中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1930-1951 DOI: 10.7536/PC200323 Previous Articles   Next Articles

• Review •

Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production

Qilu Yao1, Hongxia Du1, Zhang-Hui Lu1,**()   

  1. 1 Institute of Advanced Materials(IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
  • Received: Revised: Online: Published:
  • Contact: Zhang-Hui Lu
  • Supported by:
    the National Natural Science Foundation of China(No. 21763012); the National Natural Science Foundation of China(21802056); the Natural Science Foundation of Jiangxi Province of China(No. 20192BAB203009); and the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal
Richhtml ( 183 ) PDF ( 2851 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen has attracted much attention as a globally accepted clean energy carrier. Currently, the search of safe and efficient hydrogen storage materials is one of the most difficult challenges for the transformation to hydrogen powered society as a long-term solution for a secure energy future. Ammonia borane(NH3BH3, AB) has been considered to be a promising chemical hydrogen storage material due to its high hydrogen capacity(19.6 wt%), high volumetric hydrogen density(0.145 kgH2/L), and remarkable advantages in hydrogen storage and dehydrogenation performance. Hydrogen stored in ammonia borane can be released via pyrolysis, methanolysis, and hydrolysis routes. Among them, hydrolysis of ammonia borane can be easily controlled and without CO produced(easy to poison the catalyst) in the presence of an appropriate catalyst under mild conditions, which seems to be the most safe, effective, and convenient route for hydrogen storage applications. In this review, the properties and synthesis of ammonia borane are briefly introduced. The mechanism of hydrogen production from ammonia borane is described. Meanwhile, the research progress in catalytic hydrolytic dehydrogenation of ammonia borane for chemical storage is significantly reviewed. Moreover, the promoting effect of alkali for this hydrolysis reaction is concisely analyzed and the recovery of hydrolysate is also discussed.

