中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1815-1830 DOI: 10.7536/PC210927 Previous Articles   Next Articles

• Review •

Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules

Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu(), Jinbiao Liu()   

  1. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Ganzhou 341000, China
  • Received: Revised: Online: Published:
  • Contact: Kunming Liu, Jinbiao Liu
  • Supported by:
    Natural Science Foundation of China(21762018); Natural Science Foundation of China(21961014); Science and Technology Project Founded by the Education Department of Jiangxi Province(GJJ160668); Jiangxi Provincial Natural Science Foundation(20202BABL213007); Jiangxi Provincial Natural Science Foundation(20212BAB203013); Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018); National Training Programs of Innovation and Entrepreneurship for Undergraduates(202110407006)
Richhtml ( 45 ) PDF ( 587 ) Cited
Export

EndNote

Ris

BibTeX

O-phenylenediamine (OPD) can be easily oxidized by a variety of oxidants to form yellow fluorescent substance 2, 3-diaminophenazine (OPDox), and the unique responding mechanism provides a principle in the design of reaction-based colorimetric/fluorescent probes. Up to now, colorimetric and fluorescent probes based on the OPD oxidative reactions have been widely applied in the detection of metal ions and organic molecules. In recent years, these probes have attracted much attention in the recognition of bio-molecules in cells and tissues due to their high sensitivity, fast response speed and strong anti-interference ability. This review summarizes the development of colorimetric and fluorescent probes based on the OPD oxidative reactions in the detection of important bio-molecules such as biothiols, reactive oxygen species, uric acid, enzyme, antigen and so on. We further make an in-depth perspectives on the application and development prospect of the probes.

