中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1414-1430 DOI: 10.7536/PC210709 Previous Articles   Next Articles

• Review •

Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment

Jin Zhou, Pengpeng Chen()   

  1. College of Chemistry and Chemical Engineering, Anhui University,Anhui 230601, China
  • Received: Revised: Online: Published:
  • Contact: Pengpeng Chen
  • Supported by:
    Anhui Provincial Natural Science Foundation(2008085ME138); Hefei Municipal Natural Science Foundation(2021034)
Richhtml ( 54 ) PDF ( 540 ) Cited
Export

EndNote

Ris

BibTeX

Two-dimensional (2D) nanomaterials are nanomaterials with a sheet-like morphology, which have a nanoscaled thickness or even several atomic layers. There are many kinds of 2D nanomaterials and they have many physical and chemical properties different from bulk materials, so 2D nanomaterials have great potential in catalytic degradation, adsorption, filtration, sensor and so on, and can also be used for the prevention and control of environmental pollution. The properties of 2D nanomaterials can be controlled by modification of morphology, elements, groups, defects and material composite so as to improve their performance or develop new material systems. In this paper, the types of 2D nanomaterials are summarized first. The paper also focuses on the role and status of various 2D nanomaterials modification strategies, as well as the application of modified two-dimensional materials in the treatment of water pollution, air pollution, pollutant detection and so on. In a word, the paper makes a systematic introduction and prospect for the development of 2D nanomaterials in environmental governance.

Contents

1 Introduction

2 Categories of 2D nanomaterials

2.1 Single-element 2D nanomaterials and their derivatives

2.2 Inorganic compound 2D nanomaterials

2.3 Organic 2D nanomaterials

3 Strategies for modifying 2D nanomaterials

3.1 Composite of materials

3.2 Modification of elements

3.3 Modification of groups

3.4 Defect engineering

3.5 Modification of morphology

4 Application of 2D nanomaterials in environmental pollution control

4.1 Classification and detection of environmental pollutant

4.1 Water pollution control

4.3 Air pollution control

5 Conclusion and outlook

Fig. 1 Schematic illustration of different kinds of typical ultrathin 2D nanomaterials[14]. Copyright 2015, ACS
Fig. 2 Schematics illustrating the design of efficient 2D nanomaterial-based heterojunction photocatalysts with different configurations[61]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA
Fig. 3 Schematic illustration showing the key strategy used in this work. The La3+ cations (blue spheres) intercalated between the GO nanosheets allow permeation of methanol (C, black; H, white; O, red) but exclude solute molecules (yellow sphere)[86]. Copyright 2020, AAAS
Fig. 4 The synthetic route of organic functional groups decorated MoS2 (OFGD-MoS2) nanosheets[91]. Copyright 2014, RSC
Fig. 5 An example about the steric hindrance of 2D MCOF[59]. (a) 2D MCOFs (M = Cu2+ or Zn2+) were constructed by Cu- or Zn-phthalocyanine. (b) A 2D Ni-COF was constructed by Ni-phthalocyanine. (c) and (e) Serrated AA stacking of the Cu-COF or Zn-COF. (d) and (f) Eclipsed AA stacking of the Ni-COF. Copyright 2020, WILEY-VCH
Fig. 6 Performance of photocatalytic N2 fixation of Sb nanosheets[110]. (a) NH3 yield rates under UV-Vis (column with slash) or visible light irradiation (column without slash) determined using the indophenol blue method over Sb nanosheets derived at different CF speeds. The NH3 yield rates under visible light obtained by ion chromatography were also included, as indicated by orange balls (IC data). (b) NH3 yield versus reaction time over the Sb nanosheets. (c) Schematic illustration of photocatalytic N2 fixation and the energy band structures of Sb nanosheets. Copyright 2020, Elsevier
Table 1 Several sensing systems containing 2D nanomaterials and their performance
Sensing system Detection target Mechanism Linear range Limit of
detection
Non interfering
substances
ref
Ag2S/Ag@MoS2 rhodamine 6G surface-enhanced Raman scattering - 0.01 μM - 119
BPNS-PEI-TsNiPc crystal violet surface-enhanced Raman scattering - - - 62
Cu-MoS2-based antibody
fragments electrode
3-phenoxybenzoic acid electrochemical biosensing - 3.8 μM - 120
ZIF-8/NH2-MIL-53(Al) doxycycline fluorescence sensing 0.004~38.5 mg/L 1.2 μg/L 9 inorganic anions
and 7 antibiotics
121
tetracycline 0.004~25.7 mg/L 1.2 μg/L
oxytetracycline 0.004~32.1 mg/L 1.2 μg/L
chlortetracycline 0.005~25.7 mg/L 2.2 μg/L
{[Eu2Na(Hpdbb)
(pdbb)2(CH3COO)2
2.5DMA}n
nitrofurazone fluorescence sensing 0~100 μM 0.64 μM 9 inorganic anions
and 5 antibiotics
122
nitrofurantoin 0~80 μM 0.68 μM
furazolidone 0~80 μM 1.06 μM
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ 0~500 μM 5.35 μM
MnO 4 - 0~800 μM 5.99 μM
BiVO4/Ti3C2TX Hg2+ photoelectrochemical sensing 1 pM~2 nM 1 pM 8 metal ions 123
MoS2-Pd NO gas electrochemical sensing - 0.1 ppm NO2, H2S, NH3 124
Ag/H-ZIF-67/glassy carbon electrode H2O2 electrochemical sensing 5 μM~7 mM or 7~67 mM 1.1 μM glucose, NaCl, citric acid, ascorbic acid 125
GO NSs with PdO-WO3
NSs
H2S gas electrochemical sensing - - C2H5OH, C7H8,
CH3COCH3, NH3,
HCHO, CH3SH
126
Au/MoS2 acetone, ethanol, 2-propanol electrochemical sensing - - toluene, hexane,
benzene
127
Graphene/TiS3 ethanol, methanol, acetone electrochemical sensing 2~12 ppm
(for ethanol)
2 ppm
(for ethanol)
H2, CO, CH4 128
MoS2 FET with HfO2 and antibody E. coli electrochemical biosensing - 10 CFU/mL P. aeruginosa 129
Ti3C2-based 16S rDNA
sensor
M. tuberculosis electrochemical biosensing 102~108 CFU/mL 20 CFU/mL 4 bacteria and BCG vaccine 130
Fig. 7 Several types of band structure of heterojunction and mechanism: type-Ⅱ heterojunction, p-n heterojunction, Schottky junction, Z-scheme heterojunction, step-scheme heterojunction and photoinduced interfacial charge transfer, which are beneficial to photocatalysis
[1]
Lewis A C. Science, 2018, 359(6377): 744.