Contents

1 Introduction

2 Properties and synthesis of ammonia borane

2.1 Properties of ammonia borane

2.2 Synthesis of ammonia borane

3 Mechanism of catalytic ammonia borane hydrolysis

4 Metal catalysts for the hydrolysis of ammonia borane

4.1 Noble metal catalysts

4.2 Non-noble metal catalysts

4.3 Synergistic metal catalysts

4.4 Other catalysts

5 Promoting effect of alkali on catalytic ammonia borane hydrolysis

6 Regeneration of ammonia borane

7 Conclusion

Fig.1 The schematic diagram of metal catalyst for hydrogen generation from hydrolysis of AB
Fig.2 (a) Typical HRTEM image of Pt nanoparticle supported on CNT.(b) Schematic diagram of truncated cuboctahedron.(c) Plots of number of surface atoms per mole of Pt with Pt particle size of truncated cuboctahedron.(d) Plots of normalized TOF with Pt particle size[50]. Reprinted with permission from ref [50]. Copyright 2014, American Chemical Society
Fig.3 Turnover frequency(TOF) values of different catalysts in successive runs for the hydrolysis of AB at 25 ℃(Pt/AB=0.0079)[52]. Reprinted with permission from ref [52]. Copyright 2016, Wiley-VCH
Fig.4 Schematic illustration of preparation of Ru@SBA-15 catalys[72]. Reprinted with permission from ref[72]. Copyright 2015, Rights Managed by Nature Publishing Group
Fig.5 (a) Hydrogen generation from hydrolysis of AB(200 mM, 10 mL) by Ru@SiO 2 nanospheres(Ru loading=6 wt% and [Ru]=0.5 mM) at 298 K. The inset shows the reaction time versus the loading of ruthenium;(b) Representative TEM images of the Ru@SiO2 nanospheres with different Ru loadings[73]. Reprinted with permission from ref [73]. Copyright 2014, Elsevier
Fig.6 Time plots for hydrogen release from aqueous AB solution(200 mM, 5 mL) catalyzed by MCN, Pd 67Ni 33, and Pd 74Ni 26/MCN NCs at room temperature. Inset: the corresponding TOF values of the catalysts[79]. Reprinted with permission from ref [79]. Copyright 2018, Wiley-VCH
Table 1 Catalytic performance of noble metal catalysts for hydrogen generation from the hydrolysis of ammonia borane
Fig.7 Schematic illustration for the synthesis of four types of MIL-101-supported Co NPs: (a) Co/MIL-101-1-U;(b) Co/MIL-101-1;(c) Co/MIL-101-2-U;(d) Co/MIL-101-2[104]. Reprinted with permission from ref [104]. Copyright 2017, American Chemical Society
Table 2 Catalytic performance of non-noble metal catalysts for hydrogen generation from the hydrolysis of ammonia borane.
Fig.8 TOF values of the different catalysts for hydrogen generation from hydrolysis of AB[128]. Reprinted with permission from ref [128]. Copyright 2016, Royal Society of Chemistry
Fig.9 Hydrogen productivity vs. reaction time for hydrogen release from an aqueous AB solution(200 mM, 5 mL) catalyzed by different catalysts at 298 K( n Ni/ n AB=0.08)[135]. Reprinted with permission from ref[135]. Copyright 2018, Tsinghua University Press and Springer-Verlag GmbH Germany
Fig.10 (a) Hydrogen generation from hydrolysis of AB in presence of different catalysts;(b) TEM image of Cu/RGO[142]. Reprinted with permission from ref[142]. Copyright 2014, Royal Society of Chemistry
Fig.11 Percent of initial activity retained in the successive runs for the hydrolysis of AB and HB in the presence of Cu@SiO 2 catalyst at 298 K[143]. Reprinted with permission from ref[143]. Copyright 2014, Rights Managed by Nature Publishing Group
Table 3 Catalytic performance of synergistic metal catalysts for hydrogen generation from the hydrolysis of ammonia borane
Fig.12 (a) Schematic illustration,(b) color evolution in the formation process of Au@Co core-shell NPs via a one-step seeding-growth method at room temperature[185]. Reprinted with permission from ref [185]. Copyright 2010, American Chemical Society
Fig.13 (a) Cu x Co 1- x @SiO 2 core-shell nanospheres with different x values under an ambient atmosphere at 298 K;(b) TEM image of Cu 0.5Co 0.5@SiO2 [213]. Reprinted with permission from ref[213]. Copyright 2015, American Chemical Society