Contents

1 Introduction

2 Detection of small bio-molecules

2.1 Biological thiols

2.2 Reactive oxygen species

2.3 Purine and its metabolites

2.4 Other small bio-molecules

3 Detection of biomacromolecules

3.1 Enzyme

3.2 Antigens

3.3 Bacteria and viruses

3.4 Other biomacromolecules

4 Conclusion and outlook

Fig. 1 The detection mechanism of biothiols by fluorescence probe based on the oxidation of OPD[19]
Fig. 2 Colorimetric probe of GSH based on the Ag+-OPD autocatalytic oxidation[21]
Fig. 3 The detection mechanism of GSH by colorimetric/fluorometric duel-readout probe[22]
Fig. 4 Ratiometric fluorescence probe of GSH based-on OPD oxidative reaction[25]
Fig. 5 Ratiometric fluorescence probe of H2O2 based on OPD oxidative reaction[29]
Fig. 6 Detection mechanism and cell imaging of ratiometric fluorescence probe of hROS based on the OPD oxidative reaction[32]
Fig. 7 Ratiometric fluorescence/colorimetric probe of xanthine based on the Fe, N-CDs catalyzed OPD oxidative reaction[34]
Fig. 8 Detection mechanism of Uric acid by ratiometric probe based on the cascade catalytic oxidation[36]
Fig. 9 Detection mechanism of cholesterol by ratiometric fluorescence probe based on the OPD oxidative reaction[41]
Fig. 10 Colorimetric probe of PPI based on the OPD oxidative reaction and the photo images of test-paper under different concentrations of PPI[45]
Fig. 11 Detection mechanism of His by fluorescence probe based on OPD oxidative reaction[48]
Fig. 12 Detection mechanism of ATP by ratiometric fluorescence probe based on OPD oxidative reaction[55]
Fig. 13 Detection mechanism of ALP fluorescence probe based on IFE[63]
Fig. 14 Detection mechanism of ALP by the multi-emitting fluorescence probe based on the OPD oxidative reaction[64]
Fig.15 Ratiometric fluorescence probe of ALP based on AuNCs-OPD system[65]
Fig. 16 Dual-readout assay of PPase based on the Cu2+-triggered oxidation of OPD[66]
Fig. 17 Discriminative detection mechanism of AChE and BChE by ratiometric fluorescence probe based on the OPD-CDs system[71]
Fig. 18 Detection mechanism of PSA by fluorescent immunosensor based on the OPD oxidative reaction[80]
Fig. 19 Detection mechanism of HIV-1 virus antigen P24 by fluorescent immunosensor based on the OPD oxidative reaction[83]
Fig. 20 Detection mechanism of H1N1 virus by fluorescent immunosensor based on the OPD oxidative reaction[93]
Fig. 21 Detection mechanism of Listeria monocytogenes by colorimetric probe based on the OPD oxidative reaction[95]
Fig. 22 Detection mechanism of Escherichia coli O157: H7 by fluorescence probe based on the OPD oxidative reaction[97]
Fig. 23 Detection mechanism of DNA by fluorescence probe based on the OPD oxidative reaction[100]
Fig. 24 Detection mechanism of NMP22 by colorimetric/fluorescence probe based on the OPD oxidative reaction[102]
Table 1 Summary of the performance of OPD-based sensors discussed in this review
Analyte Entry Sensor category Linear range LOD ref
Cys, HCy, GSH 1 Single-intensity-based fluorescence sensor 0.5 ~ 30.0 μM, 1.0 ~ 45.0 μM, 0.5 ~ 40.0 μM 110 nM, 200 nM, 150 nM 19
GSH 2 Colorimetric sensor 2 nM ~ 1 μM 1.7 nM 21
3 Colorimetic/fluorometric dual signal sensor 20 ~ 80 μM/ 0.5 ~ 10 μM 0.94 μM/62 nM 22
4 Ratiometric fluorescence sensor 1 ~ 100 μM 270 nM 25
H2O2 5 Ratiometric fluorescence sensor 0 ~ 1 mM 50 nM 29
6 Ratiometric fluorescence sensor 0 ~ 1 mM 4.66 μM 30
·OH, ClO-, ONOO- 7 Ratiometric fluorescence sensor 0.11 μM, 0.50 μM, 0.69 μM 32
Xanthine 8 Colorimetic/fluorometric dual signal sensor 0 ~ 40 μM/ 0 ~ 70 μM 0.023 μM/0.02 μM 34
UA 9 Colorimetic/fluorometric dual signal sensor 0.01~0.8 mM 8.4 μM/0.75 μM 36
10 Colorimetic/fluorometric dual signal sensor 1.2 ~ 100 μM/1.2 ~ 75 μM 200 nM/125 nM 37
11 Colorimetic/fluorometric dual signal sensor 5 ~ 100 μM 0.7 μM/0.5 μM 38
Cholesterol 12 Ratiometric fluorescence sensor 0.01 ~ 500 μM 3.6 nM 41
PPI 13 Colorimetric sensor 0 ~ 0.2 μM 4.29 nM 45
His 14 Single-intensity-based fluorescence sensor 0.5 ~ 30 μM 0.33 μM 48
ATP 15 Ratiometric fluorescence sensor 1 ~ 100 μM 0.43 μM 55
ALP 16 Single-intensity-based fluorescence sensor 0.1 ~ 8.0 mU/mL 0.05 mU/mL 63
17 Multi-emitting fluorescence sensor 0.1 ~ 100 mU/mL 0.06 mU/mL 64
18 Ratiometric fluorescence sensor 0 ~ 3 U/L 0.0035 U/L 65
PPase 19 Colorimetic/fluorometric dual signal sensor 0.2 ~ 50 mU/mL 0.2 mU/mL 66
AChE, BChE 20 Ratiometric fluorescence sensor 0.2 ~ 14 U/L, 0.1 ~ 5 U/L 0.1 U/L, 0.04 U/L 71
LSD 21 Colorimetic/fluorometric dual signal sensor 0.6 ~ 150 nM 0.5 nM/0.3 nM 75
PSA 22 Single-intensity-based fluorescence sensor 0.5 pg/mL ~ 50 ng/mL 0.1 pg/mL 80
HIV antigen P24 23 Single-intensity-based fluorescence sensor 1.4 ~ 90 pg/mL 0.5 pg/mL 82
Ov 24 Single-intensity-based fluorescence sensor 34.18 ~ 273.44 ng/mL 36.97 ng/mL 87
H1N1 virus 25 Single-intensity-based fluorescence sensor 10-12 ~ 10-8 g/mL 10-13 g/mL 93
Listeria monocytogenes 26 Colorimetric sensor 10 ~ 106 cfu/mL 10 cfu/mL 95
O157:H7 27 Single-intensity-based fluorescence sensor 103 ~ 106 cfu/mL 4.2×102 cfu/mL 97
DNA 28 Ratiometric fluorescence sensor 0.1 pM ~ 20 nM 30 fM 100
NMP 22 29 Colorimetic/fluorometric dual signal sensor 1 ~ 500 pg/mL 0.31 pg/mL 102
[1]
Holzinger M, Le Goff, Cosnier S. Front. Chem., 2014, 2: 63.

