中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1412-1426 DOI: 10.7536/PC191225 Previous Articles   Next Articles

• Review •

Synthesis of Sludge Carbon-Based Catalytic Materials and Their Application in Water Environment

Lin Gu1,**(), Kai Zhang1, Haixiang Yu1, Guangxia Dong1, Xingbo Qiao1, Haifeng Wen1   

  1. 1. University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received: Revised: Online: Published:
  • Contact: Lin Gu
  • Supported by:
    the National Natural Science Foundation of China(51408358)
Richhtml ( 33 ) PDF ( 1264 ) Cited
Export

EndNote

Ris

BibTeX

With dual attributes of pollutant and resources, sewage sludge(SS) is the byproduct from wastewater treatment plant, which belongs to typical urban solid waste. The use of SS as raw materials for the synthesis of carbon-based catalysts and their application in water environment catalysis is an implement of sludge reduction and resource reutilization. As SS is a mixture of organic matter from biomass and various inorganic oxides and metal ions, the carbon-based catalyst or carrier prepared from SS has the properties of easy availability of raw materials, strong dispersibility of active components on the carrier, easy adjustment of surface chemical functional groups, and high specific surface area. It is widely used in the field of multiphase Fenton reaction, electrochemical catalytic oxidation, complex photocatalytic reaction, catalytic wet oxidation and catalytic ozonation. This paper will describe the preparation and modification methods of sludge carbon-based catalyst materials. In addition, the mechanism, which carbon-based catalysts participate in pollutant adsorption, electron transfer, and organic degradation in water, is explained by the structure-activity relationship between physico-chemical properties of materials and catalytic action, combined with its application characteristics in the field of water environment catalysis. At the same time, a new prospect is put forward to improve the stability, reusability and catalytic activity of sludge-based materials.