Fig.14 Hydrogen generation from the hydrolysis of AB in the presence of different metal nanocatalysts(metal/AB=0.04). The insert shows photographs of the catalytic hydrolysis of AB via in situ synthesized Cu 0.33Fe 0.67 nanoalloy[223]. Reprinted with the permission from ref [223]. Copyright 2013, Elsevier
Fig.15 Hydrogen generation from the hydrolysis of AB with the addition of NaOH, KOH, Na 2CO 3, NH 4Cl, CH 3COONH 4 and NH 3·H 2O catalyzed by Cu 0.72Co 0.18Mo 0.1 NPs at 298 K[222]. Reprinted with the permission from ref[ 222]. Copyright 2018, Royal Society of Chemistry
Fig.16 Ammonia borane regeneration cycle from byproducts of hydrolysis
[1]
Schlapbach L , Zuttel A . Nature, 2001, 414: 353.
[2]
梁艳( Liang Y ), 王平( Wang P ), 戴洪斌( Dai H B ). 化学进展( Progress in Chemitry), 2009, 21: 2219.
[3]
张磊( Zhang L ), 涂倩( Tu Q ), 陈学年( Chen X N ), 刘蒲( Liu P ). 化学进展( Progress in Chemitry), 2014, 26: 749.
[4]
张世亮( Zhang S L ), 姚淇露( Yao Q L ), 卢章辉( Lu Z H ). 化学进展( Progress in Chemitry), 2017, 29: 426.
[5]
He T , Wu H , Wu G , Wang J , Zhou W , Xiong Z , Chen J , Zhang T , Chen P . Energy Environ. Sci., 2012, 5: 5686.
[6]
Li P Z , Xu Q . J. Chin. Chem. Soc., 2012, 59: 1181.
[7]
Singh S K , Xu Q . Catal. Sci. Technol., 2013, 3: 1889.
[8]
Zhu Q L , Xu Q . Energy Environ. Sci., 2015, 8: 478.
[9]
Singh A K , Singh S , Kumar A . Catal. Sci. Technol., 2016, 6: 12.
[10]
He L , Liang B L , Huang Y Q , Zhang T . Natl. Sci. Rev., 2018, 5: 356.
[11]
Yan J M , Li S J , Yi S S , Wulan B R , Zheng W T , Jiang Q . Adv. Mater., 2018, 30: 1703038.
[12]
Li S J , Zhou Y T , Kang X , Liu D X , Gu L , Zhang Q H , Yan J M , Jiang Q . Adv. Mater., 2019, 31: 1806781.
[13]
Zhang Z J , Lu Z H , Tan H L , Chen X S , Yao Q L . J. Mater. Chem. A, 2015, 3: 23520.
[14]
Zhang Z J , Wang Y Q , Chen X S , Lu Z H . J. Power Sources, 2015, 291: 14.
[15]
Zhang Z J , Zhang S L , Yao Q L , Chen X S , Lu Z H . Inorg. Chem., 2017, 56: 11938.
[16]
Wang K , Yao Q L , Qing S J , Lu Z H . J. Mater. Chem. A, 2019, 7: 9903.
[17]
Zhang Z J , Luo Y , Liu S W , Yao Q L , Qing S J , Lu Z H . J. Mater. Chem. A, 2019, 7: 21438.
[18]
Luo Y X , Yang Q F , Nie W D , Yao Q L , Zhang Z J , Lu Z H . ACS Appl. Mater. Interfaces, 2020, 12: 8082.
[19]
Chandra M , Xu Q . J. Power Sources, 2006, 156: 190.
[20]
Jiang H L , Xu Q . Catal. Today, 2011, 170: 56.
[21]
Zhan W W , Zhu Q L , Xu Q . ACS Catal., 2016, 6: 6892.
[22]
Alpaydın C Y , Gülbay S K , Colpan C O . Int. J. Hydrogen Energy, 2020, 45: 3414.
[23]
Lang C G , Jia Y , Yao X D . Energy Stroage Mater., 2020, 26: 290.
[24]
Lu Z H , Xu Q . Funct. Mater. Lett., 2012, 5: 1230001.
[25]
Lu Z H , Yao Q L , Zhang Z J , Yang Y W , Chen X S , J. Nanomater., 2014, 729029.
[26]
Yao Q L , Chen X S , Lu Z H . Energy Environ. Focus, 2014, 3: 236.
[27]
Sit V , Geanangel R A , Wendlandt W W . Thermochim. Acta, 1987, 113: 379.
[28]
Conley B L , Guess D , Williams T J . J. Am. Chem. Soc., 2011, 133: 14212.
[29]
Jaska C A , Manners I . J. Am. Chem. Soc., 2004, 126: 9776.
[30]
Rossin A , Caporali M , Gonsalvi L , Guerri A , Lledos A , Peruzzini M , Zanobini F . Eur. J. Inorg. Chem., 2009, 2009: 3055.
[31]
Keaton R J , Blacquiere J M , Baker R T . J. Am. Chem. Soc., 2007, 129: 1844.
[32]
Bluhm M E , Bradley M G , Butterick R , Kusari U , Sneddon L G . J. Am. Chem. Soc., 2006, 128: 7748.
[33]
Gutowska A , Li L , Wang C M , Li X S , Linehan J C , Smith R S , Kay B D , Schmid B , Shaw W , Gutowski M , Autrey T . Angew. Chem. Int. Ed., 2005, 44: 3578.
[34]
Li L , Yao X , Sun C H , Du A J , Cheng L N , Zhu Z H , Yu C Z , Zou J , Smith S C , Wang P , Cheng H M , Frost R L , Lu G Q . Adv. Funct. Mater., 2009, 19: 265.
[35]
Li Z Y , Zhu G S , Lu G Q , Qiu S L , Yao X D . J. Am. Chem. Soc., 2010, 132: 1490.
[36]
Ramachandran P V , Gagare P D . Inorg. Chem., 2007, 46: 7810.
[37]
Yao Q L , Huang M , Lu Z H , Yang Y W , Zhang Y X , Chen X S , Yang Z . Dalton Trans., 2015, 44: 1070.
[38]
Li X G , Zhang C L , Luo M H , Yao Q L , Lu Z H . Inorg. Chem. Front., 2020, 7: 1298.
[39]
Staubitz A , Robertson A P , Manners I . Chem. Rev., 2010, 110: 4079.
[40]
Shore S G , Parry R W . J. Am. Chem. Soc., 1955, 77: 6084.
[41]
Heldebrant D J , Karkamkar A , Linehan J C , Autrey T . Energy Environ. Sci., 2008, 1: 156.
[42]