doi: 10.3389/fchem.2014.00063 pmid: 25221775
[2]
Kowada T, Maeda H, Kikuchi K, Chem. Soc. Rev., 2015, 44: 4953.

doi: 10.1039/C5CS00030K
[3]
Labib M, Sargent E H, Kelley S O. Chem. Rev., 2016, 116: 9001.

doi: 10.1021/acs.chemrev.6b00220
[4]
Li X, Yang J M, Xie J Q, Jiang B Y, Yuan R, Xiang Y. Biosens. Bioelectron., 2018, 102: 296.

doi: S0956-5663(17)30732-7 pmid: 29156404
[5]
Kang B, Park S V, Soh H T, Oh S S. ACS Sensors, 2019, 4: 2802.

doi: 10.1021/acssensors.9b01503
[6]
Li M J, Zheng Y N, Liang W B, Yuan R, Chai Y Q. ACS Appl. Mater. Inter., 2017, 9: 42111.
[7]
Zhang C, Rissman R A, Feng J. J. Alzheimers Dis. 2015, 44: 375.

doi: 10.3233/JAD-141890
[8]
Chen J M, Huang Y J, Kannan P, Zhang L, Lin Z Y, Zhang J W, Chen T, Guo L H. Anal. Chem., 2016, 88: 2149.

doi: 10.1021/acs.analchem.5b03735
[9]
Pak Y L, Swamy K M K, Yoon J Y. Sensors, 2015, 15: 24374.
[10]
Minta A, Kao J Y, Tsien R Y. J. Biol. Chem., 1989, 264: 8171.

doi: 10.1016/S0021-9258(18)83165-9
[11]
Wang Y, Zhang L, Han X Y, Zhang L W, Wang X Y, Chen L X. Chem. Eng. J., 2021, 406: 127166.
[12]
Jiao S, Wang X C, Sun Y H, Zhang L J, Sun W H, Sun Y, Wang X H, Ma P Y, Song D Q. Sens. Actuators B: Chem., 2018, 262: 188.

doi: 10.1016/j.snb.2018.01.186
[13]
Weng H, Yan B. Sens. Actuators B: Chem., 2016, 228: 702.

doi: 10.1016/j.snb.2016.01.101
[14]
Dong B L, Kong X Q, Lin W Y. ACS Chem. Biol. 2018, 13: 1714.

doi: 10.1021/acschembio.7b00901
[15]
Ye Q X, Ren S F, Huang H, Duan G G, Liu K M, Liu J B. ACS Omega, 2020, 5: 20698.
[16]
Townsend D M, Tew K D, Tapiero H. Biomed. Pharmacoth., 2003, 57: 145.

doi: 10.1016/S0753-3322(03)00043-X
[17]
(a) Zhao J J, Zhang K, Ji J, Liu B H. Talanta, 2016, 152: 196

doi: 10.1016/j.talanta.2016.02.008
(b) Herzenberg L A,. De Rosa S C, Dubs J G, Roederer M, Anderson M T, Ela S W, Deresinski S C, Herzenberg L A,. Proc. Natl. Acad. Sci USA., 1997, 94: 1967.