doi: 10.1126/science.aar4925
[2]
Boyjoo Y, Sun H Q, Liu J, Pareek V K, Wang S B. Chem. Eng. J., 2017, 310: 537.

doi: 10.1016/j.cej.2016.06.090
[3]
Bolisetty S, Peydayesh M, Mezzenga R. Chem. Soc. Rev., 2019, 48(2): 463.

doi: 10.1039/c8cs00493e pmid: 30603760
[4]
Cabrerizo A, Muir D C G, de Silva A O, Wang X W, Lamoureux S F, Lafrenière M J. Environ. Sci. Technol., 2018, 52(24): 14187.

doi: 10.1021/acs.est.8b05011 pmid: 30521332
[5]
Li X F, Mitch W A. Environ. Sci. Technol., 2018, 52(4): 1681.

doi: 10.1021/acs.est.7b05440
[6]
Benabbou A K, Derriche Z, Felix C, Lejeune P, Guillard C. Appl. Catal. B Environ., 2007, 76(3/4): 257.

doi: 10.1016/j.apcatb.2007.05.026
[7]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[8]
Zhang X D, Xie Y. Chem. Soc. Rev., 2013, 42(21): 8187.

doi: 10.1039/c3cs60138b
[9]
Fan Z X, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P D, Zhang H. Nat. Commun., 2015, 6: 7684.

doi: 10.1038/ncomms8684
[10]
Li Y, Wang W X, Xia K Y, Zhang W J, Jiang Y Y, Zeng Y W, Zhang H, Jin C H, Zhang Z, Yang D R. Small, 2015, 11(36): 4745.

doi: 10.1002/smll.201500769
[11]
Meng N N, Cheng J, Zhou Y F, Nie W Y, Chen P P. Appl. Surf. Sci., 2017, 396: 310.

doi: 10.1016/j.apsusc.2016.10.136
[12]
Dong L Q, Wang Y Y, Sun J C, Pan C F, Zhang Q H, Gu L, Wan B S, Song C, Pan F, Wang C, Tang Z L, Zhang J Y. 2D Mater., 2018, 6(1): 015007.
[13]
Zhang N, Yang M Q, Liu S Q, Sun Y G, Xu Y J. Chem. Rev., 2015, 115(18): 10307.

doi: 10.1021/acs.chemrev.5b00267 pmid: 26395240
[14]
Zhang H. ACS Nano, 2015, 9: 9451.

doi: 10.1021/acsnano.5b05040 pmid: 26407037
[15]
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

doi: 10.1021/acs.chemrev.6b00558
[16]
Huang C C, Li C, Shi G Q. Energy Environ. Sci., 2012, 5(10): 8848.

doi: 10.1039/c2ee22238h
[17]
Zhang X D, Xie X, Wang H, Zhang J J, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(1): 18.

doi: 10.1021/ja308249k
[18]
Xie Z J, Xing C Y, Huang W C, Fan T J, Li Z J, Zhao J L, Xiang Y J, Guo Z N, Li J Q, Yang Z G, Dong B Q, Qu J L, Fan D Y, Zhang H. Adv. Funct. Mater., 2018, 28(16): 1870107.

doi: 10.1002/adfm.201870107
[19]
Li Z J, Qiao H, Guo Z N, Ren X H, Huang Z Y, Qi X, Dhanabalan S C, Ponraj J S, Zhang D, Li J Q, Zhao J L, Zhong J X, Zhang H. Adv. Funct. Mater., 2018, 28(16): 1705237.

doi: 10.1002/adfm.201705237
[20]
Ren X H, Zhou J, Qi X, Liu Y D, Huang Z Y, Li Z J, Ge Y Q, Dhanabalan S C, Ponraj J S, Wang S Y, Zhong J X, Zhang H. Adv. Energy Mater., 2017, 7(19): 1700396.

