMe2py, Cl 0.21 229, 258, ~310 442 38 6.8 - - 44
67 PPh3,4-NH2py, I 0.20 229, ~310 436 37 12.8 - - 44
68 tpypo, Cl - - 645 8 3 - - 50
69 tpypo, Br - - 620 18 4 - - 50
70 tpypo, I - ~230,~270, ~330 600 20 4 - - 50
71 tpyps, Cl - - ~645 ~8 ~3 - - 50
72 tpyps, Br - - ~620 ~18 ~4 - - 50
73 tpyps, I - - 595 34 8 - - 50
74 tpypse, I - - 640 4 2 - - 50
75 tpyaso, I - - 600 12 4 - - 50
76 tpym, I - - 550 28 5 - - 50
77 TTPP, Cl 0.01 398, 338, 272, 239 530 76 19 9.6 24.7 51
78 TTPP, Br 0.04 398, 340, 271, 239 523 79 16 12.4 32.7 51
79 TTPP, I 0.05 398, 340, 271, 240 521 83 11 16.3 40.8 51
Fig. 3 Structure diagram of complexes 41~79
Table 4 Ligands and photophysical properties of binuclear copper complexes with N, P, X (halogen) coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
80 N^P, Cl - - 485 92 8.3 - - 52
81 N^P, Br - - 501 52 12.4 - - 52
82 N^P, I - - 484 76 7.3 - - 52
83 dpypp, Cl, - - 528 23 5.0 - - 53
84 dpypp, Br - - 518 50 11.6 - - 53
85 dpypp, I - - 530 74 32.9 - - 53
86 Py3P, Cl 0.19 230~350 550 55 14.5 - - 54
87 Py3P, Br 0.15 230~350 530 53 18.3 - - 54
88 Py3P, I 0.12 230~350 520 51 20.0 - - 54
89 PPh2PAr2, I 0.05 307, 373 488 95 4.9 - - 55
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
90 PPh2PAr2, Br 0.05 309, 373 482 50 6.4 - - 55
91 PPh2PAr2, Cl 0.04 309, 375 490 42 6.3 - - 55
92 dppb, I 0.07 330, ~400 497 99 4.04 - - 56
93 dpppy, I 0.06 330, ~400 548 48 3.96 - - 56
94 dpppyz, I 0.07 330, ~400 638 2 0.41 - - 56
95 dpmb, I 0.12d 282, 332, 370 498 32 2.5 10.1 32.9 57
96 dpmb, Br 0.12d 282, 332, 370 511 28 12.5 7.3 20.4 57
97 dpmb, Cl 0.14d 282, 332, 370 527 29 4.8 8.3 22.9 57
98 dppt1, I 0.07 ~310, ~330 487 69 9.5 7.4 26.3 58
99 dppt2, I 0.05 ~310, ~330 483 86 7.6 14.5 32.2 58
100 L, Cl 0.14 310, 400 602 - - - - 59
101 Py2(Me)P=O, I 0.05 - 558 63 10 - - 60
102 Py2(Et)P=O, I - - 575 26 6.9 - - 60
103 Py2(n-C9H19)P=O, I - - 537 21 8.8 - - 60
104 Py2(Bn)P=O, I - - 536 46 5.9 - - 60
105 Py2(1-NpCH2)P=O - - 576 3 1.9 - - 60
106 PPh3, pyrpy, I 0.21d - 435 24 2.3 - - 61
107 P(m-tol)3, pyrpy, I 0.21d - 452 31 2.6 - - 61
108 P(p-tol)3, pyrpy, I 0.20d - 449 51 4.3 - - 61
109 PPh3, 3-tpyb, I 0.08d - 545 29 6.0 - - 62
110 PPh3, 4-tpyb, I 0.08d - 498 27 12.5 - - 62
111 PPh3, 3,3'-bpy, I 0.07 - 495 78 7.6 - - 63
112 PTol3, 3,3'-bpy, I 0.08 - 514 58 3.3 - - 63
113 PTol3, 4,4'-bpy, I 0.06 - 632 17 0.9 - - 63
114 P1, pyridine, I 0.05 - 485 42 20.5 - - 64
115 MePyrPHOS, P(m-tol)3, I - - 550 75 6.9 11.4 36.4 65
116 MePyrPHOS, P(iPrO)3, I - - - - 3.0 - - 66
117 MePyrPHOS,
P(pMeOPh)3, I
- - - - 4.0 - - 66
118 P^N, I 0.05 320, 350~415 488 85 7.0 - - 67