doi: 10.1073/pnas.94.5.1967
[18]
Dang Y C, Feng Y Z, Cheng D G. Progress in Chemistry, 2021, 33: 868.
党耶城, 冯杨振, 陈杜刚. 化学进展, 2021, 33: 868.).

doi: 10.7536/PC200658
[19]
Li R, Lei C H, Zhao X E, Gao Y, Gao H, Zhu S Y, Wang H. Spectrochim. Acta, Part A., 2018, 188: 20.

doi: 10.1016/j.saa.2017.06.056
[20]
(a) Han B Y, Yuan J P, Wang E K. Anal. Chem., 2009, 81: 5569

doi: 10.1021/ac900769h
(b) Hu Y H, Wu Y M, Chen T T, Chu X, Yu R Q. Anal. Methods, 2013, 5: 3577.

doi: 10.1039/c3ay40088c
[21]
Li F, Liu J C, Hu Y T, Deng N, He J B. Talanta, 2018, 186: 330.

doi: 10.1016/j.talanta.2018.04.078
[22]
Ma Z Y, Wu T T, Li P P, Liu M L, Huang S, Li H T, Zhang Y Y, Yao S Z. Microchim. Acta., 2019, 186: 498.

doi: 10.1007/s00604-019-3613-4
[23]
Jin H J, Jin Q, Liang Z H, liu Y Q, Qu X J, Sun Q J. Anal. Chem., 2019, 91: 8958.

doi: 10.1021/acs.analchem.9b00924
[24]
Lv P Y, Xu Y Y, Liu Z, Li G P, Ye B X. Microchem. J., 2020, 152: 104255.
[25]
Cao Y, Liu J J, Zou L N, Ye B X, Li G P. Anal. Chim. Acta., 2021, 1145: 46.

doi: 10.1016/j.aca.2020.12.019
[26]
(a) Fan D Q, Shuang C S, Gu W L, Wang E K, Dong S J. ACS Appl. Mater. Inter., 2017, 9: 25870
(b) Tang X, Zeng X Y, Liu H M, Yang L L, Zhou H B, Cai H H. Mikrochim. Acta., 2019, 186: 572.

doi: 10.1007/s00604-019-3660-x
[27]
Zhang R L, Zhao J, Han G M, Liu Z J, Liu C, Zhang C, Liu B H, Jiang C L, Liu R Y, Zhao T T, Han M Y, Zhang Z P. J. Am. Chem. Soc., 2016, 138: 3769.

doi: 10.1021/jacs.5b12848
[28]
Li H D, Yao L C, Fan J L, Du J J, Wang J Y, Peng X J. Biosens. Bioelectron., 2017, 94: 536.

doi: 10.1016/j.bios.2017.03.039
[29]
Deng W F, Peng Y, Yang H, Tan Y M, Ma M, Xie Q J, Chen S W. ACS Appl. Mater. Inter., 2019, 11: 29072.
[30]
Maity S, Bain D, Chakraborty S, Kolay S, Patra A. ACS Sustain. Chem. Eng., 2020, 8: 18335.
[31]
Hu L Z, Deng L, Alsaiari S, Zhang D Y, Khashab N M. Anal. Chem., 2014, 86: 4989.

doi: 10.1021/ac500528m
[32]
Fang H F, Yu H, Lu Q, Fang X, Zhang Q L, Zhang J T, Zhu L L, Ma Q B. Anal. Chem., 2020, 92: 12825.
[33]
Wang Y, Deng M, Deng B G, Ye L M, Fei X F. J. Clin. Lab. Anal., 2019, 33: 22868.
[34]
Wang L Z, Liu Y, Yang Z P, Wang Y Y, Rao H B, Yue G Z, Wu C M, Lu C F, Wang X X. Dyes Pigm., 2020, 180: 108486.
[35]
Chen X J, Wang Y Z, Zhang Y Y, Chen Z H, Liu Yang, Li Z L, Li J H. Anal. Chem.; 2014, 86: 4278.

