中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1688-1705 DOI: 10.7536/PC210915 Previous Articles   Next Articles

• Review •

Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates

Leyi Wang, Niu Li()   

  1. School of Materials Science and Engineering, Nankai University,Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Niu Li
Richhtml ( 26 ) PDF ( 391 ) Cited
Export

EndNote

Ris

BibTeX

Cu-exchanged zeolite SSZ-13 (Cu-SSZ-13) has been proven to be an excellent catalyst for the NH3-SCR of NOx from diesel engine exhaust. This review summarizes the effect of Brønsted acid sites and framework Al atoms on the location and migration of Cu species in CHA cage, emphasizing the importance of paired Brønsted acid sites and ‘strong Al pairs’ in the hydrothermal stability of Cu-SSZ-13. The latest advances in methods to control the formation of framework ‘Al pairs’ is described as well. Based on the analysis of the catalytic performances of Cu-SSZ-13 synthesized with different organic templates, the possibility of synthesizing Cu-SSZ-13 with great catalytic performance and low cost is pointed out.

Contents

1 Introduction

2 Cu-SSZ-13 and selective catalytic reduction (SCR) of NOx

2.1 Property and function of Cu ions in Cu-SSZ-13

2.2 Al distribution in Cu-SSZ-13 and its effect on Cu species

2.3 Possible location of acid sites in Cu-SSZ-13

3 NH3-SCR performance of Cu-SSZ-13 synthesized by different organic structure directing agents

3.1 NH3-SCR performance of Cu-SSZ-13 synthesized by benzyltrimethylammonium hydroxide (BTMAOH)

3.2 NH3-SCR performance of Cu-SSZ-13 synthesized by Cu-tetraethylenepentamine complex (Cu-TEPA)

3.3 NH3-SCR performance of Cu-SSZ-13 synthesized by choline chloride (CC)

3.4 NH3-SCR performance of Cu-SSZ-13 synthesized by Tetraethylammonium hydroxide (TEAOH)

3.5 NH3-SCR performance of Cu-SSZ-13 synthesized by N,N-dimethyl-n-ethyl-cyclohexyl ammonium bromide (DMCHABr)

4 NH3-SCR performance of Cu-SSZ-13 synthesized by co-template method

4.1 NH3-SCR performance of Cu-SSZ-13 synthesized by N, N, N-trimethyl-1-adamantyl ammonium hydroxide (TMADaOH) and Cu-tetraethylenepentamine complex (Cu-TEPA)

4.2 NH3-SCR performance of Cu-SSZ-13 synthesized by tetraethylammonium hydroxide (TEAOH) and Cu-tetraethylenepentamine complex (Cu-TEPA)