119 b, L1, I 0.03 250 524 93 5.8 - - 68
120 c, L1, I - 265 541 70 5.5 - - 68
121 d, L1, I - 250 528 80 10.2 - - 68
122 b, L2, I 0.02 250 519 89 5.5 - - 68
123 c, L2, I 0.05d 266 524 90 5.5 - - 68
124 d, L2, I 0.05d 250 524 76 6.8 - - 68
125 a, L3, I - 250 549 73 5.1 - - 68
126 b, L3, I - 250 539 73 7.3 - - 68
127 a, L4, I 0.05d 250 547 79 5.5 - - 68
128 b, L4, I 0.05d 250 519 88 6.3 - - 68
129 L', I - - 571 42 1.2 - - 69
130 L', I - - 606 57 1.0 - - 69
Fig. 4a Structure diagram of complexes 80~108
Fig. 4b Structure diagram of complexes 109~130
Table 5 Ligands and photophysical properties of copper complexes with N, P, C coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
131 MAC*,CzCN2 - - 438 5 0.37(33%)
1.8(67%)
- - 71
132 MAC*,CzCN - - 474 76 0.75 - - 71
133 MAC*,Cz 0.06 - 492 53 0.84 19.4 - 71
134 DAC*, CzCN2 - - 550 68 1.0 - - 71
135 DAC*,CzCN - - 616 15 0.33 - - 71
136 DAC*, Cz - - 658 12 0.39 - - 71
137 IPr, py2-BMe2, 0.09d - 475 76 11 - - 72
139 IPr, dpa 0.10 260, 315 463 22 13 - 7×10-3 73
140 IPr, dpym 0.12 269, 315 473 15 6 - 1×10-3 73
141 IPr, dpyp 0.10 265, 305 474 73 14 - 0.2 73
142 IPr, PPhpy2 0.10 244, 279, 330 503 86 13 - 0.4 73
143 Pyim, POP - ~260, ~310, ~ 370 520 56 79.84 - - 74
144 Qbim, POP - ~270, ~330 570 35 31.97(78.99%)
252.2(21.01%)
- - 74
145 Me-Pyim, POP - ~220, ~280, 400 489 61 51.5 - - 75
146 MeO-Pyim, POP - ~220, ~280, 421 510 69 57.1 - - 75
147 F-Pyim, POP - ~220,~280,424 518 42 52.4 - - 75
148 Cl-Pyim, POP - ~220,~280,440 539 58 82.4 - - 75
149 Ph-BenIm-methylPy, POP 0.13 ~290, ~330 493 96 63 - - 76
150 Ph-Im-methylPy, POP 0.11 ~270, ~320 487 100 56 - - 76
151 IMesPicCl, Cl 0.12 ~370 550 49 11 - - 77
152 IMesPicH, Cl 0.08 ~330 520 59 11 - - 77
153 IMesPicMe, Cl 0.08 ~400 523 68 9.2 - - 77
155 2,9-Me2phen,CNB(C6F5),
CN(2,6-Me2C6H3)
- 277, 296, 311, 354 564 3 3 - - 78
156 2,9-Me2phen,CNB(C6F5)3,
CN(2,6-iPr2C6H3)
- 275, 297, 312, 358 548 13 10 - - 78
157 2,9-Me2phen, NB(C6F5)3,
CN(2,4,6-Cl3C6H2)
- 278, 297, 336, 351 558 6 5.2 - - 78
158 2,9-Me2phen, NB(C6F5)3,
CN(2,4,6-Br3C6H3)
- 275, 296, 313, 338, 354 560 2 5.2 - - 78
159 2,9-Me2phen, NB(C6F5)3,
CN(3,5-(CF3)2C6H3)
- 276, 295, 309, 338, 353 551 3 9.1 - - 78
160 2,9-Me2phen, NB(C6F5)3,
CN(4-SF5C6H4)
- 275, 295, 333, 350 563 5 7.1 - - 78
161 dpmp, CN - 377 530 9 22 - - 79
Fig. 5 Structure diagram of complexes 131~161
Table 6 Ligands and photophysical properties of copper complexes with N, P, O(S) coordination atoms
Fig. 6 Structure diagram of complexes 162~178
Fig. 7 Structure diagram of complexes 179~195
[1]
Huang T, Jiang W, Duan L. J. Mater. Chem. C, 2018, 6(21): 5577.