Xu Q , Chandra M . J. Power Sources, 2006, 163: 364.
[43]
Kalidindi S B , Sanyal U , Jagirdar B R . Phys. Chem. Chem. Phys., 2008, 10: 5870.
[44]
Yang X , Cheng F , Tao Z , Chen J . J.Power Sources, 2011, 196: 2785.
[45]
Peng C Y , Kang L , Cao S , Chen Y , Lin Z S , Fu W F . Angew. Chem. Int. Ed., 2015, 54: 15725.
[46]
Li Z , He T , Liu L , Chen W , Zhang M , Wu G , Chen P . Chem. Sci., 2017, 8: 781.
[47]
Chen W , Li D , Wang Z , Qian G , Sui Z , Duan X , Zhou X , Yeboah I , Chen D . AIChE J., 2017, 63: 60.
[48]
Chandra M , Xu Q . J. Power Sources, 2007, 168: 135.
[49]
Aijaz A , Karkamkar A , Choi Y J , Tsumori N , Ronnebro E , Autrey T , Shioyama H , Xu Q . J. Am. Chem. Soc., 2012, 134: 13926.
[50]
Chen W , Ji J , Feng X , Duan X , Qian G , Li P , Zhou X , Chen D , Yuan W . J. Am. Chem. Soc., 2014, 136: 16736.
[51]
Wang X , Liu D , Song S , Zhang H . Chem. Commun., 2012, 48: 10207.
[52]
Yao Q L , Shi Y , Zhang X , Chen X , Lu Z H . Chem. Asian J., 2016, 11: 3251.
[53]
Yan H , Lin Y , Wu H , Zhang W , Sun Z , Cheng H , Liu W , Wang C , Li J , Huang X , Yao T , Yang J , Wei S , Lu J . Nat. Commun., 2017, 8: 1070.
[54]
Li J J , Guan Q Q , Qu H , Liu W , Lin Y , Sun Z H , Ye X X , Zheng X S , Pan H B , Zhu J F , Chen S , Zhang W H , Wei S Q , Lu J L . J. Am. Chem. Soc., 2019, 141: 14515.
[55]
Clark T J , Whittell G R , Manners I . Inorg. Chem., 2007, 46: 7522.
[56]
Ayvali T , Zahmakiran M , Ozkar S . Dalton Trans., 2011, 40: 3584.
[57]
Durap F , Zahmakıran M , Özkar S . Appl. Catal. A: Gen., 2009, 369: 53.
[58]
Metin Ö , Şahin Ş , Özkar S . Int. J. Hydrogen Energy, 2009, 34: 6304.
[59]
Zahmakıran M , Özkar S . Appl. Catal. B: Environ., 2009, 89: 104.
[60]
Zhava D , Özkar S . Appl. Catal. B: Environ., 2016, 181: 716.
[61]
Akbayrak S , Gençtürk S , Morkani, Özkar S. RSC Adv., 2014, 4: 13742.
[62]
Akbayrak S , Tonbul Y , Özkar S . Appl. Catal. B: Environ., 2016, 198: 162.
[63]
Akbayrak S , Ozcifci Z , Tabak A . J. Colloid Interface Sci., 2019, 546: 324.
[64]
Shen J , Yang L , Hu K , Luo W , Cheng G . Int. J. Hydrogen Energy, 2015, 40: 1062.
[65]
Yao Q L , Lu Z H , Jia Y , Chen X , Liu X . Int. J. Hydrogen Energy, 2015, 40: 2207.
[66]
Sun Q , Wang N , Zhang T , Bai R , Mayoral A , Zhang P , Zhang Q , Terasaki O , Yu J . Angew. Chem. Int. Ed., 2019, 58: 18570.
[67]
Rachiero G P , Demirci U B , Miele P . Catal. Today, 2011, 170: 85.
[68]
Can H , Metin Ö . Appl. Catal. B: Environ., 2012, 125: 304.
[69]
Liang H , Chen G , Desinan S , Rosei R , Rosei F , Ma D . Int. J. Hydrogen Energy, 2012, 37: 17921.
[70]
Xu C , Ming M , Wang Q , Yang C , Fan G , Wang Y , Gao D , Bi J , Zhang Y . J. Mater. Chem. A, 2018, 6: 14380.
[71]
Chen J M , Lu Z H , Xiong L H . Chin. J. Inorg. Chem., 2016, 32: 1816.
[72]
Yao Q L , Lu Z H , Yang K K , Chen X S , Zhu M . Sci. Rep., 2015, 5: 15186.
[73]
Yao Q L , Shi W , Feng G , Lu Z H , Zhang X L , Tao D J , Kong D J , Chen X S . J. Power Sources, 2014, 257: 293.
[74]
Hu Y J , Wang Y Q , Lu Z H , Chen X S , Xiong L H . Appl. Surface Sci., 2015, 341: 185.
[75]
Yao Q L , Lu Z H , Hu Y J , Chen X S . RSC Adv., 2016, 6: 89450.
[76]
Xi P , Chen F , Xie G , Ma C , Liu H , Shao C , Wang J , Xu Z , Xu X , Zeng Z . Nanoscale, 2012, 4: 5597.
[77]
Metin Ö , Kayhan E , Özkar S , Schneider J J . Int. J. Hydrogen Energy, 2012, 37: 8161.
[78]
Kılıç B , Şencanlı S , Metin Ö . J. Mol. Catal. A: Chem., 2012, 361/362: 104.
[79]
Wang W , Lu Z H , Luo Y , Zou A H , Yao Q L , Chen X S . ChemCatChem, 2018, 10: 1620.
[80]
Fuku K , Hayashi R , Takakura S , Kamegawa T , Mori K , Yamashita H . Angew. Chem. Int. Ed., 2013, 52: 7446.
[81]
Qian X , Kuwahara Y , Mori K , Yamashita H . Chem. Eur. J., 2014, 20: 15746.
[82]
Chen J M , Lu Z H , Wang Y , Chen X S , Zhang L . Int. J. Hydrogen Energy, 2015, 40: 4777.
[83]
Akbayrak S , Kaya M , Volkan M , Özkar S . J. Mol. Catal. A: Chem., 2014, 394: 253.
[84]
Akbayrak S , Kaya M , Volkan M , Özkar S . Appl. Catal. B: Environ., 2014, 147: 387.
[85]
Zhao H , Yu G , Yuan M , Yang J , Xu D , Dong Z . Nanoscale, 2018, 10: 21466.
[86]
Khalily M A , Eren H , Akbayrak S , Susapto H H , Biyikli N , Özkar S , Guler M O . Angew. Chem. Int. Ed., 2016, 55: 12257.