Contents

1 Introduction

2 Physical and chemical properties of sludge carbon-based precursors

2.1 Chemical composition

2.2 Physical structure

2.3 Surface chemical properties

3 Sludge carbon-based catalyst material preparation method

3.1 Direct pyrolysis

3.2 Load method

3.3 Blending method

3.4 Hydrothermal carbonization

4 Surface modification of sludge carbon-based catalyst materials

5 Application of sludge carbon-based catalyst in the field of water environment catalysis

5.1 Catalytic H2O2 heterogeneous Fenton reaction

5.2 Catalytic degradation based on persulfate(PS) and peroxymonosulfate(PMS)

5.3 Composite photocatalytic reaction

5.4 Heterogeneous catalytic ozonation

5.5 Heterogeneous catalytic wet oxidation

5.6 Electrochemical catalytic oxidation

6 Stability of sludge carbon-based catalyst

7 Conclusion and outlook

Fig.1 Schematic diagram of the mechanism of catalysis of H2O2 with silicon oxide[19]
Table 1 A summary of the sewage sludge based carbon catalysts and their physiochemical properties
Catalyst Preparation procedure Method BET surface area(m2/g) Catalytic components ref
FeSC Dried sludge impregnated into 0.5 M FeSO4 solution and subsequently carbonized at 800 ℃ in the presence of N2 Wetness impregnation 14.3 Magnetite, Quartz, Al2O3 19
SC Dried sludge carbonized at 800 ℃ in the presence of N2 Direct pyrolysis 57.6 Carbon, ash 14, 22
SBC Dried sludge impregnated into 3 M ZnCl2 solution and carbonized at 700 ℃ in the presence of N2 wash: 3 M HCl Wetness chemical activation 363 Carbon 23
FMSAC Carbonized sludge(by ZnCl2 pre-activation) was co-precipitated with Fe2+ and Fe3+ with NaOH addition Chemical activation plus co-precipitation 880~940 Fe3O4, CaO, Quiz 24
R1 Solid mixing of dried sludge with FeCl3(w/w=1∶1) and subsequently carbonized at 700 ℃ wash: 3 M HCl Solid chemical activation 517~836 Fe species 25
szSAC Dried sludge impregnated into the mixture of 3 M H2SO4 and ZnCl2 and then carbonized at 550 ℃ wash: 10% HCl Wetness chemical activation 179.9 Surface-OH 18
szSAC/Mn szSAC impregnated into KMnO4 solution and carbonized at 550 ℃ in the presence of N2 Wetness impregnation 3.7~11.7 Mn(Ⅱ), Mn(Ⅲ), Mn(Ⅳ), surface-OH 18
DR-SA-A Dried sludge was firstly carbonized with N2 and then activated with steam at 838 ℃, acid washed. Steam activation 497.4 Dissolved organic matters and iron 26
nO x /SBAC FeO x /SBAC Dried sludge was firstly activated with ZnCl2 and carbonized at 700 ℃ and had acid washed, then the carbonized products was impregnated into Mn/Fe solutions and re-carbonized at 600 ℃ Chemical activation and wetness impregnation 327~339 Mn3O4, Fe3O4 15
CFA/SC Combined ZnCl2 activation and carbonization at 800 ℃ for the mixture of sewage sludge and fly ash(3 M HCl wash) Chemical activation 415 Fe2O3, SiO2, Al2O3 27
SS-Ti-700 Combined hydrothermal reaction with TiOSO4 and carbonization at 700 ℃ Hydrothermal reaction 35.46 TiO2, α-Fe2O3 28
FAS-1-350 Dried sludge impregnated into(NH4)2Fe(SO4)2 solutions, separated and calcined at 350 ℃ in the air Wetness impregnation 15.17 α-Fe2O3, SiO2 crystallites 29