doi: 10.1039/C8TC01139G
[2]
El Sayed Moussa M, Khalil A M, Evariste S, Wong H L, Delmas V, Le Guennic B, Calvez G, Costuas K, Yam V W W, Lescop C. Inorg. Chem. Front., 2020, 7(6): 1334.

doi: 10.1039/C9QI01595G
[3]
Ravaro L P, Zanoni K P S, de Camargo A S S, Energy Rep., 2020, 6: 37.
[4]
Jiang Y B, Li H H, Tao Y, Chen R F, Huang W. Prog. Chem., 2019, 31(8): 1116.
( 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 化学进展, 2019, 31(8): 1116.)

doi: 10.7536/PC190125
[5]
Gan L. Doctoral Dissertation of South China University of Technology, 2020.
( 甘霖. 华南理工大学博士论文, 2020. ).
[6]
Li G J, Zhu Z Q, Chen Q D, Li J. Org. Electron., 2019, 69: 135.

doi: 10.1016/j.orgel.2019.02.022
[7]
Nozaki K, Iwamura M. Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence, Chapter 2, 1st ed.ed. FRA: Wiley-VCH Verlag GmbH & Co. KGaA, 2019, 61.
[8]
Osawa M, Hoshino M. Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence, Chapter 4, 1st ed.ed. FRA: Wiley-VCH Verlag GmbH & Co. KGaA, 2019, 119.
[9]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26(47): 7931.

doi: 10.1002/adma.v26.47
[10]
Parker C A, Hatchard C G. Trans. Faraday Soc., 1961, 57: 1894.

doi: 10.1039/tf9615701894
[11]
Blasse G, McMillin D R. Chem. Phys. Lett., 1980, 70(1): 1.

doi: 10.1016/0009-2614(80)80047-9
[12]
Salazar F A, Fedorov A, Berberan-Santos M N. Chem. Phys. Lett., 1997, 271(4/6): 361.

doi: 10.1016/S0009-2614(97)00469-7
[13]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21(47): 4802.

doi: 10.1002/adma.200900983
[14]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.

doi: 10.1038/nature11687
[15]
Leitl M J, Zink D M, Schinabeck A, Baumann T, Volz D, Yersin H. Top. Curr. Chem., 2016, 374(3): 1.
[16]
Zheng C, Dai Y Z, Chen L F, Li M G, Chen R F, Huang W. Progress in Chemistry, 2020, 32(9): 1352.

doi: 10.7536/PC200102
( 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 化学进展, 2020, 32(9): 1352.)

doi: 10.7536/PC200102
[17]
Yu J, Xiao Y F, Chen J X. Chin. J. Org. Chem., 2019, 39(12): 3460.

doi: 10.6023/cjoc201906019
( 俞佳, 肖雅方, 陈嘉雄. 有机化学, 2019, 39(12): 3460.)