doi: 10.1021/ac404070m
[36]
Wu C Y, Zhu L J, Lu Q J, Li H T, Zhang Y Y, Yao S Z. Microchim. Acta., 2019, 186: 754.

doi: 10.1007/s00604-019-3862-2
[37]
Liu M W, He Y, Zhou J, Ge Y L, Zhou J G, Song G W. Anal. Chim. Acta., 2020, 1103: 134.

doi: 10.1016/j.aca.2019.12.069
[38]
Yuan C L, Qin X, Xu Y J, Shi R, Cheng S Q, Wang Y L. Spectrochim. Acta, Part A., 2021, 254: 119678.
[39]
Lin T R, Zhong L S, Chen H, Li Z H, Song Z P, Guo L Q, Fu F F. Microchim. Acta., 2017, 184: 1233.

doi: 10.1007/s00604-017-2147-x
[40]
Huang Y, Tan J, Cui L J, Zhou Z D, Zhang Z H, Zheng R, Xue Y W, Zhang M X, Li S S, Zhu N X, Liang J T, Li G Y, Zhou S F, Zhao Y X. Biosens. Bioelectron.; 2018, 102: 560.

doi: S0956-5663(17)30766-2 pmid: 29220804
[41]
Huang S, Yang, E L, Yao J D, Chu X, Liu Y, Zhang Y, Xiao Q. ACS Omega, 2019, 4: 9333.

doi: 10.1021/acsomega.9b00874 pmid: 31460022
[42]
Kim S K, Lee D H, Hong J, Yoon J. Acc. Chem. Res., 2009, 42: 23.

doi: 10.1021/ar800003f
[43]
Doherty M, Belcher C, Regan M, Jones A, Ledingham J. Ann. Rheum. Dis., 1996, 55: 432.

doi: 10.1136/ard.55.7.432
[44]
Xu S Q, He M, Yu H Ping, Cai X K, Tan X L, Lu B, Shu B H. Anal. Biochem., 2001, 299: 188.

pmid: 11730342
[45]
Chen C Y, Tan Y Z, Hsieh P H, Wang C M, Shibata H, Maejima K, Wang T Y, Hiruta Y, Cittero D, Liao W S. ACS Sens., 2020, 5: 1314.

doi: 10.1021/acssensors.9b02486
[46]
Kusakari Y, Nishikawa S, Ishiguro S I, Tamai M. Curr. Eye Res., 1997, 16: 600.

pmid: 9192170
[47]
Watanabe M, Suliman M E, Qureshi A R, Garcia-lopez E, BRNY P, Heimbrger O, Stenvinkel P, Lindholm B. Am. J. Clin. Nutr., 2008, 87: 1860.

pmid: 18541578
[48]
Xu Y, Wu X Q, Shen J S, Zhang H W. RSC Adv., 2015, 5: 92114.
[49]
Wadud S, Orrashid M M, Onodera R. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2002, 767: 369.

doi: 10.1016/S1570-0232(01)00607-9
[50]
Amini M K, Shahrokhian S, Tangestaninejad S. Anal.Chem., 1999, 71: 2502.
[51]
He Y, Wang X, Zhu J J, Zhong S H, Song G W. Analyst, 2012, 137: 4005.

doi: 10.1039/c2an35712g
[52]
Lee S, Yuen K K Y, Jolliffe K A, Yoon J. Chem. Soc. Rev., 2015, 44: 1749.

doi: 10.1039/C4CS00353E
[53]
Agteresch H J, Dagnelie P C, Van Den Berg J W, Wilson J H. Drugs., 1999, 58: 211.

pmid: 10473017
[54]
Gordon J L. Biochem. J., 1986, 233: 309.