doi: 10.1002/aenm.201700396
[21]
Ren X H, Li Z J, Huang Z Y, Sang D, Qiao H, Qi X, Li J Q, Zhong J X, Zhang H. Adv. Funct. Mater., 2017, 27(18): 1606834.

doi: 10.1002/adfm.201606834
[22]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Phys. Rev. Lett., 2008, 100: 016602.

doi: 10.1103/PhysRevLett.100.016602
[23]
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S. Science, 2009, 323(5914): 610.

doi: 10.1126/science.1167130 pmid: 19179524
[24]
Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906.

doi: 10.1002/adma.201001068
[25]
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8(3): 902.

doi: 10.1021/nl0731872
[26]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320(5881): 1308.

doi: 10.1126/science.1156965 pmid: 18388259
[27]
Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S. Nano Lett., 2010, 10(8): 3001.

doi: 10.1021/nl101437p pmid: 20698613
[28]
Bridgman P W. J. Am. Chem. Soc., 1914, 36(7): 1344.

doi: 10.1021/ja02184a002
[29]
Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. ACS Nano, 2014, 8(4): 4033.

doi: 10.1021/nn501226z
[30]
Sakthivel T, Huang X Y, Wu Y C, Rtimi S. Chem. Eng. J., 2020, 379: 122297.

doi: 10.1016/j.cej.2019.122297
[31]
Gusmão R, Sofer Z, Pumera M. Angew. Chem. Int. Ed., 2017, 56(28): 8052.

doi: 10.1002/anie.201610512 pmid: 28111875
[32]
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46(19): 3256.

doi: 10.1039/b922733d
[33]
Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Phys. Rev. Lett., 2012, 108(15): 155501.

doi: 10.1103/PhysRevLett.108.155501
[34]
Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W, Goldberger J E. ACS Nano, 2013, 7(5): 4414.

doi: 10.1021/nn4009406
[35]
Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y. Angewandte Chemie Int. Ed., 2020, 59(3): 1074.

doi: 10.1002/anie.201912761
[36]
Pumera M, Sofer Z. Adv. Mater., 2017, 29(21): 1605299.

doi: 10.1002/adma.201605299
[37]
Lim K R G, Handoko A D, Nemani S K, Wyatt B, Jiang H Y, Tang J W, Anasori B, Seh Z W. ACS Nano, 2020, 14(9): 10834.

doi: 10.1021/acsnano.0c05482
[38]
Hu M M, Zhang H, Hu T, Fan B B, Wang X H, Li Z J. Chem. Soc. Rev., 2020, 49(18): 6666.

doi: 10.1039/D0CS00175A
[39]
Deshmukh K, Ková?ík T, Khadheer Pasha S K. Coord. Chem. Rev., 2020, 424: 213514.

doi: 10.1016/j.ccr.2020.213514
[40]
Peng J H, Chen X Z, Ong W J, Zhao X J, Li N. Chem, 2019, 5(1): 18.

doi: 10.1016/j.chempr.2018.08.037
[41]
Sinha A, Dhanjai , Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R. TrAC-Trends Anal. Chem., 2018, 105: 424.

doi: 10.1016/j.trac.2018.05.021
[42]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306
[43]
Green M A, Ho-Baillie A, Snaith H J. Nat. Photonics, 2014, 8(7): 506.

doi: 10.1038/nphoton.2014.134
[44]
Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y, Tan Z A, Dai S Y. Sci. China Mater., 2018, 61(10): 1257.

doi: 10.1007/s40843-018-9294-5
[45]
Pickett W E, Singh D J. Phys. Rev. B, 1996, 53(3): 1146.

pmid: 9983571
[46]
Yan Y L, Cao J M, Meng F N, Wang N, Gao L G, Ma Y L. Progress in Chemistry, 2019, 31: 1031.
( 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 化学进展, 2019, 31: 1031.).

doi: 10.7536/PC181202
[47]
Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. Nature, 2016, 536(7616): 312.

doi: 10.1038/nature18306
[48]
Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X, Li C. Joule, 2019, 3(3): 794.

doi: 10.1016/j.joule.2018.11.026
[49]
Oshima T, Eguchi M, Maeda K. ChemSusChem, 2016, 9(4): 396.

doi: 10.1002/cssc.201501237
[50]
Maeda K, Eguchi M, Oshima T. Angew. Chem. Int. Ed., 2014, 53(48): 13164.

doi: 10.1002/anie.201408441
[51]
Ma R Z, Sasaki T. Acc. Chem. Res., 2015, 48(1): 136.

doi: 10.1021/ar500311w
[52]
Shamsi J, Dang Z Y, Bianchini P, Canale C, di Stasio F, Brescia R, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(23): 7240.

doi: 10.1021/jacs.6b03166 pmid: 27228475
[53]
Li Y X, Zhang X Y, Huang H, Kershaw S V, Rogach A L. Mater. Today, 2020, 32: 204.

doi: 10.1016/j.mattod.2019.06.007
[54]
Wang J, Li N, Xu Y X, Pang H. Chem. Eur. J., 2020, 26(29): 6402.

doi: 10.1002/chem.202000294
[55]
Cote A P. Science, 2005, 310: 1166.