doi: 10.6023/cjoc201906019
[18]
Jiang H, Jin J B, Chen R F, Zheng C, Huang W. Prog. Chem., 2016, 28(12): 1811.

doi: 10.7536/PC160520
( 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 化学进展, 2016, 28(12): 1811.)

doi: 10.7536/PC160520
[19]
Wang Z Q, Bai M D, Zhang M, Zhang Z Q, Feng X, Zheng C J. Acta Chim. Sinica, 2020, 78(2): 140.

doi: 10.6023/A19100372
( 王志强, 白美丹, 张明, 张智强, 冯勋, 郑才俊. 化学学报, 2020, 78(2): 140. )

doi: 10.6023/A19100372
[20]
Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F. Adv. Mater., 2004, 16(5): 432.

doi: 10.1002/(ISSN)1521-4095
[21]
Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F. Adv. Funct. Mater., 2006, 16(9): 1203.

doi: 10.1002/(ISSN)1616-3028
[22]
Bergmann L, Hedley G J, Baumann T, Bräse S, Samuel I D W. Sci. Adv., 2016, 2(1): e1500889.

doi: 10.1126/sciadv.1500889
[23]
Zhang Y, Schulz M, Wächtler M, Karnahl M, Dietzek B. Coord. Chem. Rev., 2018, 356: 127.

doi: 10.1016/j.ccr.2017.10.016
[24]
Bizzarri C, Hundemer F, Busch J, Bräse S. Polyhedron, 2018, 140: 51.

doi: 10.1016/j.poly.2017.11.032
[25]
Shen L. Doctoral Dissertation of Jilin University, 2020.
( 沈璐. 吉林大学博士论文, 2020. ).
[26]
Wu K L, Zhang T, Zhan L S, Zhong C, Gong S L, Lu Z H, Yang C L. Adv. Opt. Mater., 2016, 4(10): 1558.

doi: 10.1002/adom.v4.10
[27]
Peng Q, Fan D, Duan R H, Yi Y P, Niu Y L, Wang D, Shuai Z G. J. Phys. Chem. C, 2017, 121(25): 13448.

doi: 10.1021/acs.jpcc.7b00692
[28]
He T F, Ren A M, Chen S M, Yang Z Y, Yu P Y, Chen Y N, Ding X L, Shen L, Zhang H X, Zou L Y. Org. Electron., 2017, 45: 9.

doi: 10.1016/j.orgel.2017.02.039
[29]
Stoïanov A, Gourlaouen C, Vela S, Daniel C. J. Phys. Chem. A, 2018, 122(5): 1413.

doi: 10.1021/acs.jpca.7b11793 pmid: 29323493
[30]
Wang Q, Gao Y J, Zhang T T, Han J, Cui G L. RSC Adv., 2019, 9(36): 20786.

doi: 10.1039/C9RA02256B
[31]
Zhang Q, Chen J, Wu X Y, Chen X L, Yu R M, Lu C Z. Dalton Trans., 2015, 44(15): 6706.

doi: 10.1039/c5dt00865d pmid: 25784048
[32]
Liang D, Chen X L, Liao J Z, Hu J Y, Jia J H, Lu C Z. Inorg. Chem., 2016, 55(15): 7467.

doi: 10.1021/acs.inorgchem.6b00763 pmid: 27404980
[33]
Zhang F L, Guan Y Q, Chen X L, Wang S S, Liang D, Feng Y F, Chen S F, Li S Z, Li Z Y, Zhang F Q, Lu C Z, Cao G X, Zhai B. Inorg. Chem., 2017, 56(7): 3742.

doi: 10.1021/acs.inorgchem.6b01847 pmid: 28304161
[34]
Chen X L, Lin C S, Wu X Y, Yu R M, Teng T, Zhang Q K, Zhang Q, Yang W B, Lu C Z. J. Mater. Chem. C, 2015, 3(6): 1187.

