中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 119-134 DOI: 10.7536/PC220603 Previous Articles   Next Articles

• Review •

Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection

Jing Li, Weigang Zhu(), Wenping Hu()   

  1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University,Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: huwp@tju.edu.cn(Wenping Hu); w_zhu10@tju.edu.cn(Weigang Zhu)
  • Supported by:
    Discretionary Fund of Tianjin University(2104); National Natural Science Foundation of China(U21A6002)
Richhtml ( 63 ) PDF ( 750 ) Cited
Export

EndNote

Ris

BibTeX

Near and shortwave infrared organic photodetector (OPDs) is extremely significant for the application as thermal imaging, night vision, agricultural inspection, biometric sensors, remote sensing and related fields. However, most commercial infrared photodetectors generally require extra deep cooling equipment and are unable to bend, which limit their applications seriously. In order to overcome these challenges, more and more researches related with organic semiconductors (OSCs) emerge. OSCs with advantages including easy and elaborate tunability of optical properties, high optical absorption coefficient, and mechanical flexible, are able to fabricate over large areas with roll-to-roll processing and be compatible with flexible substrates. Infrared photodetectors based on OSCs attract more and more attention, which are free with extra deep cooling equipment and possess many advantages beyond inorganic infrared OPDs. They are deemed as attractive candidates for next generation infrared photodetectors. Recently, infrared OPDs have attracted more and more research attention. In this review, we first introduce the basic principles of organic phototransistors and photodiodes, and present development of organic complex materials and novel device configurations. Then we summarize state-of-the-art applications such as electronic eyes, artificial synapse and wearable devices for real-time health monitoring. Finally, we discuss challenges in this field and prospect future development. We believe that this review will promote the developments in the photodetector fields.