doi: 10.1126/science.1120411
[56]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444
[57]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550
[58]
Zhang X L, Li G L, Wu D, Li X L, Hu N, Chen J, Chen G, Wu Y N. Biosens. Bioelectron., 2019, 137: 178.

doi: 10.1016/j.bios.2019.04.061
[59]
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Angew. Chem. Int. Ed., 2020, 59(33): 13722.

doi: 10.1002/anie.202004796
[60]
Wan J, Zhang Y, Wang R M, Liu L, Liu E Z, Fan J, Fu F. J. Hazard. Mater., 2020, 384: 121484.

doi: 10.1016/j.jhazmat.2019.121484
[61]
Su Q, Li Y, Hu R, Song F, Liu S Y, Guo C P, Zhu S M, Liu W B, Pan J. Adv. Sustainable Syst., 2020, 4(9): 2000130.

doi: 10.1002/adsu.202000130
[62]
Wang R, Yan X Y, Ge B C, Zhou J X, Wang M L, Zhang L X, Jiao T F. ACS Sustainable Chem. Eng., 2020, 8(11): 4521.

doi: 10.1021/acssuschemeng.9b07840
[63]
Dong Y P, Lin C, Gao S J, Manoranjan N, Li W X, Fang W X, Jin J. J. Membr. Sci., 2020, 607: 118184.

doi: 10.1016/j.memsci.2020.118184
[64]
Wang J, Zhang Z J, Zhu J N, Tian M T, Zheng S C, Wang F D, Wang X D, Wang L. Nat. Commun., 2020, 11: 3540.

doi: 10.1038/s41467-020-17373-4 pmid: 32669687
[65]
Fu W, Wang X Y, Huang Z Q. Sci. Total. Environ., 2019, 659: 895.

doi: 10.1016/j.scitotenv.2018.12.303
[66]
Liu Y, Chen P P, Nie W Y, Zhou Y F. Appl. Surf. Sci., 2018, 436: 562.

doi: 10.1016/j.apsusc.2017.12.080
[67]
Chen P P, Liu X Y, Jin R D, Nie W Y, Zhou Y F. Carbohydr. Polym., 2017, 167: 36.

doi: 10.1016/j.carbpol.2017.02.094
[68]
Cen Y L, Shi J J, Zhang M, Wu M, Du J, Guo W H, Zhu Y H. J. Colloid Interface Sci., 2019, 546: 20.

doi: 10.1016/j.jcis.2019.03.044
[69]
Yi X Y, Yuan J L, Tang H F, Du Y, Hassan B, Yin K, Chen Y Q, Liu X. J. Colloid Interface Sci., 2020, 571: 297.

doi: 10.1016/j.jcis.2020.03.061
[70]
Li J, Zhan G M, Yu Y, Zhang L Z. Nat. Commun., 2016, 7: 11480.

doi: 10.1038/ncomms11480
[71]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.201601694
[72]
Fu J W, Xu Q L, Low J, Jiang C J, Yu J G. Appl. Catal. B Environ., 2019, 243: 556.

doi: 10.1016/j.apcatb.2018.11.011
[73]
Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 134(15): 6575.

doi: 10.1021/ja302846n
[74]
Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett., 2011, 11(11): 4774.

doi: 10.1021/nl202587b pmid: 21981013
[75]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010
[76]
Ning S G, Zhang S W, Sun J N, Li C P, Zheng J F, Khalifa Y M, Zhou S H, Cao J, Wu Y Y. ACS Appl. Mater. Interfaces, 2020, 12(39): 43705.

doi: 10.1021/acsami.0c12044
[77]
Jo W K, Tonda S. J. Hazard. Mater., 2019, 368: 778.

doi: 10.1016/j.jhazmat.2019.01.114
[78]
Liz-Marzán L M, Grzelczak M. Science, 2017, 356(6343): 1120.

doi: 10.1126/science.aam8774 pmid: 28619898
[79]
Niu J, Wang D, Qin H L, Xiong X, Tan P L, Li Y Y, Liu R, Lu X X, Wu J, Zhang T, Ni W H, Jin J. Nat. Commun., 2014, 5: 3313.

doi: 10.1038/ncomms4313
[80]
Haque F, Daeneke T, Kalantar-zadeh K, Ou J Z. Nano Micro Lett., 2017, 10(2): 1.
[81]
Yang K J, Wang J, Chen X X, Zhao Q, Ghaffar A, Chen B L. Environ. Sci.: Nano, 2018, 5(6): 1264.
[82]
Zou H Y, Rong W F, Long B H, Ji Y F, Duan L L. ACS Catal., 2019, 9(12): 10649.

doi: 10.1021/acscatal.9b02794
[83]
Banerjee A, Chattopadhyay S, Kundu A, Sharma R K, Maiti P, Das S. Ceram. Int., 2019, 45(14): 16821.

doi: 10.1016/j.ceramint.2019.05.223
[84]
Xun W, Wang Y J, Fan R L, Mu Q Q, Ju S, Peng Y, Shen M R. ACS Energy Lett., 2021, 6(1): 267.

doi: 10.1021/acsenergylett.0c02320
[85]
Li C B, Wang Y, Li C H, Xu S X, Hou X D, Wu P. ACS Appl. Mater. Interfaces, 2019, 11(23): 20770.