4.3 NH3-SCR performance of bimetallic SSZ-13

5 Synthesis of CHA zeolite without organic structure directing agents (SSZ-13 with low Si/Al ratio)

6 Conclusion and outlook

Fig. 1 Structure of SSZ-13 constructed of CHA cage and double-six-rings (d6r)
Fig. 2 Crystallographic structure of dehydrated, O2 activated Cu-CHA portraying the two 6MR sites B (cyan) and B'(orange) and the 8MR site D (green). Suggested bonds between Cu and framework O are shown with dashed lines[53]. Copyright 2014, International Union of Crystallography
Fig. 3 Different arrangement of Al atoms between paired (a, b) and isolated (c) configurations in 6MR
Fig. 4 Proposed low-temperature SCR catalytic cycle (a)[49] and conversion of Cu species (b). Copyright 2017, The American Association for the Advancement of Science
Fig. 5 Schematic Representation of the Organization of Si and Al Atoms in the Crystallizing Polyanionic CHA Framework To Form (a) Isolated Al with Only TMADa+ or (b) Paired Al in the Presence of TMADa+ and Na+; (c)Fraction of Al pairs rises as Na+/TMADa+ (0~1) in solution increases[62]. Copyright 2016, American Chemical Society
Fig. 6 Predicted Cu site compositional phase diagram versus Si:Al and Cu:Al ratios. Color scale indicates predicted fraction of CuOH. White line demarcates transition from [Z2CuII]-only region to mixed [Z2CuII]/[ZCuIIOH] region. White circles indicated compositions of synthesized Cu-SSZ-13 samples[16]. Copyright 2016, American Chemical Society
Fig. 7 Four different acid site in SAPO-34. Atom types are designated by color: Al, yellow; Si and P, blue; O, red. (A) Four different acid site in same cage. (b) O1 belongs to two 4-T and one 8-T rings, connecting the two 6-T rings of the double 6-T ring layers; (c) O2 belongs to one 4-T, one 6-T, and one 8-T rings; (d) O3 belongs to two 4-T and one 6-T rings; (e) O4 belongs to one 4-T and two 8-T rings, forming the bridge between two double 6-T rings. The orientation of the proton with respect to the framework has only a pictorial meaning[76]. Copyright 2007, American Chemical Society
Fig. 8 NOx conversion over Cu-SSZ-13 catalysts: (A) Fresh Cu-SSZ-13 catalysts; (B) Cu3.25-SSZ-13 (10, 2.50) after hydrothermal aging[29]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 9 Match of the optimized CC dimer model within the CHA cage by FTIR spectroscopy and calculated by DFT[32]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 10 a) Catalytic activities profiles for NH3-SCR of NOx over Cu-SSZ-13. Reaction conditions: 0.200 g catalyst, 1000 ppm of NH3, 1000 ppm of NO, 6 vol% O2, 5 vol% H2O and balanced by He, GHSV~50 000 h-1[54]; b) NO conversion on the Cu-SSZ-13 (CC) sample for NH3-SCR. Conditions: 1000 ppm NH3, 1000 ppm NO, 10 vol% O2 balanced by He, GHSV= 30 000 h-1[31]. Copyright 2014, American Chemical Society
Fig. 11 Catalytic activity for the NH3-SCR of NOx reaction of Cu-SSZ-13-TEAOH. Cu-SSZ-13-TEAOH-HT-750 is the Cu-SSZ-13 above under hydrothermal aging at 750 ℃; Cu-SSZ-13-TEPA-TEAOH is synthesized in the presence of both TEPA and TEAOH. The reaction has been performed using a feed composed of 500 ppm of NO, 500 ppm of NH3, 5% of H2O and 7% of O2 with GHSV= 450 000 h-1 [34]. Copyright 2015, The Royal Society of Chemistry
Fig. 12 Dependence of the NO conversion on temperature for the NH3-SCR over the Cu-SSZ-13-DMCHA+. Reaction conditions: 500 ppm NO, 500 ppm NH3, 10% O2, and N2 balance; GHSV: 80 000 h-1[37,38]. Copyright 2015, 2017, The Royal Society of Chemistry
Fig. 13 Light-off NH3-SCR curves over the zeolite catalysts[41]. Copyright 2020, American Chemical Society
[1]
Kwak J H, Tran D, Szanyi J, Peden C H F, Lee J H. Catal. Lett., 2012, 142(3): 295.

doi: 10.1007/s10562-012-0771-y
[2]
Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S I, Kagawa S. J. Chem. Soc., Chem. Commun., 1986(16): 1272.
[3]
Quincoces C E, Kikot A, Basaldella E I, González M G. Ind. Eng. Chem. Res., 1999, 38(11): 4236.

doi: 10.1021/ie980752q
[4]
Park J H, Park H J, Baik J H, Nam I S, Shin C H, Lee J H, Cho B K, Oh S H. J. Catal., 2006, 240(1): 47.

doi: 10.1016/j.jcat.2006.03.001
[5]
Corma A, Forne V, Palomares E. Selective catalytic reduction of NOx on Cu-beta zeolites. Selective catalytic reduction of NOx on Cu-beta zeolites. Appl. Catal. B Environ., 1997, 11: 233.
[6]
Kwak J, Tonkyn R, Kim D H, Szanyi J, Peden C. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal., 2010, 275: 187.

doi: 10.1016/j.jcat.2010.07.031
[7]
Fickel D W, Lobo R F. J. Phys. Chem. C, 2010, 114(3): 1633.

doi: 10.1021/jp9105025
[8]
Fickel D W, D’Addio E, Lauterbach J A, Lobo R F. Appl. Catal. B Environ., 2011, 102(3/4): 441.