Contents

1 Introduction

2 Architectures and fundamentals of OPDs

2.1 Organic phototransistors

2.2 Organic photodiodes

2.3 Organic photoconductors

3 Critical parameters of OPDs

4 Organic complex materials (OCMs) towards infrared

4.1 OCMs for organic phototransistors

4.2 OCMs for organic photodiodes

5 Applications

5.1 Artificial retina

5.2 Artificial synapse

5.3 Logic circuits

5.4 Photoplethysmography

5.5 Upconversion imager

6 Conclusion and prospect

Fig. 1 Configuration of organic photodetectors, a) phototransistor, b) photodiodes, c) photoconductors, d) planar heterojunction (PHJ), e) bulk heterojunction (BHJ)
Table 1 Summary of key parameters in infrared detector
Fig. 2 a) Optical image of testing device, molecular structure, and energy level of DPPDTT, and DCV3T[12].Copyright 2021, Royal Society of Chemistry. b) The UV-Vis-NIR absorption spectra of active layers of the device[31?~33]. Copyright 2018, Royal Society of Chemistry. Copyright 2013, Elsevier. Copyright 2017, Elsevier
Fig. 3 a) Schematic diagram of organic IR phototransistor based on PQT-12/F4-TCNQ[34]; b) molecular structure of PC61BM, DPP-DTT, PC71BM, ITIC and PCBM[37] [38], c) Schematic diagram of all-polymer phototransistor, d) chemical structures of PTB7 and P(NDI2OD-T2)[39]. Copyright 2021, John Wiley and Sons. Copyright 2013, Royal Society of Chemistry. Copyright 2022, Elsevier. Copyright 2017, American Chemical Society.
Fig. 4 a,b) Illustration and photoresponse time measurement of a TTF-CA/graphene hybrid phototransistor; c) IDS vs VG curves in the dark and under light[40]; d) Schematic of device structure and the molecular structure of PolyTPD and BCF; e) photographs of PolyTPD:BCF films coated on quartz substrates with different BCF molar ratio[41]. Copyright 2020, John Wiley and Sons. Copyright 2021, Royal Society of Chemistry.
Fig. 5 a) Schematic showing the structure of flexible In2O3/PTPBT-ET phototransistor. the flexible phototransistor. b) Energy band diagram of the In2O3/PTPBT-ET heterostructures.[43] Copyright 2021, John Wiley and Sons.
Fig. 6 a,b) Structure and operation mechanism of the VFEPT device.[44] Copyright 2020, American Chemical Society
Fig. 7 a) Grazing incidence X-ray diffraction (GIXRD) patterns of the organic films. b) Dark current densities and photocurrent densities of films in dark and under illumination[50]. Copyright 2018, American Chemical Society
Fig. 8 a) Device structure of OPDs based on PTB7-Th:CO1-4Cl. b) J-V curves of the OPDs in the dark and under illumination of NIR. c) Shot-noise-limited specific detectivity of the OPDs at -0.1 V[51]. d,e) Schemes and respective J-V curves of devices with different active layers[52]. Copyright 2020, John Wiley and Sons. Copyright 2021, American Chemical Society
Fig. 9 a) Structure diagram of 3D topological insulators/organics thin film heterojunction photodetectors. b) Linear polarization characteristics of the Bi2Te3/organics thin film heterojunction devices. c,d) Ri, EQE curves of Bi2Te3/PbPc, Bi2Te3/CuPc, and Bi2Te3 photodetectors under Vbias mode[57]. Copyright 2019, American Chemical Society
Fig. 10 a) Structure diagram of an organic (spiro-TTB) layer sandwiched between a nanohole Ag electrode and a reflective Al electrode. b) EQE spectra of the nanohole device and of the planar device. The inset is the square root of the quantum yield as a function of photon energy[22].Copyright 2016, John Wiley and Sons
Fig. 11 The main molecular structure of the low-bandgap polymers, small molecules and other organic materials mentioned in this review
Fig. 12 a) Schematic of the organic, retina-like photosensor with the active layers’ composition. b) Electric diagram of photosensor. c) Normalized photocurrent versus incident wavelength of ROT300/VOPc photodetector. d) The pupil of a husky stuffed toy with transferred artificial retina. e) The husky pupil with a light pulse shedding on. f) The NIR intensity distribution over the husky toy pupil measured by drain-source currents with 30 pixels[63]. Copyright 2017, John Wiley and Sons
Fig. 13 a) The STM (short-term memory)-to-LTM (long-term memory) transition induced by increasing the number of pulsed light stimuli. b) Schematic illustration of image pattern. c) Input image encoded by 915 nm stimulus 1 time and 1342 nm stimulus 5 times. d) Input image encoded by both 915 nm stimulus and 1342 nm stimulus 5 times, respectively.[64] Copyright 2017, Elsevier
Fig. 14 a) Circuit diagrams based on the phototransistor. NOT gate (top) and OR gate (bottom). b) Schematic illustration of phototransistor array which is for imaging the light distribution from a LED lamp. c) The photocurrent mapping of the phototransistor array under the LED illumination[43]. Copyright 2021, John Wiley and Sons
Fig. 15 a) Schematic of the device structure of the flexible OPT. b) Photograph of a finger covered with the epidermal hPPG (hybrid organic/inorganic NIR photoplethysmogram) sensor (scale bar, 5 mm)[66]. c) Schematic of the BHJ device structure with inverted architecture. d) PPG (Photoplethysmograms) taken under normal (resting) conditions and ambient light using 1050 nm LEDs and OPDs[54]. Copyright 2017, John Wiley and Sons. Copyright 2022, John Wiley and Sons.
Fig. 16 a) Material stacks of the imager and the equivalent circuit model. b) Imaging of an object behind a silicon wafer. c) Imaging blood flow in a vein[67].Copyright 2021, John Wiley and Sons
[1]
Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J, Zhao Q. Opt. Express, 2019, 27(16): 22138.

doi: 10.1364/OE.27.022138
[2]
Song J, Qu J L, Swihart M T, Prasad P N. Nanomed. Nanotechnol. Biol. Med., 2016, 12(3): 771.

doi: 10.1016/j.nano.2015.11.009
[3]
Fengliang X, Xia L, Fujimura K. IEEE T. Intell. Transp., 2005, 6: 63.

doi: 10.1109/TITS.2004.838222
[4]
Park J, Lee C, Kim T, Kim H, Kim Y. Adv. Electron. Mater., 2021, 7(1): 2000932.

doi: 10.1002/aelm.202000932
[5]
Zhang F L, Zhang X T, Li Z Y, Yi R X, Li Z, Wang N Y, Xu X X, Azimi Z, Li L, Lysevych M, Gan X T, Lu Y R, Tan H H, Jagadish C, Fu L. Adv. Funct. Mater., 2022, 32(3): 2270018.