doi: 10.1021/acsami.9b02767
[86]
Nie L N, Goh K, Wang Y, Lee J, Huang Y J, Karahan H E, Zhou K, Guiver M D, Bae T H. Sci. Adv., 2020, 6(17): eaaz9184.

doi: 10.1126/sciadv.aaz9184
[87]
Ding L, Li L B, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Nat. Sustain., 2020, 3(4): 296.

doi: 10.1038/s41893-020-0474-0
[88]
Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 2016, 138(18): 5897.

doi: 10.1021/jacs.5b13490
[89]
Guo H X, Wang J H, Fang Q R, Zhao Y, Gu S, Zheng J, Yan Y S. CrystEngComm, 2017, 19(33): 4905.

doi: 10.1039/C7CE00042A
[90]
Gong Y N, Zhong W H, Li Y, Qiu Y Z, Zheng L R, Jiang J, Jiang H L. J. Am. Chem. Soc., 2020, 142(39): 16723.

doi: 10.1021/jacs.0c07206
[91]
Zhou L, He B Z, Yang Y, He Y G. RSC Adv., 2014, 4(61): 32570.

doi: 10.1039/C4RA04682J
[92]
Yan Z L, Fu L J, Yang H M, Ouyang J. J. Hazard. Mater., 2018, 344: 1090.

doi: 10.1016/j.jhazmat.2017.11.058
[93]
Lu Y T, Wang H Q, Lu Y. Mater. Des., 2019, 184: 108134.

doi: 10.1016/j.matdes.2019.108134
[94]
He L L, Huang D S, He Z X, Yang X J, Yue G Z, Zhu J, Astruc D, Zhao P X. J. Hazard. Mater., 2020, 388: 121761.

doi: 10.1016/j.jhazmat.2019.121761
[95]
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Nano Lett., 2013, 13(6): 2615.

doi: 10.1021/nl4007479 pmid: 23659662
[96]
Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M. ACS Nano, 2012, 6(8): 7311.

doi: 10.1021/nn302422x
[97]
Wang K, Chen P P, Nie W Y, Xu Y, Zhou Y F. Chem. Eng. J., 2019, 359: 1205.

doi: 10.1016/j.cej.2018.11.057
[98]
Meng Z, Stolz R M, Mirica K A. J. Am. Chem. Soc., 2019, 141(30): 11929.

doi: 10.1021/jacs.9b03441
[99]
Wang M C, Ballabio M, Wang M, Lin H H, Biswal B P, Han X C, Paasch S, Brunner E, Liu P, Chen M W, Bonn M, Heine T, Zhou S Q, Cánovas E, Dong R H, Feng X L. J. Am. Chem. Soc., 2019, 141(42): 16810.

doi: 10.1021/jacs.9b07644
[100]
Wen R, Li Y, Zhang M C, Guo X H, Li X, Li X F, Han J, Hu S, Tan W, Ma L J, Li S J. J. Hazard. Mater., 2018, 358: 273.

doi: 10.1016/j.jhazmat.2018.06.059
[101]
Liu H P, Lei W, Tong Z M, Li X J, Wu Z X, Jia Q L, Zhang S W, Zhang H J. Adv. Mater. Interfaces, 2020, 7(15): 2000494.

doi: 10.1002/admi.202000494
[102]
Kang X L, Liu S H, Dai Z D, He Y P, Song X Z, Tan Z Q. Catalysts, 2019, 9(2): 191.

doi: 10.3390/catal9020191
[103]
Ghorbani-Asl M, Kretschmer S, Spearot D E, Krasheninnikov A V. 2D Mater., 2017, 4(2): 025078.
[104]
Lin Z, Carvalho B R, Kahn E, Lv R T, Rao R, Terrones H, Pimenta M A, Terrones M. 2D Mater., 2016, 3(2): 022002.
[105]
Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y. Progress in Chemistry, 2020, 32: 1172.
( 谢超, 周波, 周灵, 吴雨洁, 王双印. 化学进展, 2020, 32: 1172.).

doi: 10.7536/PC200434
[106]
Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.

pmid: 17615351
[107]
Liang Y T, Vijayan B K, Gray K A, Hersam M C. Nano Lett., 2011, 11(7): 2865.

doi: 10.1021/nl2012906 pmid: 21688817
[108]
Chen S C, Wang H, Kang Z X, Jin S, Zhang X D, Zheng X S, Qi Z M, Zhu J F, Pan B C, Xie Y. Nat. Commun., 2019, 10: 788.

doi: 10.1038/s41467-019-08697-x
[109]
Wu S, Yu H T, Chen S, Quan X. ACS Catal., 2020, 10(24): 14380.

doi: 10.1021/acscatal.0c03359
[110]
Zhao Z Q, Choi C, Hong S, Shen H D, Yan C, Masa J, Jung Y, Qiu J S, Sun Z Y. Nano Energy, 2020, 78: 105368.

doi: 10.1016/j.nanoen.2020.105368
[111]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(47): 17881.