doi: 10.1016/j.apcatb.2010.12.022
[9]
McEwen J S, Anggara T, Schneider W F, Kispersky V F, Miller J T, Delgass W N, Ribeiro F H. Catal. Today, 2012, 184(1): 129.

doi: 10.1016/j.cattod.2011.11.037
[10]
Gao F, Kwak J H, Szanyi J, Peden C H F. Top. Catal., 2013, 56(15/17): 1441.

doi: 10.1007/s11244-013-0145-8
[11]
Xie L J, Liu F D, Ren L M, Shi X Y, Xiao F S, He H. Environ. Sci. Technol., 2014, 48(1): 566.

doi: 10.1021/es4032002
[12]
Ma L, Cheng Y S, Cavataio G, McCabe R W, Fu L X, Li J H. Appl. Catal. B Environ., 2014, 156/157: 428.

doi: 10.1016/j.apcatb.2014.03.048
[13]
Zones S. US 4544538A, 1985.
[14]
Paolucci C, Iorio J R D, Ribeiro F H, Gounder R, Schneider W F. In Adv. Catal.; Song C. Ed.; Academic Press, 2016. 59.
[15]
Broach R. Weinheim: Wiley-CVH. 2010, DOI: 10.1002/9783527629565:27.

doi: 10.1002/9783527629565:27
[16]
Paolucci C, Parekh A A, Khurana I, di Iorio J R, Li H, Albarracin Caballero J D, Shih A J, Anggara T, Delgass W N, Miller J T, Ribeiro F H, Gounder R, Schneider W F. J. Am. Chem. Soc., 2016, 138(18): 6028.

doi: 10.1021/jacs.6b02651
[17]
Elisa B, Pablo B, Stian S, Unni O, Carlo L F, Silvia B. Chem. Soc. Rev., 2018, 47: 8097.

doi: 10.1039/C8CS00373D
[18]
Giordanino F, Vennestrøm P N R, Lundegaard L F, Stappen F N, Mossin S, Beato P, Bordiga S, Lamberti C. Dalton Trans., 2013, 42(35): 12741.
[19]
Gao F, Washton N M, Wang Y L, Kollár M, Szanyi J, Peden C H F. J. Catal., 2015, 331: 25.

doi: 10.1016/j.jcat.2015.08.004
[20]
Fan C, Chen Z, Pang L, Ming S J, Zhang X F, Albert K B, Liu P, Chen H P, Li T. Appl. Catal. A Gen., 2018, 550: 256.

doi: 10.1016/j.apcata.2017.11.021
[21]
Miller S J,. Yuen L T. US 20080159950.
[22]
Itakura M, Goto I, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater., 2011, 144(1/3): 91.

doi: 10.1016/j.micromeso.2011.03.041
[23]
Yamanaka N, Itakura M, Kiyozumi Y, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater., 2012, 158: 141.

doi: 10.1016/j.micromeso.2012.03.030
[24]
Joichi Y, Shimono D, Tsunoji N, Takamitsu Y, Sadakane M, Sano T. Cryst. Growth Des., 2018, 18(9): 5652.

doi: 10.1021/acs.cgd.8b00963
[25]
Yamanaka N, Itakura M, Kiyozumi Y, Sadakane M, Sano T. Bull. Chem. Soc. Jpn., 2013, 86(11): 1333.

doi: 10.1246/bcsj.20130189
[26]
Kim Y J, Lee J K, Min K M, Hong S B, Nam I S, Cho B K. J. Catal., 2014, 311: 447.

doi: 10.1016/j.jcat.2013.12.012
[27]
Kim Y J, Kim P S, Kim C H. Appl. Catal. A Gen., 2019, 569: 175.

doi: 10.1016/j.apcata.2018.10.032
[28]
Ren L M, Zhu L F, Yang C G, Chen Y M, Sun Q, Zhang H Y, Li C J, Nawaz F, Meng X J, Xiao F S. Chem. Commun., 2011, 47(35): 9789.

doi: 10.1039/c1cc12469b
[29]
Chen J W, Zhao R, Zhou R X. ChemCatChem, 2018, 10(22): 5182.