pmid: 3006665
[55]
Wu Z H, Chen R C, Pan S, Liu H, Hu X L. Microchem. J., 2021, 164: 105976.
[56]
Xu X, Nan D Y, Yang H, Pan S, Liu H, Hu X L. Sens. Actuators B: Chem., 2020, 304: 127324.
[57]
Tedsana W, Tuntulani T, Ngeontae W. Anal. Chim. Acta., 2013, 783: 65.

doi: 10.1016/j.aca.2013.04.037
[58]
Caracciolo G, Palchetti S, Digiacomo L, Chiozzi R Z, Capriotti A L, Amenitsch H, Tentori P M, Palmieri V, Papi m, Cardarelli F, Pozzi D, Lagan A. ACS Appl. Mater. Inter., 2018, 10: 22951.
[59]
(a) Mathwig K, Albrecht T, Goluch E D, Rassaei L. Anal. Chem., 2015, 87: 5470

doi: 10.1021/acs.analchem.5b01167 pmid: 25927158
(b) Ray P C. Chem. Rev., 2010, 110: 5332.

doi: 10.1021/cr900335q pmid: 25927158
[60]
Fass D, Thorpe C. Chem. Rev., 2018, 118: 1169.

doi: 10.1021/acs.chemrev.7b00123
[61]
Zhao J H, Wang S, Lu S S, Liu G Y, Sun J, Yang X R. Anal. Chem., 2019, 91: 7828.

doi: 10.1021/acs.analchem.9b01553
[62]
Chen C X, Zhao D, Wang B, Ni P J, Jiang Y Y, Zhang C H, Yang F, Lu Y Z, Sun J. Anal. Chem., 2020, 92: 4639.

doi: 10.1021/acs.analchem.0c00224
[63]
Ni P J, Liu S Y, Jiang Y Y, Chen C X, Wang B, Zhang C H, Chen B, Lu Y Z. ACS Appl. Bio. Mater., 2020, 3: 6394.

doi: 10.1021/acsabm.0c00832
[64]
Yang Q, Li C Y, Li J H, Arabi M, Wang X Y, Peng H L, Xiong H, Choo J, Chen L X. J. Mater. Chem. C, 2020, 8: 5554.

doi: 10.1039/C9TC07072A
[65]
Wang M K, Wang S, Xie X M, Su X G. ACS Appl. Nano Mater., 2020, 3: 6034.

doi: 10.1021/acsanm.0c01243
[66]
Sun J, Wang B, Zhao X, Li Z J, Yang X R. Anal. Chem., 2016, 88: 1355.

doi: 10.1021/acs.analchem.5b03848
[67]
(a) Deng J J, Yu P, Yang L F, Mao L Q. Anal. Chem., 2013, 85: 2516

doi: 10.1021/ac303698p
(b) Zhang L L, Li M, Qin Y F, Chu Z D, Zhao S L. Analyst, 2014, 139: 6298.

doi: 10.1039/C4AN01415D
[68]
Mikalsen A, Andersen R A, Alexander J. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1986, 83: 447.
[69]
Soreq H, Seidman S. Nat. Rev. Neurosci., 2001, 2: 294.

pmid: 11283752
[70]
Santarpia L, Grandone I, Contaldo F, Pasanisi F. J. Cachexia Sarcopeni., 2013, 4: 31.
[71]
Xu X M, Cen Y, Xu G H, Wei F D, Shi M L, Hu Q. Biosens. Bioelectron., 2019, 131: 232.

doi: 10.1016/j.bios.2019.02.031
[72]
Ellman G L, Courtney K D, Andres V, Featherstone R M. Biochem. Pharmacol., 1961, 7: 88.

doi: 10.1016/0006-2952(61)90145-9
[73]
Shi Y J, Fei L, Matson C, Mulligan P, Whetstine J R, Cole P A, Casero R A, Shi Yang. Cell, 2004, 119: 941.

doi: 10.1016/j.cell.2004.12.012
[74]
Pedersen M T, Helin K. Trends Cell Biol., 2010, 20: 662.

doi: 10.1016/j.tcb.2010.08.011
[75]
Deng L, Liu Q Q, Lei C Y, Zhang Y Y, Huang Y, Nie Z, Yao S Z. Anal. Chem., 2020, 92: 9421.