MC600 Combined microwave digestion and KOH activation, then carbonized in the N2 Chemical activation 378 O-containing groups, Fe3O4, α-Fe 30
SC-F-0.2 Combined Fenton’s activation and carbonization at 600 ℃ Radical activation 46.3 Fe3O4, α-Fe 31
Fig.2 Schematic diagram of adsorption of surface acidic functional group by substrate molecule[52]
Fig.3 Basic structure of sewage sludge based catalyst and their catalytic process[8]
Fig.4 Chemical adsorption of persulfate and 2-naphthol by magnetic sludge carbon-based catalyst[30]
Fig.5 Schematic diagram of preparation of sludge TiO2 photocatalyst by template method[51]
Fig.6 Schematic diagram of photo-Fenton reaction involving sludge iron carbide supported by iron salt[28]
Fig.7 Schematic diagram of three factors affecting the stability of sludge carbon-based catalyst
Table 2 Comparison of stability and recyclability of several sludge carbonized materials in different catalytic systems
Leaching Species Leaching Concentration Reaction Recyclability ref
Fe 0.6 g/L(2.5%of the total Fe load) CWPO 14.2% of the Fe load 25
Fe not detectable CWPO 96% degradation efficiency obtained in third cycles of reaction 92
Fe 0.037 mg/L(0.14% of total Fe loaded) Ca: 0.813 Cu: 0.029 Mg: 0.271 Zn: 0.027 CWPO 97% removal of AOII until at least 600 min 19
Fe 1.9 mg/L for HNO3 treated SW 2.1 mg/L for H2SO4 treated SW 1.2mg/L for HCl treated SW 0.7 mg/L for SW CWPO 26.3% conversion of cresol for HCl-SW at 432 h 100% conversion of cresol for H2SO4-SW at 432 h 85.1% conversion of cresol for HNO3-SW at 432 h 40% to lower than 10% conversion rate for SW 52
Fe 10.8 mg/L for HNO3 treated SW 11.7 mg/L for H2SO4 treated SW 0.8 mg/L for HCl treated SW 1.2 mg/L for SW CWAO Not mentioned 7
Fe Fe: 18 mg/L Ni: 12 mg/L Zn: 4 mg/L Mn: 3 mg/L Cr: 3mg/L Mg: 2 mg/L CWAO For the fourth experiment, the differences after 4 h of reaction only amounted to 2.2% for phenol conversion and 9% for TOC conversion. 26
Fe 27 mg/L(7% of the total Fe load) CWAO After 4 runs, the 2-CP conversion and the TOC removal were still very high. 14
Fe 4.32 mg/L for SS-Fe-105 after 60 min 0.66 mg/L for SS-Fe-350 after 30min Photo-Fenton No obvious deactivation of the SS-Fe-350 catalyst in the six repetitive experiments was observed when compared with the first cycle. 28
Zn, Cu 0.014 mg/L PMS The distributions of these heavy metals were unchanged though the MnO x /HCAS catalyst was reused up to 5 cycles. 93
Fe pH 2.03:4.69 mg/L(2.14% of total iron) pH 3.01:3.06 mg/L PS three times for the oxidative degradation of AO7 65
Fe total Fe: 3.01 mg/L; Fe3+: 2.12mg/L CWPO It was observed that the mineralization rate decreased from 60.6 to 46.5% when the degradation rate of NOR decreased from 98.8 to 76.4%. 94
[1]
何强( He Q ), 吉芳英(Ji F Y), 李家杰(Li J J). 给水排水(Water & Wastewater Engineering), 2016, 52(2): 1.
[2]
Cieślik B M , Namieśnik J , Konieczka P . J. Clean Prod., 2015, 90: 1.
[3]
Yang G , Zhang G , Wang H. Water Res., 2015, 78: 60.
[4]
Li L , Ai J , Zhang W , Peng S , Dong T , Deng Y , Cui Y , Wang D. Chemosphere, 2020, 243: 125333.
[5]
Zhang W , Yang P , Yang X , Chen Z , Wang D. Bioresour. Technol., 2015, 181: 247.
[6]
Cao B , Zhang W , Wang Q , Huang Y , Meng C , Wang D. Water Res., 2016, 105: 615.