[87]
Xu D , Wang W D , Tian M , Dong Z . J. Colloid Interface Sci., 2018, 516: 407.
[88]
Hu M , Ming M , Xu C L , Wang Y , Zhang Y , Gao D J , Bi J , Fan G Y . ChemSusChem, 2018, 11: 3253.
[89]
Zhang H , Huang M , Wen J , Li Y , Li A , Zhang L , Ali A M , Li Y . Chem. Commun., 2019, 55: 4699.
[90]
Akbayrak S , Özkar S . ACS Appl. Mater. Interfaces, 2012, 4: 6302.
[91]
Du C , Ao Q , Cao N , Yang L , Luo W , Cheng G . Int. J. Hydrogen Energy, 2015, 40: 6180.
[92]
Fan Y , Li X , He X , Zeng C , Fan G , Liu Q , Tang D . Int. J. Hydrogen Energy, 2014, 39: 19982.
[93]
Abo-Hamed E K , Pennycook T , Vaynzof Y , Toprakcioglu C , Koutsioubas A , Scherman O A . Small, 2014, 10: 3145.
[94]
Yan J M , Zhang X B , Han S , Shioyama H , Xu Q . Angew. Chem. Int. Ed., 2008, 47: 2287.
[95]
Yan J M , Zhang X B , Shioyama H , Xu Q . J. Power Sources, 2010, 195: 1091.
[96]
Umegaki T , Yan J M , Zhang X B , Shioyama H , Kuriyama N , Xu Q . Int. J. Hydrogen Energy, 2009, 34: 3816.
[97]
Metin Ö , Özkar S . Energy Fuels, 2009, 23: 3517.
[98]
Metin Ö , Özkar S . Int. J. Hydrogen Energy, 2011, 36: 1424.
[99]
Rakap M , Özkar S . Catal. Today, 2012, 183: 17.
[100]
Paladini M , Arzac G M , Godinho V , Haro M C J D, Fernández A . Appl. Catal. B: Environ., 2014, 158/159: 400.
[101]
Yu P J , Lee M H , Hsu H M , Tsai H M , Chen-Yang Y W . RSC Adv., 2015, 5: 13985.
[102]
Yang Y W , Feng G , Lu Z H , Hu N , Zhang F , Chen X S . Acta Phys . Chim. Sin., 2014, 30: 1180.
[103]
Hu J , Chen Z , Li M , Zhou X , Lu H . ACS Appl . Mater. Interfaces, 2014, 6: 13191.
[104]
Liu P , Gu X , Kang K , Zhang H , Cheng J , Su H . ACS Appl . Mater. Interfaces, 2017, 9: 10759.
[105]
Zhou L , Meng J , Li P , Tao Z , Mai L , Chen J . Mater. Horiz., 2017, 4: 268.
[106]
Wang H , Zhao Y , Cheng F , Tao Z , Chen J . Catal. Sci. Technol., 2016, 6: 3443.
[107]
Zhang X L , Zhang D X , Chang G G , Ma X C , Wu J , Wang Y , Yu H Z , Tian G , Chen J , Yang X Y . Ind. Eng. Chem. Res., 2019, 58: 7209.
[108]
Fang Y , Xiao Z , Li J , Lollar C , Liu L , Lian X , Yuan S , Banerjee S , Zhang P , Zhou H C . Angew. Chem. Int. Ed., 2018, 57: 5283.
[109]
Chen M , Xiong R , Cui X , Wang Q , Liu X . Langmuir, 2019, 35: 671.
[110]
Aranishi K , Zhu Q L , Xu Q . ChemCatChem, 2014, 6: 1375.
[111]
Men Y , Su J , Huang C , Liang L , Cai P , Cheng G , Luo W . Chin. Chem. Lett., 2018, 29: 1671.
[112]
Umegaki T , Yan J M , Zhang X B , Shioyama H , Kuriyama N , Xu Q . J. Power Sources, 2009, 191: 209.
[113]
Mahyari M , Shaabani A . J. Mater. Chem. A, 2014, 2: 16652.
[114]
Zhao G , Zhong J , Wang J , Sham T K , Sun X , Lee S T . Nanoscale, 2015, 7: 9715.
[115]
Zhang J , Chen C , Yan W , Duan F , Zhang B , Gao Z , Qin Y . Catal. Sci. Technol., 2016, 6: 2112.
[116]
Manna J , Akbayrak S , Özkar S . J. Colloid Interface Sci., 2017, 508: 359.
[117]
Wang C , Tuninetti J , Wang Z , Zhang C , Ciganda R , Salmon L , Moya S , Ruiz J , Astruc D . J. Am. Chem. Soc., 2017, 139: 11610.
[118]
Guo K , Li H , Yu Z . ACS Appl . Mater. Interfaces, 2018, 10: 517.
[119]
Metin Ö , Mazumder V , Özkar S , Sun S . J. Am. Chem. Soc., 2010, 132: 1468.
[120]
Metin Ö , Özkar S , Sun S . Nano Res., 2010, 3: 676.
[121]
Umegaki T , Xu Q , Kojima Y . J. Power Sources, 2012, 216: 363.
[122]
Yan J M , Zhang X B , Han S , Shioyama H , Xu Q . Inorg. Chem., 2009, 48: 7389.
[123]
Li P Z , Aranishi K , Xu Q . Chem. Commun., 2012, 48: 3173.
[124]
Li P Z , Aijaz A , Xu Q . Angew. Chem. Int. Ed., 2012, 51: 6753.
[125]
Li Y , Xie L , Li Y , Zheng J , Li X . Chem. Eur. J., 2009, 15: 8951.
[126]
Cao C Y , Chen C Q , Li W , Song W G , Cai W . ChemSusChem, 2010, 3: 1241.
[127]
Yang K K , Yao Q L , Huang W , Chen X S , Lu Z H . Int. J. Hydrogen Energy, 2017, 42: 6840.
[128]
Yao Q L , Lu Z H , Huang W , Chen X S , Zhu J . J. Mater. Chem. A, 2016, 4: 8579.
[129]
Yang K , Yao Q L , Lu Z H , Kang Z B , Chen X S . Acta Phys . Chim. Sin., 2017, 33: 993.
[130]
Yao Q L , Lu Z H , Zhang R , Zhang S , Chen X S , Jiang H L . J. Mater. Chem. A, 2018, 6: 4386.
[131]
Chen J M , Lu Z H , Yao Q L , Feng G , Luo Y . J. Mater. Chem. A, 2018, 6: 20746.