doi: 10.1039/C4TC02255F
[35]
Xu H, Yang T, Wang F, Zhang J, Zhang X, Wang H, Xu B. J. Lumin., 2019, 205: 82.

doi: 10.1016/j.jlumin.2018.08.072
[36]
Brown C M, Li C F, Carta V, Li W B, Xu Z, Stroppa P H F, Samuel I D W, Zysman-Colman E, Wolf M O. Inorg. Chem., 2019, 58(11): 7156.

doi: 10.1021/acs.inorgchem.8b03500
[37]
Farias G, Salla C A M, Heying R S, Bortoluzzi A J, Curcio S F, Cazati T, dos Santos P L, Monkman A P, de Souza B, Bechtold I H. J. Mater. Chem. C, 2020, 8(41): 14595.

doi: 10.1039/D0TC03660A
[38]
Weber M D, Garino C, Volpi G, Casamassa E, Milanesio M, Barolo C, Costa R D. Dalton Trans., 2016, 45(21): 8984.

doi: 10.1039/C6DT00970K
[39]
So G K M, Cheng G, Wang J, Chang X Y, Kwok C C, Zhang H X, Che C M. Chem. Asian J., 2017, 12(13): 1677.

doi: 10.1002/asia.v12.13
[40]
Chakkaradhari G, Eskelinen T, Degbe C, Belyaev A, Melnikov A S, Grachova E V, Tunik S P, Hirva P, Koshevoy I O. Inorg. Chem., 2019, 58(6): 3646.

doi: 10.1021/acs.inorgchem.8b03166 pmid: 30793896
[41]
Chen J, Teng T, Wang J Y, Kang L J, Chen X L, Xu L J, Yu R M, Lu C Z. Eur. J. Inorg. Chem., 2016, 2016(18): 3036.

doi: 10.1002/ejic.v2016.18
[42]
Lin L, Chen D H, Yu R M, Chen X L, Zhu W J, Liang D, Chang J F, Zhang Q, Lu C Z. J. Mater. Chem. C, 2017, 5(18): 4495.

doi: 10.1039/C7TC00443E
[43]
Artem’ev A V, Davydova M P, Berezin A S, Ryzhikov M R, Samsonenko D G. Inorg. Chem., 2020, 59(15): 10699.

doi: 10.1021/acs.inorgchem.0c01171
[44]
Huang C H, Wen M, Wang C Y, Lu Y F, Huang X H, Li H H, Wu S T, Zhuang N F, Hu X L. Dalton Trans., 2017, 46(5): 1413.

doi: 10.1039/C6DT03965K
[45]
Zhang W J, Zhou Z X, Liu L, Zhong X X, Asiri A M, Alamry K A, Li F B, Zhu N Y, Wong W Y, Qin H M. J. Lumin., 2018, 196: 425.

doi: 10.1016/j.jlumin.2017.12.064
[46]
Wei Q, Zhang R, Liu L, Zhong X X, Wang L, Li G H, Li F B, Alamry K A, Zhao Y. Dalton Trans., 2019, 48(30): 11448.

doi: 10.1039/C9DT01548E
[47]
Guo B K, Yang F, Wang Y Q, Wei Q, Liu L, Zhong X X, Wang L, Gong J K, Li F B, Wong W Y, Alamry K A, Zhao Y. J. Lumin., 2020, 220: 116963.

doi: 10.1016/j.jlumin.2019.116963
[48]
Osawa M, Hoshino M, Hashimoto M, Kawata I, Igawa S, Yashima M. Dalton Trans., 2015, 44(18): 8369.

doi: 10.1039/C4DT02853H
[49]
Ohara H, Kobayashi A, Kato M. Comptes Rendus Chimie, 2015, 18(7): 766.

doi: 10.1016/j.crci.2015.03.003
[50]
Gneuß T, Leitl M J, Finger L H, Rau N, Yersin H, Sundermeyer J. Dalton Trans., 2015, 44(18): 8506.