doi: 10.1002/adfm.202270020
[6]
Deng J N, Zong L Y, Bao W Z, Zhu M S, Liao F Y, Guo Z X, Xie Y Y, Lu B R, Wan J, Zhu J H, Peng R W, Chen Y F. Adv. Optical Mater., 2019, 7(23): 1901039.

doi: 10.1002/adom.201901039
[7]
Xie P S, Huang Y L, Wang W, Meng Y, Lai Z X, Wang F, Yip S, Bu X M, Wang W J, Li D J, Sun J, Ho J C. Nano Energy, 2022, 91: 106654.

doi: 10.1016/j.nanoen.2021.106654
[8]
Zhang Z T, Wang W C, Jiang Y W, Wang Y X, Wu Y L, Lai J C, Niu S M, Xu C Y, Shih C C, Wang C, Yan H P, Galuska L, Prine N, Wu H C, Zhong D L, Chen G, Matsuhisa N, Zheng Y, Yu Z A, Wang Y, Dauskardt R, Gu X D, Tok J B H, Bao Z N. Nature, 2022, 603(7902): 624.

doi: 10.1038/s41586-022-04400-1
[9]
Jiang Y W, Zhang Z T, Wang Y X, Li D L, Coen C T, Hwaun E, Chen G, Wu H C, Zhong D L, Niu S M, Wang W C, Saberi A, Lai J C, Wu Y L, Wang Y, Trotsyuk A A, Loh K Y, Shih C C, Xu W H, Liang K, Zhang K L, Bai Y H, Gurusankar G, Hu W P, Jia W, Cheng Z, Dauskardt R H, Gurtner G C, Tok J B H, Deisseroth K, Soltesz I, Bao Z N. Science, 2022, 375(6587): 1411.

doi: 10.1126/science.abj7564
[10]
Xu C H, He P, Liu J, Cui A J, Dong H L, Zhen Y G, Chen W, Hu W P. Angew. Chem. Int. Ed., 2016, 55(33): 9443.

doi: 10.1002/anie.201605080
[11]
Zhu W G, Zhu L Y, Zou Y, Wu Y S, Zhen Y G, Dong H L, Fu H B, Wei Z X, Shi Q, Hu W P. Adv. Mater., 2016, 28(28): 5954.

doi: 10.1002/adma.201600280
[12]
Jiang X Y, Lu J, Xue D, Wei Y J, Zhang Y D, Zhang J D, Wang Z, Huang L Z, Chi L F. Chem. Commun., 2021, 57(91): 12123.

doi: 10.1039/D1CC04828G
[13]
Ma S Q, Zhou K, Hu M X, Li Q Y, Liu Y J, Zhang H T, Jing J B, Dong H L, Xu B, Hu W P, Tian W J. Adv. Funct. Mater., 2018, 28(36): 1802454.

doi: 10.1002/adfm.201802454
[14]
Fu B B, Sun L J, Liu L, Ji D Y, Zhang X T, Yang F X, Hu W P. Sci. China Mater., 2022, 65(10): 2779.

doi: 10.1007/s40843-022-2035-y
[15]
Wang C, Zhang X T, Hu W P. Chem. Soc. Rev., 2020, 49(3): 653.

doi: 10.1039/C9CS00431A
[16]
Fuentes-Hernandez C, Chou W F, Khan T M, Diniz L, Lukens J, Larrain F A, Rodriguez-Toro V A, Kippelen B. Science, 2020, 370(6517): 698.

doi: 10.1126/science.aba2624 pmid: 33154137
[17]
Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L. Nat. Nanotechnol., 2012, 7(6): 363.

doi: 10.1038/nnano.2012.60 pmid: 22562036
[18]
Jiang W, Jin H, Babazadeh M, Loch A S, Raynor A, Mallo N, Huang D M, Jiao X C, Tan W L, McNeill C R, Burn P L, Shaw P E. Adv. Funct. Mater., 2022, 32(3): 2104259.