doi: 10.1021/ja408329q
[112]
Ran J R, Zhang H P, Qu J T, Shan J Q, Chen S M, Yang F, Zheng R K, Cairney J, Song L, Jing L Q, Qiao S Z. ACS Mater. Lett., 2020, 2(11): 1484.
[113]
Liu Y W, Cheng M, He Z H, Gu B C, Xiao C, Zhou T F, Guo Z P, Liu J D, He H Y, Ye B J, Pan B C, Xie Y. Angew. Chem. Int. Ed., 2019, 58(3): 731.

doi: 10.1002/anie.201808177
[114]
Sapkota B, Liang W T, VahidMohammadi A, Karnik R, Noy A, Wanunu M. Nat. Commun., 2020, 11: 3705.

doi: 10.1038/s41467-020-17422-y
[115]
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135(28): 10274.

doi: 10.1021/ja404523s pmid: 23790049
[116]
Zhang M M, Wang K, Zeng S H, Xu Y, Nie W Y, Chen P P, Zhou Y F. Chem. Eng. J., 2021, 411: 128517.

doi: 10.1016/j.cej.2021.128517
[117]
Xie J F, Qu H C, Lei F C, Peng X, Liu W W, Gao L, Hao P, Cui G W, Tang B. J. Mater. Chem. A, 2018, 6(33): 16121.

doi: 10.1039/C8TA05054F
[118]
Zhang W, Du Q K, Zhang L F. J. Appl. Phys., 2017, 122(24): 244304.

doi: 10.1063/1.5006407
[119]
Wu J, Zhou Y F, Nie W Y, Chen P P. J. Nanoparticle Res., 2018, 20(1): 1.

doi: 10.1007/s11051-017-4105-2
[120]
Giang H, Pali M, Fan L, Suni I I. Electroanalysis, 2019, 31(5): 957.

doi: 10.1002/elan.201800845
[121]
Li C H, Zhang X S, Wen S M, Xiang R, Han Y, Tang W Z, Yue T L, Li Z H. J. Hazard. Mater., 2020, 395: 122615.

doi: 10.1016/j.jhazmat.2020.122615
[122]
Xu S, Shi J J, Ding B, Liu Z Y, Wang X G, Zhao X J, Yang E C. Dalton Trans., 2019, 48(5): 1823.

doi: 10.1039/C8DT04208J
[123]
Jiang Q Q, Wang H J, Wei X Q, Wu Y, Gu W L, Hu L Y, Zhu C Z. Anal. Chimica Acta, 2020, 1119: 11.

doi: 10.1016/j.aca.2020.04.049
[124]
Chacko L, Massera E, Aneesh P M. J. Electrochem. Soc., 2020, 167(10): 106506.

doi: 10.1149/1945-7111/ab992c
[125]
Sun D P, Yang D C, Wei P, Liu B, Chen Z G, Zhang L Y, Lu J. ACS Appl. Mater. Interfaces, 2020, 12(37): 41960.

doi: 10.1021/acsami.0c11269
[126]
Jang J S, Lee J, Koo W T, Kim D H, Cho H J, Shin H, Kim I D. Anal. Chem., 2020, 92(1): 957.

doi: 10.1021/acs.analchem.9b03869
[127]
Chen W Y, Yen C C, Xue S C, Wang H Y, Stanciu L A. ACS Appl. Mater. Interfaces, 2019, 11(37): 34135.

doi: 10.1021/acsami.9b13827
[128]
Rafiefard N, Iraji zad A, Esfandiar A, Sasanpour P, Fardindoost S, Zou Y C, Haigh S J, Shokouh S H H. Microchimica Acta, 2020, 187(2): 1.

doi: 10.1007/s00604-019-3921-8
[129]
Masurkar N, Thangavel N K, Yurgelevic S, Varma S, Auner G W, Reddy Arava L M. Biosens. Bioelectron., 2021, 172: 112724.

doi: 10.1016/j.bios.2020.112724
[130]
Zhang J L, Li Y, Duan S Y, He F J. Anal. Chimica Acta, 2020, 1123: 9.

doi: 10.1016/j.aca.2020.05.013
[131]
Lai C, Wang Z H, Qin L, Fu Y K, Li B S, Zhang M M, Liu S Y, Li L, Yi H, Liu X G, Zhou X R, An N, An Z W, Shi X X, Feng C L. Coord. Chem. Rev., 2021, 427: 213565.

doi: 10.1016/j.ccr.2020.213565
[132]
Hussain T, Sajjad M, Singh D, Bae H, Lee H, Larsson J A, Ahuja R, Karton A. Carbon, 2020, 163: 213.

doi: 10.1016/j.carbon.2020.02.078
[133]
Li D S, Liu G, Zhang Q, Qu M J, Fu Y Q, Liu Q J, Xie J. Sens. Actuat. B Chem., 2021, 331: 129414.

doi: 10.1016/j.snb.2020.129414
[134]
Shamsayei M, Yamini Y, Asiabi H. Appl. Clay Sci., 2020, 188: 105540.

doi: 10.1016/j.clay.2020.105540
[135]
Liu L H, Liu J Y, Zhao L, Yang Z C, Lv C Q, Xue J R, Tang A P. Environ. Sci. Pollut. Res., 2019, 26(9): 8721.

doi: 10.1007/s11356-019-04352-6
[136]
Fard A K, Mckay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh M A. Chem. Eng. J., 2017, 317: 331.