doi: 10.1002/cctc.201801234
[30]
Shan Y L, Shi X Y, Yan Z D, Liu J J, Yu Y B, He H. Catal. Today, 2019, 320: 84.

doi: 10.1016/j.cattod.2017.11.006
[31]
Chen B H, Xu R N, Zhang R D, Liu N. Environ. Sci. Technol., 2014, 48(23): 13909.
[32]
Xu R, Zhang, Ning L, Chen B, Shi Z. Chem. Cat. Chem., 2016, 7: 3842.
[33]
Juna B, Bong H S. Chem. Sci., 2018, 9: 7787.

doi: 10.1039/c8sc02581a pmid: 30429987
[34]
Martín N, Moliner M, Corma A. Chem. Commun., 2015, 51(49): 9965.

doi: 10.1039/C5CC02670A
[35]
Corma A, Li C, Moliner M. Angew. Chem. Int. Ed., 2018, 57: 15330.
[36]
Bhadra B N, Seo P W, Khan N A, Jun J W, Kim T W, Kim C U, Jhung S H. Catal. Today, 2017, 298: 53.

doi: 10.1016/j.cattod.2017.05.073
[37]
Wang X, Wu Q M, Chen C Y, Pan S X, Zhang W P, Meng X J, Maurer S, Feyen M, Müller U, Xiao F S. Chem. Commun., 2015, 51(95): 16920.
[38]
Xiong X, Yuan D Z, Wu Q M, Chen F, Meng X J, Lv R H, Dai D, Maurer S, McGuire R, Feyen M, Müller U, Zhang W P, Yokoi T, Bao X H, Gies H, Marler B, de Vos D E, Kolb U, Moini A, Xiao F S. J. Mater. Chem. A, 2017, 5(19): 9076.

doi: 10.1039/C7TA01749A
[39]
Martínez-Franco R, Moliner M, Thogersen J R, Corma A. ChemCatChem, 2013, 5(11): 3316.

doi: 10.1002/cctc.201300141
[40]
Chen M Y, Sun Q M, Yang X G, Yu J H. Inorg. Chem. Commun., 2019, 105: 203.

doi: 10.1016/j.inoche.2019.05.010
[41]
Xu R, Wang Z, Liu N, Chen B H. ACS Catal., 2020, 10: 6197.

doi: 10.1021/acscatal.0c01063
[42]
Paolucci C, di Iorio J R, Schneider W F, Gounder R. Acc. Chem. Res., 2020, 53(9): 1881.

doi: 10.1021/acs.accounts.0c00328
[43]
Gao F, Peden C H F. Catal., 2018, 8: 140.
[44]
Lee H, Song I, Jeon S W, Kim D H. J. Phys. Chem. Lett., 2021, 12(12): 3210.

doi: 10.1021/acs.jpclett.1c00181
[45]
Song J, Wang Y L, Walter E D, Washton N M, Mei D H, Kovarik L, Engelhard M H, Prodinger S, Wang Y, Peden C H F, Gao F. ACS Catal., 2017, 7(12): 8214.

doi: 10.1021/acscatal.7b03020
[46]
Luo J Y, Gao F, Kamasamudram K, Currier N, Peden C H F, Yezerets A. J. Catal., 2017, 348: 291.

doi: 10.1016/j.jcat.2017.02.025
[47]
Kwak J H, Zhu H, Lee J H, Peden C H F, Szanyi J. Chem. Commun., 2012, 48: 4758.

doi: 10.1039/c2cc31184d
[48]
Gao F, Walter E D, Kollar M, Wang Y L, Szanyi J, Peden C H F. J. Catal., 2014, 319: 1.

doi: 10.1016/j.jcat.2014.08.010
[49]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630
[50]
Martini A, Borfecchia E, Lomachenko K A, Pankin I A, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C. Chem. Sci., 2017, 8(10): 6836.

doi: 10.1039/c7sc02266b pmid: 29147509
[51]
Borfecchia E, Lomachenko K A, Giordanino F, Falsig H, Beato P, Soldatov A V, Bordiga S, Lamberti C. Chem. Sci., 2015, 6(1): 548.