doi: 10.1039/c4dt02631d pmid: 25434594
[51]
Zhang J, Duan C B, Han C M, Yang H, Wei Y, Xu H. Adv. Mater., 2016, 28(28): 5975.

doi: 10.1002/adma.201600487
[52]
Hofbeck T, Monkowius U, Yersin H. J. Am. Chem. Soc., 2015, 137(1): 399.

doi: 10.1021/ja5109672 pmid: 25486064
[53]
Kobayashi A, Hasegawa T, Yoshida M, Kato M. Inorg. Chem., 2016, 55(5): 1978.

doi: 10.1021/acs.inorgchem.5b02160 pmid: 26866384
[54]
Baranov A Y, Berezin A S, Samsonenko D G, Mazur A S, Tolstoy P M, Plyusnin V F, Kolesnikov I E, Artem'ev A V. Dalton Trans., 2020, 49(10): 3155.

doi: 10.1039/d0dt00192a pmid: 32083636
[55]
Kang L J, Chen J, Teng T, Chen X L, Yu R M, Lu C Z. Dalton Trans., 2015, 44(25): 11649.

doi: 10.1039/C5DT01292A
[56]
Okano Y, Ohara H, Kobayashi A, Yoshida M, Kato M. Inorg. Chem., 2016, 55(11): 5227.

doi: 10.1021/acs.inorgchem.6b00161 pmid: 27152774
[57]
Hong X, Wang B, Liu L, Zhong X X, Li F B, Wang L, Wong W Y, Qin H M, Lo Y H. J. Lumin., 2016, 180: 64.

doi: 10.1016/j.jlumin.2016.08.004
[58]
Li X Y, Zhang J Y, Zhao Z F, Yu X, Li P C, Yao Y H, Liu Z W, Jin Q H, Bian Z Q, Lu Z H, Huang C H. ACS Appl. Mater. Interfaces, 2019, 11(3): 3262.

doi: 10.1021/acsami.8b15897
[59]
Tosolini M, AvÓ J, Parola A J, Balducci G, Tecilla P. Eur. J. Inorg. Chem., 2020, 2020(40): 3859.

doi: 10.1002/ejic.v2020.40
[60]
Artem'ev A V, Ryzhikov M R, Taidakov I V, Rakhmanova M I, Varaksina E A, Bagryanskaya I Y, Malysheva S F, Belogorlova N A. Dalton Trans., 2018, 47(8): 2701.

doi: 10.1039/C7DT04758D
[61]
Liang P Y, Kobayashi A, Sameera W M C, Yoshida M, Kato M. Inorg. Chem., 2018, 57(10): 5929.

doi: 10.1021/acs.inorgchem.8b00439
[62]
Kobayashi A, Yoshida Y, Yoshida M, Kato M. Chem. Eur. J., 2018, 24(55): 14750.

doi: 10.1002/chem.v24.55
[63]
Kobayashi A, Ehara T, Yoshida M, Kato M. Inorg. Chem., 2020, 59(14): 9511.

doi: 10.1021/acs.inorgchem.0c00341 pmid: 32614600
[64]
Egly J, Bissessar D, Achard T, Heinrich B, Steffanut P, Mauro M, Bellemin-Laponnaz S. Inorganica Chimica Acta, 2021, 514: 119971.

doi: 10.1016/j.ica.2020.119971
[65]
Wallesch M, Verma A, FlÉchon C, Flügge H, Zink D M, Seifermann S M, Navarro J M, Vitova T, Göttlicher J, Steininger R, Weinhardt L, Zimmer M, Gerhards M, Heske C, Bräse S, Baumann T, Volz D. Chem. Eur. J., 2016, 22(46): 16400.

doi: 10.1002/chem.201603847
[66]
Zimmer M, Dietrich F, Volz D, Bräse S, Gerhards M. ChemPhysChem, 2017, 18(21): 3023.