doi: 10.1016/j.cej.2017.02.090
[137]
Wang X D, Yin R L, Zeng L X, Zhu M S. Environ. Pollut., 2019, 253: 100.

doi: 10.1016/j.envpol.2019.06.067
[138]
Ma R, Zhang S, Wen T, Gu P C, Li L, Zhao G X, Niu F L, Huang Q F, Tang Z W, Wang X K. Catal. Today, 2019, 335: 20.

doi: 10.1016/j.cattod.2018.11.016
[139]
Song B, Zeng Z T, Zeng G M, Gong J L, Xiao R, Ye S J, Chen M, Lai C, Xu P, Tang X. Adv. Colloid Interface Sci., 2019, 272: 101999.

doi: 10.1016/j.cis.2019.101999
[140]
Zhang L L, Jin H, Ma H K, Gregory K, Qi Z W, Wang C X, Wu W T, Cang D Q, Li Z F. Chem. Eng. J., 2020, 381: 122787.

doi: 10.1016/j.cej.2019.122787
[141]
Singh P, Shandilya P, Raizada P, Sudhaik A, Rahmani-Sani A, Hosseini-Bandegharaei A. Arab. J. Chem., 2020, 13(1): 3498.

doi: 10.1016/j.arabjc.2018.12.001
[142]
Xiu Z, Guo M, Zhao T, Pan K, Xing Z, Li Z, Zhou W. Chem. Eng. J., 2020, 382: 123011.

doi: 10.1016/j.cej.2019.123011
[143]
Creutz C, Brunschwig B S, Sutin N. J. Phys. Chem. B, 2006, 110(50): 25181.

doi: 10.1021/jp063953d
[144]
Fei W H, Gao J, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. J. Hazard. Mater., 2021, 402: 123515.

doi: 10.1016/j.jhazmat.2020.123515
[145]
Liu N, Lu N, Yu H T, Chen S, Quan X. Chemosphere, 2020, 246: 125760.

doi: 10.1016/j.chemosphere.2019.125760
[146]
Yang Y B, Yang X D, Liang L, Gao Y Y, Cheng H Y, Li X M, Zou M C, Ma R Z, Yuan Q, Duan X F. Science, 2019, 364(6445): 1057.

doi: 10.1126/science.aau5321
[147]
Zhu Y, Chen P P, Nie W Y, Zhou Y F. Water Air Soil Pollut., 2018, 229(3): 1.

doi: 10.1007/s11270-017-3647-3
[148]
Wei Y B, Zhu Y X, Jiang Y J. Chem. Eng. J., 2019, 356: 915.

doi: 10.1016/j.cej.2018.09.108
[149]
Ma H K, Zhang L L, Huang X M, Ding W, Jin H, Li Z F, Cheng S K, Zheng L. Chem. Eng. J., 2019, 362: 667.

doi: 10.1016/j.cej.2019.01.042
[150]
Martínez J L. Science, 2008, 321: 365.

doi: 10.1126/science.1159483 pmid: 18635792
[151]
Guo C S, Wang K, Hou S, Wan L, Lv J P, Zhang Y, Qu X D, Chen S Y, Xu J. J. Hazard. Mater., 2017, 323: 710.

doi: 10.1016/j.jhazmat.2016.10.041
[152]
Davies J, Davies D. Microbiol. Mol. Biol. Rev., 2010, 74(3): 417.

doi: 10.1128/MMBR.00016-10
[153]
Reddy P A K, Reddy P V L, Kwon E, Kim K H, Akter T, Kalagara S. Environ. Int., 2016, 91: 94.

doi: 10.1016/j.envint.2016.02.012
[154]
Gong M F, Xiao S L, Yu X, Dong C C, Ji J H, Zhang D, Xing M Y. RSC Adv., 2019, 9(34): 19278.

doi: 10.1039/C9RA01826C
[155]
Rahman A U, Khan A U, Yuan Q P, Wei Y, Ahmad A, Ullah S, Khan Z U H, Shams S, Tariq M, Ahmad W. J. Photochem. Photobiol. B Biol., 2019, 193: 31.

doi: 10.1016/j.jphotobiol.2019.01.018
[156]
Zhang J Y, Lu X M, Tang D D, Wu S H, Hou X D, Liu J W, Wu P. ACS Appl. Mater. Interfaces, 2018, 10(47): 40808.

doi: 10.1021/acsami.8b15318
[157]
Wang Y, Li J Z, Zhou Z W, Zhou R H, Sun Q, Wu P. Nat. Commun., 2021, 12: 526.

doi: 10.1038/s41467-020-20869-8
[158]
Ogilby P R. Chem. Soc. Rev., 2010, 39(8): 3181.

doi: 10.1039/b926014p pmid: 20571680
[159]
Gomes A, Fernandes E, Lima J L F C. J. Biochem. Biophys. Methods, 2005, 65(2/3): 45.

doi: 10.1016/j.jbbm.2005.10.003
[160]
Upadhyay R K, Soin N, Roy S S. RSC Adv., 2014, 4(8): 3823.

doi: 10.1039/C3RA45013A
[161]
Feng H M, Wang W, Zhang M T, Zhu S D, Wang Q, Liu J G, Chen S G. Appl. Catal. B Environ., 2020, 266: 118609.