doi: 10.1002/adfm.202104259
[19]
Firdaus Y, Le Corre V M, Karuthedath S, Liu W L, Markina A, Huang W T, Chattopadhyay S, Nahid M M, Nugraha M I, Lin Y B, Seitkhan A, Basu A, Zhang W M, McCulloch I, Ade H, Labram J, Laquai F, Andrienko D, Koster L J A, Anthopoulos T D. Nat. Commun., 2020, 11: 5220.

doi: 10.1038/s41467-020-19029-9 pmid: 33060574
[20]
Feng X Q, He Z Y, Zhu W, Zhao M H, Liu Z D, Yang S W, Tang S W, Guo Q L, Jin Z W, Chen D, Ding G Q, Wang G. J. Mater. Chem. C, 2021, 9(2): 609.

doi: 10.1039/D0TC04932H
[21]
Mottram A D, Lin Y H, Pattanasattayavong P, Zhao K, Amassian A, Anthopoulos T D. ACS Appl. Mater. Interfaces, 2016, 8(7): 4894.

doi: 10.1021/acsami.5b11210
[22]
Hou J L, Fischer A, Yang S C, Benduhn J, Widmer J, Kasemann D, Vandewal K, Leo K. Adv. Funct. Mater., 2016, 26(31): 5741.

doi: 10.1002/adfm.201601718
[23]
Shou M H, Zhang Q L, Li H, Xiong S C, Hu B Y, Zhou J D, Zheng N, Xie Z Q, Ying L, Liu L L. Adv. Opt. Mater., 2021, 9(7): 2002031.

doi: 10.1002/adom.202002031
[24]
Kudo K, Moriizumi T. Appl. Phys. Lett., 1981, 39(8): 609.

doi: 10.1063/1.92820
[25]
Chow P C Y, Someya T. Adv. Mater., 2020, 32(15): 1902045.

doi: 10.1002/adma.201902045
[26]
Weiss D S, Abkowitz M. Chem. Rev., 2010, 110(1): 479.

doi: 10.1021/cr900173r
[27]
Xie Y, Zhang B, Wang S X, Wang D, Wang A Z, Wang Z Y, Yu H H, Zhang H J, Chen Y X, Zhao M W, Huang B B, Mei L M, Wang J Y. Adv. Mater., 2017, 29(17): 1605972.

doi: 10.1002/adma.201605972
[28]
Hao D D, Liu D P, Shen Y K, Shi Q Q, Huang J. Adv. Funct. Mater., 2021, 31(21): 2100773.

doi: 10.1002/adfm.202100773
[29]
Fang Y J, Huang J S. Adv. Mater., 2015, 27(17): 2804.

doi: 10.1002/adma.201500099
[30]
Bao C X, Chen Z L, Fang Y J, Wei H T, Deng Y H, Xiao X, Li L L, Huang J S. Adv. Mater., 2017, 29(39): 1703209.

doi: 10.1002/adma.201703209
[31]
Huang F B, Wang X, Xu K, Liang Y L, Peng Y Q, Liu G H. J. Mater. Chem. C, 2018, 6(32): 8804.

doi: 10.1039/C8TC02148A
[32]
Peng Y Q, Lv W L, Yao B, Fan G Y, Chen D Q, Gao P J, Zhou M Q, Wang Y. Org. Electron., 2013, 14(4): 1045.

doi: 10.1016/j.orgel.2013.02.005
[33]
Huang F B, Li Y, Xia H Q, Zhang J P, Xu K, Peng Y Q, Liu G H. Carbon, 2017, 118: 666.

doi: 10.1016/j.carbon.2017.03.091
[34]
Yang B, Wang Y, Li L, Zhang J Y, Wang J L, Jiao H X, Hao D D, Guo P, Zeng S, Hua Z K, Huang J. Adv. Funct. Mater., 2021, 31(40): 2103787.

doi: 10.1002/adfm.202103787
[35]
Zhou Z L, Liao G M, Song X Y, Dai Q Y, Sun L, Peng Y Q, Wang P. Nanoscale Res. Lett., 2022, 17: 19.

doi: 10.1186/s11671-021-03651-7
[36]
Peng Y Q, Huang F B, Zhang J P, Luo X, Xu K, Lv W L, Xu S N, Wang Y, Tang Y, Wei Y, Xu Z Q, Yang Y H, Lu F P. Org. Electron., 2017, 43: 27.