doi: 10.1002/cphc.201700753
[67]
Schinabeck A, Leitl M J, Yersin H. J. Phys. Chem. Lett., 2018, 9(11): 2848.

doi: 10.1021/acs.jpclett.8b00957 pmid: 29750529
[68]
Busch J M, Zink D M, di Martino-Fumo P, Rehak F R, Boden P, Steiger S, Fuhr O, Nieger M, Klopper W, Gerhards M, Bräse S. Dalton Trans., 2019, 48(41): 15687.

doi: 10.1039/C9DT02447F
[69]
Wallesch M, Volz D, Zink D M, Schepers U, Nieger M, Baumann T, Bräse S. Chem. Eur. J., 2014, 20(22): 6578.

doi: 10.1002/chem.v20.22
[70]
Elistratova J, Faizullin B, Dayanova I, Strelnik I, Strelnik A, Gerasimova T, Fayzullin R, Babaev V, Khrizanforov M, Budnikova Y, Musina E, Katsyuba S, Karasik A, Mustafina A, Sinyashin O. Inorganica Chimica Acta, 2019, 498: 119125.

doi: 10.1016/j.ica.2019.119125
[71]
Shi S Y, Jung M C, Coburn C, Tadle A, Sylvinson M R D, Djurovich P I, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2019, 141(8): 3576.

doi: 10.1021/jacs.8b12397
[72]
Leitl M J, Krylova V A, Djurovich P I, Thompson M E, Yersin H. J. Am. Chem. Soc., 2014, 136(45): 16032.

doi: 10.1021/ja508155x
[73]
Elie M, Weber M D, di Meo F, Sguerra F, Lohier J F, Pansu R B, Renaud J L, Hamel M, Linares M, Costa R D, Gaillard S. Chem. Eur. J., 2017, 23(64): 16328.

doi: 10.1002/chem.v23.64
[74]
Wang Z Q, Zheng C J, Wang W Z, Xu C, Ji B M, Zhang X H. Inorg. Chem., 2016, 55(5): 2157.

doi: 10.1021/acs.inorgchem.5b02546
[75]
Wang Z Q, Sun X J, Fu W J, Xu C, Ji B M. J. Lumin., 2018, 204: 618.

doi: 10.1016/j.jlumin.2018.08.064
[76]
Wang J L, Chen H Y, Xu S X, Su Q Z, Zhao F, He H F. J. Photochem. Photobiol. A: Chem., 2020, 387: 112104.

doi: 10.1016/j.jphotochem.2019.112104
[77]
Nitsch J, Lacemon F, Lorbach A, Eichhorn A, Cisnetti F, Steffen A. Chem. Commun., 2016, 52(14): 2932.

doi: 10.1039/C5CC09659F
[78]
Chan K C, Cheng S C, Lo L T L, Yiu S M, Ko C C. Eur. J. Inorg. Chem., 2018, 2018(7): 897.

doi: 10.1002/ejic.v2018.7
[79]
Evariste S, El Sayed Moussa M, Wong H L, Calvez G, Yam V W W, Lescop C. Z. Anorg. Allg. Chem., 2020, 646(13): 754.

doi: 10.1002/zaac.v646.13
[80]
Osawa M. Chem. Commun., 2014, 50(15): 1801.

doi: 10.1039/c3cc47871h
[81]
Vogler A. Inorg. Chem. Commun., 2017, 82: 31.

doi: 10.1016/j.inoche.2017.05.007
[82]
Kobayashi A, Arata R, Ogawa T, Yoshida M, Kato M. Inorg. Chem., 2017, 56(8): 4280.

doi: 10.1021/acs.inorgchem.6b02578 pmid: 28079372
[83]
Artem'ev A V, Doronina E P, Rakhmanova M I, Tarasova O A, Bagryanskaya I Y, Nedolya N A. Inorg. Chem. Front., 2019, 6(3): 671.