doi: 10.1016/j.apcatb.2020.118609
[162]
Zhang R M, Song C J, Kou M P, Yin P Q, Jin X L, Wang L, Deng Y, Wang B, Xia D H, Wong P K, Ye L Q. Environ. Sci. Technol., 2020, 54(6): 3691.

doi: 10.1021/acs.est.9b07891
[163]
Zhao H T, Mu X L, Zheng C H, Liu S J, Zhu Y Q, Gao X, Wu T. J. Hazard. Mater., 2019, 366: 240.

doi: 10.1016/j.jhazmat.2018.11.107
[164]
Wang Z S, Yu H J, Xiao Y F, Zhang L, Guo L M, Zhang L X, Dong X P. Chem. Eng. J., 2020, 394: 125014.

doi: 10.1016/j.cej.2020.125014
[165]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.

doi: 10.1002/smll.201903525
[166]
Lan H C, Zhang J Y, Dai Q J, Ye H, Mao X Y, Wang Y C, Peng H L, Du J, Huang K. Chem. Eng. J., 2021, 409: 127378.

doi: 10.1016/j.cej.2020.127378
[167]
Hou H L, Zhang X W. Chem. Eng. J., 2020, 395: 125030.

doi: 10.1016/j.cej.2020.125030
[168]
Persson I, Halim J, Lind H, Hansen T W, Wagner J B,Näslund L Å Darakchieva V, Palisaitis J, Rosen J, Persson P O Å. Adv. Mater., 2019, 31(2): 1805472.

doi: 10.1002/adma.201805472
[169]
Janakiram S, Ahmadi M, Dai Z D, Ansaloni L, Deng L Y. Membranes, 2018, 8(2): 24.

doi: 10.3390/membranes8020024
[170]
Li X D, Wang S M, Li L, Zu X L, Sun Y F, Xie Y. Acc. Chem. Res., 2020, 53(12): 2964.

doi: 10.1021/acs.accounts.0c00626
[171]
Tang Z M, Kong N, Zhang X C, Liu Y, Hu P, Mou S, Liljeström P, Shi J L, Tan W H, Kim J S, Cao Y H, Langer R, Leong K W, Farokhzad O C, Tao W. Nat. Rev. Mater., 2020, 5(11): 847.

doi: 10.1038/s41578-020-00247-y
[172]
Horváth E, Rossi L, Mercier C, Lehmann C, Sienkiewicz A, ForrÓ L. Adv. Funct. Mater., 2020, 30(40): 2004615.

doi: 10.1002/adfm.202004615
[173]
Zuo F L, Zhang S C, Liu H, Fong H, Yin X, Yu J Y, Ding B. Small, 2017, 13(46): 1702139.

doi: 10.1002/smll.201702139
[174]
Liu H, Zhang S C, Liu L F, Yu J Y, Ding B. Adv. Funct. Mater., 2019, 29(39): 1904108.

doi: 10.1002/adfm.201904108
[175]
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava J A, Pasquali M, Scott J A, Vitale F, Unal M A, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu L G. ACS Nano, 2020, 14(6): 6383.

doi: 10.1021/acsnano.0c03697
[176]
Koo W T, Jang J S, Qiao S P, Hwang W, Jha G, Penner R M, Kim I D. ACS Appl. Mater. Interfaces, 2018, 10(23): 19957.

doi: 10.1021/acsami.8b02986
[177]
Huang L B, Xu S Y, Wang Z Y, Xue K, Su J J, Song Y, Chen S J, Zhu C L, Tang B Z, Ye R Q. ACS Nano, 2020, 14(9): 12045.

doi: 10.1021/acsnano.0c05330
[178]
Fu L J, Yan Z L, Zhao Q H, Yang H M. Adv. Mater. Interfaces, 2018, 5(23): 1801094.

doi: 10.1002/admi.201801094
[179]
Yan Z L, Fu L J, Yang H M. Adv. Mater. Interfaces, 2018, 5(4): 1700934.

doi: 10.1002/admi.201700934
[180]
Lan L Y, Yao Y, Ping J F, Ying Y B. Sens. Actuat. B Chem., 2019, 290: 565.

doi: 10.1016/j.snb.2019.04.016
[181]
Thirumal V, Yuvakkumar R, Kumar P S, Keerthana S P, Ravi G, Velauthapillai D, Saravanakumar B. Chemosphere, 2021, 281: 130984.

doi: 10.1016/j.chemosphere.2021.130984
[182]
Amri A, Bertilsya Hendri Y, Yin C Y, Rahman M M, Altarawneh M, Jiang Z T. Chem. Eng. Sci., 2021, 245: 116848.

doi: 10.1016/j.ces.2021.116848
[183]
Kang S F, Huang W, Zhang L, He M F, Xu S Y, Sun D, Jiang X. ACS Appl. Mater. Interfaces, 2018, 10(16): 13796.

doi: 10.1021/acsami.8b00007
[184]
Yazdankish E, Foroughi M, Azqhandi M H A. J. Hazard. Mater., 2020, 389: 122151.

doi: 10.1016/j.jhazmat.2020.122151
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[9] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[10] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[11] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[12] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[13] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[14] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[15] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.