[7]
Yu Y , Wei H , Yu L , Gu B , Li X , Rong X , Zhao Y , Chen L , Sun C. Catal. Sci. Technol., 2016, 6(4): 1085.
[8]
Gu L , Zhu N , Guo H , Huang S , Lou Z , Yuan H. J. Hazard. Mater., 2013, 246: 145.
[9]
Ros A , Lillo-Rodenas M A, Canals-Batlle C, Fuente E, Montes-Moran M A, Martin M J, Linares-Solano A. Environ. Sci. Technol., 2007, 41(12): 4375.
[10]
Ros A , Lillo-Ródenas M A, Fuente E, Montes-Morán M A, Martín M J, Linares-Solano A. Chemosphere, 2006, 65(1): 132.
[11]
Jin S C , Jong C C , Jeong H K , Young K P , Sung H P , Kwang E J , Seung S K , Jong K J. Chem. Eng. J., 2010, 156(2): 321.
[12]
Wei J , Liu Y , Zhu Y , Li J. Chemosphere, 2020: 125854.
[13]
Yu H Q , Huang B C , Jiang J , Huang G X. J. Mater. Chem. A, 2018, 6: 8978.
[14]
Tu Y , Xiong Y , Tian S , Kong L , Descorme C. J. Hazard. Mater., 2014, 276(9): 88.
[15]
Zhuang H , Han H , Hou B , Jia S , Zhao Q. Bioresour. Technol., 2014, 166: 178.
[16]
Stüber F , Smith K , Mendoza M B , Marques R , Fabregat A , Bengoa C , Font J , Fortuny A , Pullket S , Fowler G. Appl. Catal. B-Environ., 2011, 110: 81.
[17]
Hou B , Han H , Zhuang H , Xu P , Jia S , Li K. Bioresour. Technol., 2015, 196: 721.
[18]
Huang Y , Sun Y , Xu Z , Luo M , Zhu C , Li L. Sci. Total. Environ., 2017, 575: 50.
[19]
Tu Y , Tian S , Kong L , Xiong Y. Chem. Eng. J., 2012, 185/186: 44.
[20]
Gu L , Huang S , Zhu N , Zhang D , Yuan H , Lou Z. J. Hazard. Mater., 2013, 263: 450.
[21]
Ros A , Montes-Moran M A, Fuente E, Nevskaia D M, Martin M J. Environ. Sci. Technol., 2006, 40(1): 302.
[22]
Sun H , Chen T , Kong L , Cai Q , Xiong Y , Tian S. Ind. Eng. Chem. Res., 2015, 54(20): 5468.
[23]
Wen G , Pan Z H , Ma J , Liu Z Q , Zhao L , Li J J. J. Hazard. Mater., 2012, 239/240: 381.
[24]
Lu S , Liu Y , Feng L , Sun Z , Zhang L. Environ. Sci. Pollut. R, 2018, 25(6): 5086.
[25]
Bedia J , Monsalvo V M , Rodriguez J J , Mohedano A F. Chem. Eng. J., 2017, 318: 224.
[26]
Marques R R N , Stüber F , Smith K M , Fabregat A , Bengoa C , Font J , Fortuny A , Pullket S , Fowler G D , Graham N J D . Appl. Catal. B-Environ., 2011, 101(3/4): 306.
[27]
Zhuang H , Han H , Shan S. Fuel, 2016, 178: 155.
[28]
Yuan S J , Dai X H. Appl. Catal. B-Environ., 2014, 154/155: 252.
[29]
Yuan S , Liao N , Dong B , Dai X. Chin. J. Catal., 2016, 37(5): 735.
[30]
Wang X , Gu L , Zhou P , Zhu N , Li C , Tao H , Wen H , Zhang D. Chem. Eng. J., 2017, 324: 203.
[31]
Wen H , Gu L , Yu H , Qiao X , Zhang D , Ye J. Chem. Eng. J., 2018, 352: 837.
[32]
Syed-Hassan S S A , Wang Y , Hu S , Su S , Xiang J . Renew. Sust. Energ. Rev., 2017, 80: 888.
[33]
王亚琛( Wang Y C ), 谷麟(Gu L), 王妙琳(Wang M L), 楼紫阳(Lou Z Y), 朱南文(Zhu N W), 袁海平(Yuan H P). 环境污染与防治(Environmental Pollution & Control), 2014, 36(08): 43.
[34]
Fan Q , Sun J , Chu L , Cui L , Quan G , Yan J , Hussain Q , Iqbal M. Chemosphere, 2018, 207: 33.
[35]
Cho H H , Smith B A , Wnuk J D , Fairbrother D H , Ball W P. Environ. Sci. Technol., 2008, 42(8): 2899.
[36]
Wang J , Chen B , Xing B. Environ. Sci. Technol., 2016, 50(7): 3798.
[37]
Yang B , Liu Y , Liang Q , Chen M , Ma L , Li L , Liu Q , Tu W , Lan D , Chen Y. Ecotox. Environ. Safe., 2019, 170: 722.
[38]