doi: 10.1039/c4sc02907k pmid: 28936309
[52]
Gao F, Walter E D, Karp E M, Luo J Y, Tonkyn R G, Kwak J H, Szanyi J, Peden C H F. J. Catal., 2013, 300: 20.

doi: 10.1016/j.jcat.2012.12.020
[53]
Andersen C W, Bremholm M, Vennestrøm P N R, Blichfeld A B, Lundegaard L F, Iversen B B. IUCrJ, 2014, 1(6): 382.

doi: 10.1107/S2052252514020181
[54]
Mlekodaj K, Dedecek J, Pashkova V, Tabor E, Sklenak S. J. Phys. Chem. C, 2019, 123: 7968.

doi: 10.1021/acs.jpcc.8b07343
[55]
Luo J Y, Wang D, Kumar A, Li J H, Kamasamudram K, Currier N, Yezerets A. Catal. Today, 2016, 267: 3.

doi: 10.1016/j.cattod.2015.12.002
[56]
Andersen C W, Borfecchia E, Bremholm M, Jørgensen M R V, Vennestrøm P N R, Lamberti C, Lundegaard L F, Iversen B B. Angew. Chem., 2017, 129(35): 10503.
[57]
Paolucci C, Iorio J D R, Ribeiro F, Gounder R, Schneide W F. Adv Catal., 2016, 59: 2.
[58]
Barthomeuf D. J. Phys. Chem., 1993, 97(39): 10092.
[59]
Zhang R Q, McEwen J S, Kollár M, Gao F, Wang Y L, Szanyi J, Peden C H F. ACS Catal., 2014, 4(11): 4093.

doi: 10.1021/cs500563s
[60]
Godiksen A, Isaksen O L, Rasmussen S B, Vennestrøm P N R, Mossin S. ChemCatChem, 2018, 10(2): 366.

doi: 10.1002/cctc.201701357
[61]
Schmieg S J, Oh S H, Kim C H, Brown D B, Lee J H, Peden C H F, Kim D H. Catal. Today, 2012, 184(1): 252.

doi: 10.1016/j.cattod.2011.10.034
[62]
di Iorio J R, Gounder R. Chem. Mater., 2016, 28(7): 2236.

doi: 10.1021/acs.chemmater.6b00181
[63]
Iorio J R D, Li S, Jones C B, Nimlos C T, Gounder R. J. Am. Chem. Soc., 2020, 142: 4807.

doi: 10.1021/jacs.9b13817 pmid: 32053365
[64]
Villaescusa L A, Bull I, Wheatley P S, Lightfoot P, Morris R E. J. Mater. Chem., 2003, 13(8): 1978.

doi: 10.1039/B300728F
[65]
Bates S A, Verma A A, Paolucci C, Parekh A A, Anggara T, Yezerets A, Schneider W F, Miller J T, Delgass W N, Ribeiro F H. J. Catal., 2014, 312: 87.

doi: 10.1016/j.jcat.2014.01.004
[66]
Guo Y, Sun T J, Gu Y M, Liu X W, Ke Q L, Wei X L, Wang S D. Chem. Asian J., 2018, 13(21): 3222.

doi: 10.1002/asia.201800930
[67]
Devos J, Bols M L, Plessers D, Goethem C V, Seo J W, Hwang S J, Sels B F, Dusselier M. Chem. Mater., 2020, 32(1): 273.

doi: 10.1021/acs.chemmater.9b03738
[68]
Dědeek J, Sobalík Z, Wichterlová B. Catal. Rev., Sci. Eng., 2012, 54: 135.

doi: 10.1080/01614940.2012.632662
[69]
Mackenzie, Smith M. Pergamon, 2002.
[70]
Engelhardt G, Michel A. John Willey and Sons: New York, 1987.
[71]
Duer M. Blackwell Science: Oxford, 2002.
[72]
Dedecek J, Kaucky D, Wichterlova B. Chem. Commun., 2001, 11: 970.
[73]
Dedecek J, Kaucky D, Wichterlova B, Gonsiorova O. Phy. Chem., 2002, 4: 5406.
[74]
Dedecek J, Lucero M J, Li C B, Gao F, Klein P, Urbanova M, Tvaruzkova Z, Sazama P, Sklenak S. J. Phys. Chem. C, 2011, 115(22): 11056.
[75]
Sklenak S, Dědeček J, Li C B, Wichterlová B, Gábová V, Sierka M, Sauer J. Phys. Chem. Chem. Phys., 2009, 11(8): 1237.