doi: 10.1016/j.orgel.2017.01.008
[37]
Xu H H, Li J, Leung B H K, Poon C C Y, Ong B S, Zhang Y T, Zhao N. Nanoscale, 2013, 5(23): 11850.

doi: 10.1039/c3nr03989g
[38]
Li N, Lei Y L, Miao Y Q, Zhu F R. iScience, 2022, 25(1): 103711.

doi: 10.1016/j.isci.2021.103711
[39]
Nam S, Seo J, Han H, Kim H, Bradley D D C, Kim Y. ACS Appl. Mater. Interfaces, 2017, 9(17): 14983.

doi: 10.1021/acsami.7b01983
[40]
Iqbal M A, Liaqat A, Hussain S, Wang X S, Tahir M, Urooj Z, Xie L M. Adv. Mater., 2020, 32(37): 2002628.

doi: 10.1002/adma.202002628
[41]
Lee C, Kim H, Kim Y. ACS Appl. Mater. Interfaces, 2021, 13(16): 19064.

doi: 10.1021/acsami.1c00472
[42]
He Z Y, Han J Y, Du X Y, Cao L Y, Wang J, Zheng C J, Lin H, Tao S L. Adv. Funct. Mater., 2021, 31(37): 2103988.

doi: 10.1002/adfm.202103988
[43]
Li D W, Du J Q, Tang Y J, Liang K, Wang Y, Ren H H, Wang R, Meng L, Zhu B W, Li Y F. Adv. Funct. Mater., 2021, 31(47): 2105887.

doi: 10.1002/adfm.202105887
[44]
Subramanian A, Hussain S, Din N, Abbas G, Shuja A, Lei W, Chen J, Khan Q, Musselman K. ACS Appl. Electron. Mater., 2020, 2(12): 3871.

doi: 10.1021/acsaelm.0c00707
[45]
Zhang G C, Zhong J F, Chen Q Z, Yan Y J, Chen H P, Guo T L. IEEE Trans. Electron Devices, 2019, 66(4): 1815.

doi: 10.1109/TED.2019.2901054
[46]
Ben-Sasson A J, Azulai D, Gilon H, Facchetti A, Markovich G, Tessler N. ACS Appl. Mater. Interfaces, 2015, 7(4): 2149.

doi: 10.1021/am505174p
[47]
Cai M K, Li X, Zhao H Y, Liu C, You Y M, Lin F, Tong X, Wang Z M. ACS Appl. Mater. Interfaces, 2021, 13(42): 50046.

doi: 10.1021/acsami.1c15973
[48]
Liu M, Wang J, Zhao Z J, Yang K X, Durand P, Ceugniet F, Ulrich G, Niu L B, Ma Y, Leclerc N, Ma X L, Shen L, Zhang F J. J. Phys. Chem. Lett., 2021, 12(11): 2937.

doi: 10.1021/acs.jpclett.1c00330
[49]
Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat. Commun., 2015, 6: 6343.

doi: 10.1038/ncomms7343
[50]
Choi M S, Chae S M, Kim H J, Kim J J. ACS Appl. Mater. Interfaces, 2018, 10(30): 25614.

doi: 10.1021/acsami.8b08803
[51]
Huang J F, Lee J, Vollbrecht J, Brus V V, Dixon A L, Cao D X, Zhu Z Y, Du Z F, Wang H B, Cho K, Bazan G C, Nguyen T Q. Adv. Mater., 2020, 32(1): 1906027.

doi: 10.1002/adma.201906027
[52]
Yang W, Qiu W, Georgitzikis E, Simoen E, Serron J, Lee J, Lieberman I, Cheyns D, Malinowski P, Genoe J, Chen H, Heremans P. ACS Appl. Mater. Interfaces, 2021, 13: 16766.

doi: 10.1021/acsami.1c02080
[53]
Wadsworth A, Moser M, Marks A, Little M S, Gasparini N, Brabec C J, Baran D, McCulloch I. Chem. Soc. Rev., 2019, 48(6): 1596.