doi: 10.1021/acs.analchem.0c01927 pmid: 32489092
[76]
Li Y X, Li Y J, Huang L H, Bin Q, Lin Z Y, Yang H H, Cai Z W, Chen G N. J. Mater. Chem. B, 2013, 1: 1256.

doi: 10.1039/c2tb00398h
[77]
Biomarkers Definitions Working Group. Clin. Pharmacol. Ther., 2001, 69: 89.

doi: 10.1067/mcp.2001.113989
[78]
(a) Viger-Gravel J, Paruzzo F M, Cazaux C, Jabbour R, Leleu A, Canini F, Florian P, Ronzon F, Gajan D, Lesage A. Chem. Eur. J., 2020, 26: 8976

doi: 10.1002/chem.202001141
(b) Baha Ö, Sinem E, Murat U. Biosens. Bioelectron., 2021, 191: 113454.
[79]
Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84: 487.

doi: 10.1021/ac2030199
[80]
Zhu Y D, Peng J, Jiang L P, Zhu J J. Analyst, 2014, 139: 649.

doi: 10.1039/C3AN01987J
[81]
Pinching A J, Jeffries D J, Harris J R W, Swirsky D, Weber J N. Nature, 1990, 347: 324.
[82]
Hopkins M, Hau S, Tiernan C, Papadimitropoulos A, Chawla A, Beloukas A, Gerettiet A M. J. Clin. Virol., 2015, 69: 56.

doi: 10.1016/j.jcv.2015.05.020 pmid: 26209380
[83]
Zhang Y, Yang H, Yu J P, Wei H P. Anal. Bioanal. Chem., 2016, 408: 6115.

doi: 10.1007/s00216-016-9722-6 pmid: 27351993
[84]
Tang S X, Hewlett I. J. Infect. Dis., 2010, 201: 59.
[85]
Khuntikeo N, Titapun A, Loilome W, Yongvanit P, Thinkhamrop B, Chamadol B, Boonmars T, Nethanomsak T, Andrews R H, Petney T N, Sithithaworn P. Front. Med., 2018, 5: 1.
[86]
Taron W, Jamnongkan W, Techasen A, Phetcharaburanin J, Namwat N, Sithithaworn P, Khuntikeo N, Mukdasai S, Sayasone S, Loilome W, Ngeontae W. Talanta, 2020, 209: 120592.
[87]
Taron W, Jamnongkan W, Phetcharaburanin J, Klanrit P, Namwat N, Techasen A, Sithithaworn P, Khuntikeo N, Boonmarsb T, Loilome W, Ngeontae W. Spectrochim. Acta, Part A, 2021, 254: 119633.
[88]
(a) Slupsky C M, Cheypesh A, Chao D V, Fu H, Rankin K N, Marrie T J, Lacy P J. Proteome Res., 2009, 8: 3029

doi: 10.1021/pr900103y pmid: 21561070
(b) Ferguson B S, Buchsbaum S F, Wu T T, Hsieh K W, Xiao Y, Sun R, Soh H T. J. Am. Chem. Soc., 2011, 133: 9129.

doi: 10.1021/ja203981w pmid: 21561070
[89]
Xu Y G, Liu Z M, Zhang B Q, Qu M, Mo C S, Luo J, Li S L. Food Control., 2016, 64: 54.

doi: 10.1016/j.foodcont.2015.12.022
[90]
Yamada K, Choi W, Cho B K, Jun S. Biosens. Bioelectron., 2016, 77: 137.

doi: 10.1016/j.bios.2015.09.030 pmid: 26402591
[91]
Su J, Zhang H J, Jiang B Y, Zheng H Z, Chai Y Q, Yuan R, Xiang Y. Biosens. Bioelectron., 2011, 29: 184.