[132]
Yao Q L , He M , Hong X , Chen X , Feng G , Lu Z H . Int. J. Hydrogen Energy, 2019, 44: 28430.
[133]
Yao Q L , He M , Hong X L , Zhang X L , Lu Z H . Inorg. Chem. Front., 2019, 6: 1546.
[134]
Yao Q L , Yang K K , Nie W D , Li Y X , Lu Z H . Renew. Energy, 2020, 147: 2024.
[135]
Yao Q L , Lu Z H , Yang Y W , Chen Y Z , Chen X S , Jiang H L . Nano Res., 2018, 11: 4412.
[136]
Yang Y W , Lu Z H , Chen X S , Mater. Technol., 2015, 30: 89.
[137]
Zahmakıran M , Durap F , Özkar S . Int. J. Hydrogen Energy, 2010, 35: 187.
[138]
Yamada Y , Yano K , Xu Q , Fukuzumi S . J. Phys. Chem. C, 2010, 114: 16456.
[139]
Yamada Y , Yano K , Fukuzumi S . Energy Environ. Sci., 2012, 5: 5356.
[140]
Kaya M , Zahmakiran M , Özkar S , Volkan M . ACS Appl . Mater. Interfaces, 2012, 4: 3866.
[141]
Zhang J , Wang Y , Zhu Y , Mi G , Du X , Dong Y . Renew. Energy, 2018, 118: 146.
[142]
Yang Y W , Lu Z H , Hu Y J , Zhang Z J , Shi W , Chen X S , Wang T . RSC Adv., 2014, 4: 13749.
[143]
Yao Q L , Lu Z H , Zhang Z J , Chen X S , Lan Y Q . Sci. Rep., 2014, 4: 7597.
[144]
Ozay O , Inger E , Aktas N , Sahiner N . Int. J. Hydrogen Energy, 2011, 36: 8209.
[145]
Yurderi M , Bulut A , Ertas I E , Zahmakiran M , Kaya M . Appl. Catal. B: Environ., 2015, 165: 169.
[146]
Cui L , Cao X , Sun X , Yang W , Liu J . ChemCatChem, 2018, 10: 710.
[147]
Chen Q Q , Li Q , Hou C C , Wang C J , Peng C Y , LÓpez N , Chen Y . Catal. Sci. Technol., 2019, 9: 2828.
[148]
Singh A K , Xu Q . ChemCatChem, 2013, 5: 652.
[149]
Shang N Z , Feng C , Gao S T , Wang C . Int. J. Hydrogen Energy, 2016, 41: 944.
[150]
Kang J X , Chen T W , Zhang D F , Guo L . Nano Energy, 2016, 23: 145.
[151]
Tong Y , Lu X , Sun W , Nie G , Yang L , Wang C . J. Power Sources, 2014, 261: 221.
[152]
Amali A J , Aranishi K , Uchida T , Xu Q . Part. Part. Syst. Charact., 2013, 30: 888.
[153]
Zhou Q X , Xu C X . Chem. Asian J., 2016, 11: 705.
[154]
Rakap M. J. Power Sources, 2015, 276: 320.
[155]
Rakap M. Appl. Catal. B: Environ., 2015, 163: 129.
[156]
Rakap M. Int. J. Green Energy, 2015, 12: 1288.
[157]
Rakap M. Appl. Catal. A: General, 2014, 478: 15.
[158]
Rakap M. J. Alloy Compd., 2015, 649: 1025.
[159]
Cheng F , Ma H , Li Y , Chen J . Inorg. Chem., 2007, 46: 788.
[160]
Yang X , Cheng F , Liang J , Tao Z , Chen J . Int. J. Hydrogen Energy, 2009, 34: 8785.
[161]
Yi R , Shi R , Gao G , Zhang N , Cui X , He Y , Liu X . J. Phys. Chem. C, 2009, 113: 1222.
[162]
Du J , Cheng F , Si M , Liang J , Tao Z , Chen J . Int. J. Hydrogen Energy, 2013, 38: 5768.
[163]
Yang X , Cheng F , Liang J , Tao Z , Chen J . Int. J. Hydrogen Energy, 2011, 36: 1984.
[164]
Qi X , Li X , Chen B , Lu H , Wang L , He G . ACS Appl . Mater. Interfaces, 2016, 8: 1922.
[165]
Ge Y , Ye W , Shah Z H , Lin X , Lu R , Zhang S . ACS Appl . Mater. Interfaces, 2017, 9: 3749.
[166]
Fu F , Wang C , Wang Q , Martinez-Villacorta A M , Escobar A , Chong H , Wang X , Moya S , Salmon L , Fouquet E , Ruiz J , Astruc D . J. Am. Chem. Soc., 2018, 140: 10034.
[167]
Fan G , Li X , Ma Y , Zhang Y , Wu J , Xu B , Sun T , Gao D , Bi J . New J. Chem., 2017, 41: 2793.
[168]
Wang Q , Fu F , Yang S , Martinez Moro M , Ramirez M D L A, Moya S , Salmon L , Ruiz J , Astruc D . ACS Catal., 2018, 9: 1110.
[169]
Zhang J , Chen W , Ge H , Chen C , Yan W , Gao Z , Gan J , Zhang B , Duan X , Qin Y . Appl. Catal. B: Environ., 2018, 235: 256.
[170]
Chen G , Desinan S , Rosei R , Rosei F , Ma D . Chem. Eur. J., 2012, 18: 7925.
[171]
Chen G , Desinan S , Nechache R , Rosei R , Rosei F , Ma D . Chem. Commun., 2011, 47: 6308.
[172]
Li X , Zeng C , Fan G . Int. J. Hydrogen Energy, 2015, 40: 3883.
[173]
Mori K , Miyawaki K , Yamashita H . ACS Catal., 2016, 6: 3128.
[174]
Roy S , Pachfule P , Xu Q . Eur. J. Inorg. Chem., 2016, 2016: 4353.
[175]
Rachiero G P , Demirci U B , Miele P . Int. J. Hydrogen Energy, 2011, 36: 7051.
[176]
Lu D , Yu G , Li Y , Chen M , Pan Y , Zhou L , Yang K , Xiong X , Wu P , Xia Q . J. Alloy Compd., 2017, 694: 662.
[177]
Chen M H , Zhou L Q , Di L , Yue L , Ning H H , Pan Y X , Xu H K , Peng W W , Zhang S R . Int. J. Hydrogen Energy, 2018, 43: 1439.