Xiong T , Yuan X , Chen X , Wu Z , Wang H , Leng L , Wang H , Jiang L , Zeng G. Appl. Surf. Sci., 2018, 427: 1107.
[39]
Yuan S J , Dai X H. Environ.-Sci. Nano, 2017, 4(1): 17.
[40]
Seredych M , Bandosz T J. J. Colloid Interf. Sci, 2006, 302(2): 379.
[41]
Zhu S , Wang W , Xu Y , Zhu Z , Liu Z , Cui F. Chem. Eng. J., 2019, 365: 99.
[42]
Zhang G , Yan J , Wang J , Jia D , Zheng H , Li Z. Appl. Surf. Sci., 2018, 455: 696.
[43]
Gu L , Li C , Wen H , Zhou P , Zhang D , Zhu N , Tao H. Bioresour. Technol., 2017, 241: 391.
[44]
孙中恩( Sun Z E ), 卢思颖(Lu S Y), 封莉(Fen L), 张立秋(Zhang L Q). 环境科学与技术(Environmental Science & Technology), 2017, 40(05): 102.
[45]
Mohedano A , Monsalvo V , Bedia J , Lopez J , Rodriguez J. J. Environ. Chem. Eng., 2014, 2(4): 2359.
[46]
Jain A , Balasubramanian R , Srinivasan M. Chem. Eng. J., 2016, 283: 789.
[47]
Xu S , Liu C , Ye F , Guo Y , Wiezorek J. Colloid Surf. A-Physicochem. Eng. Asp., 2017, 515: 1.
[48]
Hou F , Liu J , Zhang Y , Zhao C , Xiao X , Zou J , Li Q , Hu S , Wang H , Jiang B. J. Hazard. Mater., 2019: 121754.
[49]
Zhang H , Xue G , Chen H , Li X. Chemosphere, 2018, 191: 64.
[50]
Qu X F , Zhou G T , Yao Q Z , Fu S Q. J. Phys. Chem. C, 2010, 114(1): 284.
[51]
Yuan S J , Li X W , Dai X H. RSC Adv., 2014, 4(105): 61036.
[52]
Yu Y , Wei H , Yu L , Zhang T , Wang S , Li X , Wang J , Sun C. RSC Adv., 2015, 5(52): 41867.
[53]
Yu Y , Huang F , He Y , Liu X , Song C , Xu Y , Zhang Y. Sci. Total. Environ., 2019, 654: 942.
[54]
Wang Y , Wei H , Zhao Y , Sun W , Sun C. J. Hazard. Mater., 2017, 326: 36.
[55]
Abdulrasheed A A , Jalil A A , Triwahyono S , Zaini M A A, Gambo Y, Ibrahim M. Renew. Sust. Energ. Rev, 2018, 94: 1067.
[56]
Wang N , Zheng T , Zhang G , Wang P. J. Environ. Chem. Eng., 2016, 4(1): 762.
[57]
Garrido-Ramírez E G , Theng B K G , Mora M L . Appl. Clay. Sci., 2010, 47(3): 182.
[58]
Babuponnusami A , Muthukumar K. J. Environ. Chem. Eng., 2014, 2(1): 557.
[59]
Ai J , Zhang W , Liao G , Chen F , Wang D. Water Res., 2019, 150: 473.
[60]
Edwards J O , Pater R H , Curclf R , Furia F D. Photochem. Photobiol., 1979, 30(1): 63.
[61]
Wang S , Wang J. Chemosphere, 2018, 191: 97.
[62]
Babu S G , Aparna P , Satishkumar G , Ashokkumar M , Neppolian B. Ultrason. Sonochem., 2017, 34: 924.
[63]
Davididou K , Monteagudo J M , Chatzisymeon E , Durán A , Expósito A J. Sep. Purif. Technol., 2017, 172: 227.
[64]
Bai S , Li R , Su G , Duan X , Wang S , Ren N Q , Ho S H. Environ. Int., 2019, 126: 302.
[65]
Wang J , Liao Z , Ifthikar J , Shi L , Chen Z , Chen Z. RSC Adv., 2017, 7(30): 18696.
[66]
Deng J , Shao Y , Gao N , Deng Y , Zhou S , Hu X. Chem. Eng. J., 2013, 228: 765.
[67]
Li Y , Yang Z , Zhang H , Tong X , Feng J . Colloid Surf. A-Physicochem. Eng. Asp., 2017, 529: 856.
[68]
Inoue T , Fujishima A , Konishi S , Honda K. Nature, 1979, 277(5698): 637.
[69]
Puma G L , Bono A , Krishnaiah D , Collin J G. J. Hazard. Mater., 2008, 157(2/3): 209.
[70]
Zheng Y , Liu J , Liang J , Jaroniec M , Qiao S Z. Energy Environ. Sci., 2012, 5(5): 6717.
[71]
Hu W , Xie Y , Lu S , Li P , Xie T , Zhang Y , Wang Y. Sci. Total. Environ., 2019, 680: 51.https://linkinghub.elsevier.com/retrieve/pii/S0048969719321163