doi: 10.1016/j.bios.2011.08.015
[92]
(a) Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X Y. ACS Nano., 2012, 6: 6546

doi: 10.1021/nn3023969 pmid: 31726821
(b) Wen W, Yan X, Zhu C Z, Du D, Lin Y H. Anal. Chem., 2017, 89: 138

doi: 10.1021/acs.analchem.6b04281 pmid: 31726821
(c) Jones A, Dhanapala L, Kankanamage R N T, Kumar C V, Rusling J F. Anal. Chem., 2020, 92: 345.

doi: 10.1021/acs.analchem.9b05080 pmid: 31726821
[93]
Li Y X, Hong M, Qiu B, Lin Z Y, Chen Y T, Cai Z W, Chen G N. Biosens. Bioelectron., 2014, 54: 358.

doi: 10.1016/j.bios.2013.10.045
[94]
(a) Cole M B, Jones M V, Holyoak C. J. Appl. Bacteriol. 1990, 69: 63

doi: 10.1111/j.1365-2672.1990.tb02912.x pmid: 23418904
(b) Sharma H, Mutharasan R. Anal. Chem., 2013, 85: 3222.

doi: 10.1021/ac303561c pmid: 23418904
[95]
Liu Y S, Wang J, Song X L, Xu K, Chen H S, Zhao C, Li J. Microchim. Acta. 2018, 185: 360.

doi: 10.1007/s00604-018-2896-1
[96]
Muniesa M, Jofre J, Aljaro C, Anicet R. Environ. Sci. Technol., 2006, 40: 7141.

pmid: 17180960
[97]
Zhang B Y, Zou H J, Qi Y F, Zhang X M, Sheng R T, Zhang Y, Sun R M, Chen L X, Lv R J. Microchem. J., 2021, 164: 106013.
[98]
(a) Meyfour A, Pooyan P, Pahlavan S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdehet G H. J. Proteome Res., 2017, 16: 4259

doi: 10.1021/acs.jproteome.7b00446 pmid: 26143930
(b) Jayaram S, Gupta M K, Shivakumar B M, Ghatge M, Sharma A, Vangala R K, Sirdeshmukh R. J. Proteome Res., 2015, 14: 3432.

doi: 10.1021/acs.jproteome.5b00488 pmid: 26143930
[99]
Qian Z S, Shan X Y, Chai L J, Chen J R, Feng H. Biosens. Bioelectron., 2015, 68: 225.

doi: 10.1016/j.bios.2014.12.057
[100]
Wang G L, Xin F, Wu X M, Hu X L. Biosens. Bioelectron., 2016, 81: 214.

doi: 10.1016/j.bios.2016.02.038
[101]
Han T Q, Li X J, Li Y Y, Cao W, Wu D, Du B, Wei Q. Sens. Actuators B: Chem., 2014, 205: 176.

doi: 10.1016/j.snb.2014.08.070
[102]
Zhuge W Y, Tan X F, Zhang R Y, Li H, Zheng, G X. Chin. Chem. Lett., 2019, 30: 1307.

doi: 10.1016/j.cclet.2019.02.026
[103]
Liu Y Y, Guo Y, Luo X G, Liu G Y, Sun Q. Progress in Chemistry, 2021, 33: 199.
刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 化学进展, 2021, 33: 199.).

doi: 10.7536/PC200765
[1] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[2] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[3] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[4] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[5] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[6] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[7] Yuehua Yuan, Yongjun Zhu, Wei Hu, Jun Qin, Maozhong Tian, Feng Feng. Double Recognition Fluorescence Probes for Copper and Mercury Ions Based on Small Molecules [J]. Progress in Chemistry, 2019, 31(4): 550-560.
[8] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[9] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[10] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[11] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[12] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[13] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[14] Zhang Xianfeng, Du Xuezhong. Protein Surface Imprinting Technology [J]. Progress in Chemistry, 2016, 28(1): 149-162.
[15] Fu Junqing, Wang Xiaoyan, Li Jinhua, Chen Lingxin. Ion Imprinting Technology for Heavy Metal Ions [J]. Progress in Chemistry, 2016, 28(1): 83-90.