doi: 10.1039/c7cs00892a pmid: 29697109
[54]
Jacoutot P, Scaccabarozzi A D, Zhang T Y, Qiao Z R, AniÉs F, Neophytou M, Bristow H, Kumar R, Moser M, Nega A D, Schiza A, Dimitrakopoulou-Strauss A, Gregoriou V G, Anthopoulos T D, Heeney M, McCulloch I, Bakulin A A, Chochos C L, Gasparini N. Small, 2022, 18(15): 2200580.

doi: 10.1002/smll.202200580
[55]
Yao W C, Wu Z H, Huang E, Huang L F, London A E, Liu Z W, Azoulay J D, Ng T N. ACS Appl. Electron. Mater., 2019, 1(5): 660.

doi: 10.1021/acsaelm.9b00009
[56]
Li W, Xu Y L, Meng X Y, Xiao Z, Li R M, Jiang L, Cui L H, Zheng M J, Liu C, Ding L M, Lin Q Q. Adv. Funct. Mater., 2019, 29(20): 1808948.

doi: 10.1002/adfm.201808948
[57]
Yang M, Wang J, Zhao Y F, He L, Ji C H, Zhou H X, Gou J, Li W Z, Wu Z M, Wang X R. ACS Nano, 2019, 13(9): 10810.

doi: 10.1021/acsnano.9b05775
[58]
Zhu W G, Wang Y L, Huang C C, Zhu L Y, Zhen Y G, Dong H L, Wei Z X, Guo D, Hu W P. Sci. China Mater., 2021, 64(1): 169.

doi: 10.1007/s40843-020-1372-6
[59]
Hiramoto M, Imahigashi T, Yokoyama M. Appl. Phys. Lett., 1994, 64(2): 187.

doi: 10.1063/1.111527
[60]
Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Nature, 2006, 442(7099): 180.

doi: 10.1038/nature04855
[61]
Peng W L, Liu Y C, Wang C X, Hu R, Zhang J P, Xu D S, Wang Y. J. Mater. Chem. C, 2015, 3(19): 5073.

doi: 10.1039/C5TC00376H
[62]
Daanoune M, Clerc R, Flament B, Hirsch L. J. Appl. Phys., 2020, 127(5): 055502.

doi: 10.1063/1.5126338
[63]
Wang H L, Liu H T, Zhao Q, Ni Z J, Zou Y, Yang J, Wang L F, Sun Y Q, Guo Y L, Hu W P, Liu Y Q. Adv. Mater., 2017, 29(32): 1701772.

doi: 10.1002/adma.201701772
[64]
Chen H, Lv L, Wei Y N, Liu T H, Wang S, Shi Q Q, Huang H. Cell Rep. Phys. Sci., 2021, 2(7): 100507.
[65]
Chung E, Chen G, Alexander B, Cannesson M. Front. Med., 2013, 7(1): 91.
[66]
Xu H H, Liu J, Zhang J, Zhou G D, Luo N Q, Zhao N. Adv. Mater., 2017, 29(31): 1700975.

doi: 10.1002/adma.201700975
[67]
Li N, Eedugurala N, Leem D S, Azoulay J D, Ng T N. Adv. Funct. Mater., 2021, 31(16): 2100565.

doi: 10.1002/adfm.202100565
[68]
Vella Jarrett H, Huang L, Eedugurala N, Mayer Kevin S, Ng Tse N, Azoulay Jason D. Sci. Adv., 2021, 7(24): eabg2418.

doi: 10.1126/sciadv.abg2418
[69]
Zheng L Y, Zhu T, Xu W Z, Liu L, Zheng J, Gong X, Wudl F. J. Mater. Chem. C, 2018, 6(14): 3634.

doi: 10.1039/C8TC00437D
[1] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[2] Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(11): 1316-1330.
[3] Zhu Weigang, Zhen Yonggang, Dong Huanli, Fu Hongbing, Hu Wenping. Organic Cocrystal Optoelectronic Materials and Devices [J]. Progress in Chemistry, 2014, 26(08): 1292-1306.
[4] Liu Jie Jiang Lang Hu Wenping. The Application of Anthracene and Its Derivatives in Organic Field-Effect Transistors [J]. Progress in Chemistry, 2009, 21(12): 2568-2577.
[5] Yaling Liu,Hongxiang Li,Wenping Hu*,Daoben Zhu* . Organic Single-Crystal Field-Effect Transistors [J]. Progress in Chemistry, 2006, 18(0203): 189-199.