doi: 10.1016/j.scitotenv.2019.05.098
[72]
Subramanian V , Wolf E E , Kamat P V. Langmuir., 2003, 19(2): 469.https://pubs.acs.org/doi/10.1021/la026478t

doi: 10.1021/la026478t
[73]
张松( Zhang S ), 李琪(Li Q), 乔庆东(Qiao Q D). 化学通报(Chemistry), 2004, 67(4): 295.
[74]
Zhu Y , Zeng C , Zhu R , Xu Y , Wang X , Zhou H , Zhu J , He H. J. Envuron. Sci-China, 2019, 80: 208.
[75]
Sun H , Dong B , Song L , Du J , Gao R , Su G , Cao L. J. Photochem. Photobiol. A-Chem., 2017, 334: 20.https://linkinghub.elsevier.com/retrieve/pii/S101060301630675X

doi: 10.1016/j.jphotochem.2016.10.033
[76]
Matos J , Rosales M , García A , Nieto-Delgado C , Rangel-Mendez J R. Green Chem., 2011, 13(12): 3431.http://xlink.rsc.org/?DOI=c1gc15644f

doi: 10.1039/c1gc15644f
[77]
Wang X , Huang S , Zhu N , Lou Z , Yuan H. Appl. Surf. Sci., 2015, 359: 917.https://linkinghub.elsevier.com/retrieve/pii/S0169433215025921

doi: 10.1016/j.apsusc.2015.10.173
[78]
Zhang Y , Klamerth N , Chelme-Ayala P , Gamal El-Din M. Chemosphere, 2017, 175: 178.https://linkinghub.elsevier.com/retrieve/pii/S0045653517302369

doi: 10.1016/j.chemosphere.2017.02.058
[79]
Tu Y , Xiong Y , Descorme C , Kong L , Tian S. J Chem. Technol. Biot., 2014, 89(4): 544.d314c55c-a428-472f-9684-39ffb196c38ahttp://dx.doi.org/10.1002/jctb.4151

doi: 10.1002/jctb.4151
[80]
Ghuge S P , Saroha A K. J. Environ. Manage., 2018, 211: 83.https://linkinghub.elsevier.com/retrieve/pii/S0301479718300598

doi: 10.1016/j.jenvman.2018.01.052
[81]
Zhang J , Huang G Q , Liu C , Zhang R N , Chen X X , Zhang L. Sep. Purif. Technol., 2018, 201: 10.https://linkinghub.elsevier.com/retrieve/pii/S1383586617325753

doi: 10.1016/j.seppur.2018.02.003
[82]
Aghbolaghy M , Soltan J , Sutarto R. Chem. Eng. Res. Des., 2017, 128: 73.https://linkinghub.elsevier.com/retrieve/pii/S0263876217305567

doi: 10.1016/j.cherd.2017.10.002
[83]
Huang Y , Cui C , Zhang D , Li L , Pan D. Chemosphere, 2015, 119: 295.https://linkinghub.elsevier.com/retrieve/pii/S0045653514008078

doi: 10.1016/j.chemosphere.2014.06.060
[84]
Ma L , Jin C , An L , Huang L , Li L , Jin H , Liang B , Wei H , Sun C. Catal. Commun., 2019, 120: 59.https://linkinghub.elsevier.com/retrieve/pii/S1566736718305752

doi: 10.1016/j.catcom.2018.11.012
[85]
Kumari M , Saroha A K. J. Environ. Manage., 2018, 228: 169.https://linkinghub.elsevier.com/retrieve/pii/S0301479718309940

doi: 10.1016/j.jenvman.2018.09.003
[86]
Pan G , Jing X , Ding X , Shen Y , Xu S , Miao W. J. Alloy. Compd., 2019, 809: 151749.https://linkinghub.elsevier.com/retrieve/pii/S0925838819329822

doi: 10.1016/j.jallcom.2019.151749
[87]
Muthurasu A , Kim H Y. Electrochim. Acta, 2018, 283: 1425.https://linkinghub.elsevier.com/retrieve/pii/S0013468618315937