[178]
Pachfule P , Yang X , Zhu Q L , Tsumori N , Uchida T , Xu Q . J. Mater. Chem. A, 2017, 5: 4835.
[179]
Jiang H L , Umegaki T , Akita T , Zhang X B , Haruta M , Xu Q . Chem. Eur. J., 2010, 16: 3132.
[180]
Zhu Q L , Li J , Xu Q . J. Am. Chem. Soc., 2013, 135: 10210.
[181]
Guo L , Gu X , Kang K , Wu Y , Cheng J , Liu P , Wang T , Su H . J. Mater. Chem. A, 2015, 3: 22807.
[182]
Kang K , Gu X , Guo L , Liu P , Sheng X , Wu Y , Cheng J , Su H . Int. J. Hydrogen Energy, 2015, 40: 12315.
[183]
Li J , Zhu Q L , Xu Q . Chem. Commun., 2014, 50: 5899.
[184]
Lu Z H , Jiang H L , Yadav M , Aranishi K , Xu Q . J. Mater. Chem., 2012, 22: 5065.
[185]
Yan J M , Zhang X B , Akita T , Haruta M , Xu Q . J. Am. Chem. Soc., 2010, 132: 5326.
[186]
Chen Y Z , Liang L , Yang Q , Hong M , Xu Q , Yu S H , Jiang H L . Mater. Horiz., 2015, 2: 606.
[187]
Wen M , Sun B , Zhou B , Wu Q , Peng J . J. Mater. Chem., 2012, 22: 11988.
[188]
Ke D , Li Y , Wang J , Zhang L , Wang J , Zhao X , Yang S , Han S . Int. J. Hydrogen Energy, 2016, 41: 2564.
[189]
Çiftci N S , Metin Ö . Int. J. Hydrogen Energy, 2014, 39: 18863.
[190]
Zhang L , Zhou L , Yang K , Gao D , Huang C , Chen Y , Zhang F , Xiong X , Li L , Xia Q . J. Alloy Compd., 2016, 677: 87.
[191]
Shang N , Zhou X , Feng C , Gao S , Wu Q , Wang C . Int. J. Hydrogen Energy, 2017, 42: 5733.
[192]
Sun D , Mazumder V , Metin Ö , Sun S . ACS Nano, 2011, 5: 6458.
[193]
Wang J , Qin Y L , Liu X , Zhang X B . J. Mater. Chem., 2012, 22: 12468.
[194]
Chen Y Z , Xu Q , Yu S H , Jiang H L . Small, 2015, 11: 71.
[195]
Aranishi K , Jiang H L , Akita T , Haruta M , Xu Q . Nano Res., 2011, 4: 1233.
[196]
Yang L , Su J , Meng X , Luo W , Cheng G . J. Mater. Chem. A, 2013, 1: 10016.
[197]
Yang L , Su J , Luo W , Cheng G . Int. J. Hydrogen Energy, 2014, 39: 3360.
[198]
Qiu F , Liu G , Li L , Wang Y , Xu C , An C , Chen C , Xu Y , Huang Y , Wang Y , Jiao L , Yuan H . Chem. Eur. J., 2014, 20: 505.
[199]
Wang H L , Yan J M , Wang Z L , Jiang Q . Int. J. Hydrogen Energy, 2012, 37: 10229.
[200]
Qiu F , Dai Y , Li L , Xu C , Huang Y , Chen C , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2014, 39: 436.
[201]
Zhang H , Wang X , Chen C , An C , Xu Y , Huang Y , Zhang Q , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2015, 40: 12253.
[202]
Yan J M , Zhang X B , Han S , Shioyama H , Xu Q . J. Power Sources, 2009, 194: 478.
[203]
Zhou X , Chen Z , Yan D , Lu H . J. Mater. Chem., 2012, 22: 13506.
[204]
Lai S W , Lin H L , Lin Y P , Yu T L . Int. J. Hydrogen Energy, 2013, 38: 4636.
[205]
Qiu F Y , Wang Y J , Wang Y P , Li L , Liu G , Yan C , Jiao L F , Yuan H T . Catal. Today, 2011, 170: 64.
[206]
Qiu F , Li L , Liu G , Wang Y , Wang Y , An C , Xu Y , Xu C , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2013, 38: 3241.
[207]
Qiu F , Li L , Liu G , Wang Y , An C , Xu C , Xu Y , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2013, 38: 7291.
[208]
Zhou S , Wen M , Wang N , Wu Q , Wu Q , Cheng L . J. Mater. Chem., 2012, 22: 16858.
[209]
Yang Y , Zhang F , Wang H , Yao Q L , Chen X , Lu Z H . J. Nanomater., 2014, 294350.
[210]
Wang Q , Zhang Z , Liu J , Liu R , Liu T . Mater. Chem. Phys., 2018, 204: 58.
[211]
Miao H , Ma K , Zhu H , Yin K , Zhang Y , Cui Y . RSC Adv., 2019, 9: 14580.
[212]
Yan J M , Wang Z L , Wang H L , Jiang Q . J. Mater. Chem., 2012, 22: 10990.
[213]
Yao Q L , Lu Z H , Wang Y , Chen X , Feng G . J. Phys. Chem. C, 2015, 119: 14167.
[214]
Li C , Zhou J , Gao W , Zhao J , Liu J , Zhao Y , Wei M , Evans D G , Duan X . J. Mater. Chem. A, 2013, 1: 5370.
[215]
Song F Z , Zhu Q L , Yang X C , Xu Q . ChemNanoMat, 2016, 2: 942.
[216]
Wang H , Zhou L , Han M , Tao Z , Cheng F , Chen J . J. Alloy Compd., 2015, 651: 382.
[217]
Bulut A , Yurderi M , Ertasí E , Celebi M , Kaya M , Zahmakiran M . Appl. Catal. B: Environ., 2016, 180: 121.
[218]
Li J , Zhu Q L , Xu Q . Catal. Sci. Technol., 2015, 5: 525.
[219]
Liu Y , Zhang J , Guan H , Zhao Y , Yang J H , Zhang B . Appl. Surface Sci., 2018, 427: 106.
[220]
Li H , Yan Y , Feng S , Zhu Y , Chen Y , Fan H , Zhang L , Yang Z . Int. J. Hydrogen Energy, 2019, 44: 8307.