doi: 10.1039/C8QI01302K
[84]
Lv L, Yuan K, Wang Y C. Phys. Chem. Chem. Phys., 2018, 20(9): 6548.

doi: 10.1039/C7CP08264A
[85]
Czerwieniec R, Yu J B, Yersin H. Inorg. Chem., 2011, 50(17): 8293.

doi: 10.1021/ic200811a pmid: 21812428
[86]
Lv L, Liu K, Yuan K, Zhu Y C, Wang Y C. RSC Adv., 2018, 8(50): 28421.

doi: 10.1039/C8RA04978E
[87]
Gao Y J, Chen W K, Wang Z R, Fang W H, Cui G L. Phys. Chem. Chem. Phys., 2018, 20(38): 24955.

doi: 10.1039/C8CP03657H
[88]
Schinabeck A, Rau N, Klein M, Sundermeyer J, Yersin H. Dalton Trans., 2018, 47(47): 17067.

doi: 10.1039/c8dt04093a pmid: 30465052
[89]
Gneuß T, Leitl M J, Finger L H, Yersin H, Sundermeyer J. Dalton Trans., 2015, 44(46): 20045.

doi: 10.1039/c5dt03065j pmid: 26525145
[90]
He T F, Ren A M, Chen Y N, Hao X L, Shen L, Zhang B H, Wu T S, Zhang H X, Zou L Y. Inorg. Chem., 2020, 59(17): 12039.

doi: 10.1021/acs.inorgchem.0c00980
[91]
Cheng G, So G K M, To W P, Chen Y, Kwok C C, Ma C S, Guan X G, Chang X Y, Kwok W M, Che C M. Chem. Sci., 2015, 6(8): 4623.

doi: 10.1039/c4sc03161j pmid: 29142704
[92]
Schinabeck A, Chen J, Kang L J, Teng T, Homeier H H H, Suleymanova A F, Shafikov M Z, Yu R M, Lu C Z, Yersin H. Chem. Mater., 2019, 31(12): 4392.

doi: 10.1021/acs.chemmater.9b00671
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[4] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[5] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[6] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[7] Zhiwen Yang, Yingying Zhan, Shaomin Ji, Qingdan Yang, Qi Li, Yanping Huo. Boron-Containing Organic Light-Emitting Diodes: Materials and Devices [J]. Progress in Chemistry, 2019, 31(6): 906-928.
[8] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[9] Qinshan Cai, Shirong Wang, Yin Xiao, Xianggao Li. Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials [J]. Progress in Chemistry, 2018, 30(8): 1202-1221.
[10] Yuanyuan Qi, Mingguang Li, Honglei Wang, Wen Zhang, Runfeng Chen*, Wei Huang*. Applications of Novel Hole-Transporting Material Copper(Ⅰ) Thiocyanate (CuSCN) in Optoelectronic Devices [J]. Progress in Chemistry, 2018, 30(6): 785-796.
[11] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.
[12] Qifeng Ding, Yaqiong Yang, Wenjun Miao, He Huang, Yang Yu*, Fei Huang*. Synthesis of Heterocycles Based on Ketene N,S-Acetals [J]. Progress in Chemistry, 2018, 30(11): 1615-1623.
[13] Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Yi Hu, Zhifang Chai. Neurotoxicity of Key Metals in Parkinson's Disease [J]. Progress in Chemistry, 2018, 30(10): 1592-1600.
[14] Jiang He, Jin Jibiao, Chen Runfeng, Zheng Chao, Huang Wei. Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures [J]. Progress in Chemistry, 2016, 28(12): 1811-1823.
[15] Zhong Bofan, Wang Shirong, Xiao Yin, Li Xianggao. Bipolar Blue Fluorescent Materials for Organic Light-Emitting Devices [J]. Progress in Chemistry, 2015, 27(8): 986-1001.