doi: 10.1016/j.electacta.2018.07.092
[88]
Zheng T , Wang Q , Shi Z , Fang Y , Shi S , Wang J , Wu C. J. Environ. Sci., 2016, 50: 21.https://linkinghub.elsevier.com/retrieve/pii/S1001074216300936

doi: 10.1016/j.jes.2016.03.020
[89]
Hou B , Han H , Jia S , Zhuang H , Xu P , Li K. J. Taiwan Inst. Chem. Eng., 2016, 60: 352.https://linkinghub.elsevier.com/retrieve/pii/S1876107015004733

doi: 10.1016/j.jtice.2015.10.032
[90]
Zhao Q , Mao Q , Zhou Y , Wei J , Liu X , Yang J , Luo L , Zhang J , Chen H , Chen H. Chemosphere, 2017, 189: 224.https://linkinghub.elsevier.com/retrieve/pii/S004565351731456X

doi: 10.1016/j.chemosphere.2017.09.042
[91]
金俊伟( Jin J W ). 浙江农林大学硕士论文(Master Degree Dissertation of Zhejiang A&F University), 2017
[92]
Kong L , Zhu Y , Liu M , Chang X , Xiong Y , Chen D. , Environ. Pollut. 2016, 216: 568.https://linkinghub.elsevier.com/retrieve/pii/S0269749116305000

doi: 10.1016/j.envpol.2016.06.012
[93]
Xu L , Liu W , Li X , Rashid S , Shen C , Wen Y. RSC Adv., 2015, 5(16): 12248.http://xlink.rsc.org/?DOI=C4RA13329C

doi: 10.1039/C4RA13329C
[94]
Liu J J , Diao Z H , Liu C M , Jiang D , Kong L J , Xu X R. J. Clean Prod., 2018, 182: 794.https://linkinghub.elsevier.com/retrieve/pii/S0959652618303512

doi: 10.1016/j.jclepro.2018.02.045
[95]
Van Wesenbeeck S , Prins W , Ronsse F , Antal M J. Energ. Fuel., 2014, 28(8): 5318.5825765e-0440-425d-a32d-5026b8e39409http://dx.doi.org/10.1021/ef500875c

doi: 10.1021/ef500875c
[96]
Yuan H , Lu T , Huang H , Zhao D , Kobayashi N , Chen Y. J. Anal. Appl. Pyrol., 2015, 112: 284.https://linkinghub.elsevier.com/retrieve/pii/S0165237015000224

doi: 10.1016/j.jaap.2015.01.010
[97]
Zazo J A , Bedia J , Fierro C M , Pliego G , Casas J A , Rodriguez J J. Catal. Today, 2012, 187(1): 115.https://linkinghub.elsevier.com/retrieve/pii/S0920586111007292

doi: 10.1016/j.cattod.2011.10.003
[98]
Rey A , Faraldos M , Casas J , Zazo J , Bahamonde A , Rodríguez J. Appl. Catal. B-Environ., 2009, 86(1/2): 69.https://linkinghub.elsevier.com/retrieve/pii/S0926337308002798

doi: 10.1016/j.apcatb.2008.07.023
[99]
Posada D , Betancourt P , Fuentes K , Marrero S , Liendo F , Brito J L. React. Kinet. Mech. Catal., 2014, 112(2): 347.http://link.springer.com/10.1007/s11144-014-0711-5

doi: 10.1007/s11144-014-0711-5
[100]
Fan H , He K , Wang J. Fuel, 2016, 185: 281.https://linkinghub.elsevier.com/retrieve/pii/S0016236116307219

doi: 10.1016/j.fuel.2016.07.118
[101]
Gu L , Wang Y , Zhu N , Zhang D , Huang S , Yuan H , Lou Z , Wang M. Bioresour. Technol., 2013, 146: 779.https://linkinghub.elsevier.com/retrieve/pii/S0960852413012157

doi: 10.1016/j.biortech.2013.07.147
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[6] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[7] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[8] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[9] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[14] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[15] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.