[221]
Liao J , Lv F , Feng Y , Zhong S , Wu X , Zhang X , Wang H , Li J , Li H . Catal. Commun., 2019, 122: 16.
[222]
Yao Q L , Yang K , Hong X , Chen X , Lu Z H . Catal. Sci. Technol., 2018, 8: 870.
[223]
Lu Z H , Li J , Zhu A , Yao Q L , Huang W , Zhou R , Zhou R , Chen X . Int. J. Hydrogen Energy, 2013, 38: 5330.
[224]
Lu Z H , Li J , Feng G , Yao Q L , Zhang F , Zhou R , Tao D , Chen X , Yu Z . Int. J. Hydrogen Energy, 2014, 39: 13389.
[225]
Guo K , Ding Y , Luo J , Gu M , Yu Z . ACS Appl . Energy Mater., 2019, 2: 5851.
[226]
Yen H , Seo Y , Kaliaguine S , Kleitz F . ACS Catal., 2015, 5: 5505.
[227]
Yen H , Kleitz F . J. Mater. Chem.A, 2013, 1: 14790.
[228]
Yousef A , Barakat N A M , El-Newehy M , Kim H Y . Int. J. Hydrogen Energy, 2012, 37: 17715.
[229]
Zhou Y H , Wang S , Wan Y , Liang J , Chen Y , Luo S , Yong C . J. Alloy Compd., 2017, 728: 902.
[230]
Gao D , Zhang Y , Zhou L , Yang K . Appl. Surface Sci., 2018, 427: 114.
[231]
Wang C , Sun D , Yu X , Zhang X , Lu Z , Wang X , Zhao J , Li L , Yang X . Inorg. Chem. Front., 2018, 5: 2038.
[232]
Liu Q , Zhang S , Liao J , Feng K , Zheng Y , Pollet B G , Li H . J. Power Sources, 2017, 355: 191.
[233]
Liao J , Li H , Zhang X , Feng K , Yao Y . Catal. Sci. Technol., 2016, 6: 3893.
[234]
Liu Q , Zhang S , Liao J , Huang X , Zheng Y , Li H . Catal. Sci. Technol., 2017, 7: 3573.
[235]
Liao J , Lu D , Diao G , Zhang X , Zhao M , Li H . ACS Sustain . Chem. Eng., 2018, 6: 5843.
[236]
Lu D , Liao J , Zhong S , Leng Y , Ji S , Wang H , Wang R , Li H . Int. J. Hydrogen Energy, 2018, 43: 5541.
[237]
Feng K , Zhong J , Zhao B , Zhang H , Xu L , Sun X , Lee S T . Angew. Chem. Int. Ed., 2016, 55: 11950.
[238]
Li J , Ren X , Lv H , Wang Y , Li Y , Liu B . J. Hazard. Mater., 2020, 391: 122199.
[239]
Patel N , Fernandes R , Guella G , Miotello A . Appl. Catal. B: Environ., 2010, 95: 137.
[240]
Patel N , Kale A , Miotello A . Appl. Catal. B: Environ., 2012, 111/112: 178.
[241]
Cui L , Xu Y , Niu L , Yang W , Liu J . Nano Res., 2016, 10: 595.
[242]
Tang C , Qu F , Asiri A M , Luo Y , Sun X . Inorg. Chem. Front., 2017, 4: 659.
[243]
Zen Y F , Fu Z C , Liang F , Xu Y , Yang D D , Yang Z , Gan X , Lin Z S , Chen Y , Fu W F . Asian J . Org. Chem., 2017, 6: 1589.
[244]
Yang C , Men Y , Xu Y , Liang L , Cai P , Luo W . ChemPlusChem, 2019, 84: 382.
[245]
Qu X , Jiang R , Li Q , Zeng F , Zheng X , Xu Z , Chen C , Peng J . Green Chem., 2019, 21: 850.
[246]
Patel N , Fernandes R , Edla R , Lihitkar P B , Kothari D C , Miotello A . Catal. Commun., 2012, 23: 39.
[247]
Luo Y C , Liu Y H , Hung Y , Liu X Y , Mou C Y . Int. J. Hydrogen Energy, 2013, 38: 7280.
[248]
Figen A K. Int. J. Hydrogen Energy, 2013, 38: 9186.
[249]
Dai H B , Gao L L , Liang Y , Kang X D , Wang P . J. Power Sources, 2010, 195: 307.
[250]
Eom K S , Kim M J , Kim R H , Nam D H , Kwon H S . J. Power Sources, 2010, 195: 2830.
[251]
Rakap M , Kalu E E , Özkar S . Int. J. Hydrogen Energy, 2011, 36: 254.
[252]
Hou C C , Li Q , Wang C J , Peng C Y , Chen Q Q , Ye H F , Fu W F , Che C M , LÓpez N , Chen Y . Energy Environ. Sci., 2017, 10: 1770.
[253]
Chandra M , Xu Q . J. Power Sources, 2006, 159: 855.
[254]
Yan J , Liao J , Li H , Wang H , Wang R . Catal. Commun., 2016, 84: 12.
[255]
Fu Z C , Xu Y , Chan S L , Wang W W , Li F , Liang F , Chen Y , Lin Z S , Fu W F , Che C M . Chem. Commun., 2017, 53: 705.
[256]
Stephens F H , Pons V , Baker R T . Dalton Trans., 2007, 25: 2613.
[257]
Liu C H , Chen B H , Lee D J , Ku J R . Tsau F . Ind. Eng. Chem. Res., 2010, 49: 9864.
[258]
Liu C H , Wu Y C , Chou C C , Chen B H , Hsueh C L , Ku J R , Tsau F . Int. J. Hydrogen Energy, 2012, 37: 2950.
[259]
Tan Y , Yu X . RSC Adv., 2013, 3: 23879.
[260]
Ramachandran P V , Raju B C , Gagare P D . Org. Lett., 2012, 14: 6119.
[261]
Yadav M , Xu Q . Energy Environ. Sci., 2012, 5: 9698.
[262]
Summerscales O T , Gordon J C . Dalton Trans., 2013, 42: 10075.
[263]
Sanyal U , Demirci U B , Jagirdar B R , Miele P . ChemSusChem, 2011, 4: 1731.
[264]
Yao Q L , Ding Y Y , Lu Z H . Inorg. Chem. Front., 2020, 7: 3837.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.