doi: 10.1039/b807755j pmid: 19209368
[76]
Martins G A V, Berlier G, Coluccia S, Pastore H O, Superti G B, Gatti G, Marchese L. J. Phys. Chem. C, 2007, 111(1): 330.

doi: 10.1021/jp063921q
[77]
Smith L J, Davidson A, Cheetham A K. Catal. Lett., 1997, 49(3/4): 143.

doi: 10.1023/A:1019097019846
[78]
Jeanvoine Y, Ángyán J G, Kresse G, Hafner J. J. Phys. Chem. B, 1998, 102(38): 7307.

doi: 10.1021/jp981667z
[79]
Gale J D, Shah R, Payne M C, Stich I, Terakura K. Catal. Today, 1999, 50(3/4): 525.

doi: 10.1016/S0920-5861(98)00487-8
[80]
Bordiga S, Regli L, Cocina D, Lamberti C, Bjørgen M, Lillerud K P. J. Phys. Chem. B, 2005, 109(7): 2779.

doi: 10.1021/jp045498w
[81]
[2021-09-01]https://america.iza-structure.org/IZA-SC/framework.php?STC=CHA
[82]
Goto I, Itakura M, Shibata S, Honda K, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater., 2012, 158: 117.

doi: 10.1016/j.micromeso.2012.03.032
[83]
Imai H, Hayashida N, Yokoi T, Tatsumi T. Microporous Mesoporous Mater., 2014, 196: 341.

doi: 10.1016/j.micromeso.2014.05.043
[84]
He C, Li N, Xiang S, Proceedings of the 16th National molecular sieve Congress, 2011.
[85]
Chen T H, Wang K X, Luo W L, Yuan Z Y, Wang J Z, Ding D T, Li H X, Hu C. Chem. Phys. Lett., 1996, 252(5/6): 375.

doi: 10.1016/0009-2614(96)00199-6
[86]
Muraoka K, Chaikittisilp W, Yanaba Y, Yoshikawa T, Okubo T. Angew. Chem., 2018, 130(14): 3804.

doi: 10.1002/ange.201713308
[87]
Gao F, Mei D H, Wang Y L, Szanyi J, Peden C H F. J. Am. Chem. Soc., 2017, 139(13): 4935.

doi: 10.1021/jacs.7b01128
[88]
Zammit M, DiMaggio C L, Kim C H, Lambert C, Muntean G G, Peden C H, Parks J E, Howden K. Office of Scientific and Technical Information (OSTI), 2013.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[3] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[4] Yuyang Lei, Fangfang Li, Jie Ouyang, Minjie Li, Lianghong Guo. Environmental Distribution Characteristics and Source Analysis of Antibiotics in Zhejiang Area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425.
[5] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[6] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.
[7] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[8] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[9] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[10] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[11] Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun. The Synthesis of Nanosheets Zeolite and Its Catalytic Application [J]. Progress in Chemistry, 2015, 27(8): 1002-1013.
[12] Li Yang, Sun Hongman, Wang Youhe, Xu Benjing, Yan Zifeng. Green Routes for Synthesis of Zeolites [J]. Progress in Chemistry, 2015, 27(5): 503-510.
[13] Li Dong, Li Wenhai, Dong Guifang, Duan Lian, Wang Liduo. The Functional Materials and Structure of Organic Photodiodes [J]. Progress in Chemistry, 2014, 26(12): 1889-1898.
[14] Shi Jing, Zhao Guoliang, Teng Jiawei, Wang Yangdong, Tang Yi, Xie Zaiku. Advances in the Research of MFI Zeolite Morphology [J]. Progress in Chemistry, 2014, 26(04): 545-552.
[15] Kou Long, Wang Youhe, Peng Peng, Yan Zifeng. Synthesis of Mesoporous Zeolite [J]. Progress in Chemistry, 2014, 26(04): 522-528.