中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2667-2685 DOI: 10.7536/PC220403 Previous Articles   Next Articles

• CONTENTS •

Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants

Nan Wang1, Yuqi Zhou2, Ziye Jiang1, Tianyu Lv1, Jin Lin1, Zhou Song2, Lihua Zhu1()   

  1. 1 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
    2 Hubei Province Geological Experimental Testing Center,Wuhan 430034, China
  • Received: Revised: Online: Published:
  • Contact: Lihua Zhu
  • Supported by:
    National Natural Science Foundation of China(21976063); National Natural Science Foundation of China(22076052); Natural Science Foundation of Hubei Province of China(2019CFB432)
Richhtml ( 84 ) PDF ( 673 ) Cited
Export

EndNote

Ris

BibTeX

Most of per- and poly-halogenated organic pollutants (PHOPs)possess biodiversity and bioaccumulation, long persistency and global transport throughout the environment and pose adverse effects on humans. Due to the strong electron-withdrawing ability and a large number of halogen atoms, PHOPs usually possess low positive position for highest occupied molecular orbital level and consequently are resistant to the oxidative degradation. Reductive technologies can efficiently degrade PHOPs, but they suffer from a problem of the accumulation of highly toxic less halogenated products, because the lower-halogenated products tend to be more difficult to reduce. In contrast, these lowly-halogenated products can be easily oxidized. Thus, the consecutive reduction and oxidation method has been developed to degrade PHOPs, in which the pre-reduction of PHOPs and the consecutive oxidation of dehalogenated intermediates are combined to realize the complete dehalogation and mineralization. Herein, this review summarizes the latest efforts to develop consecutive reduction and oxidation processes that are categorized as five types: catalysis, electrochemistry, photocatalysis, photoelectrochemistry and mechanochemistry. Particular attention is focused on the chemical design principles of consecutive reduction and oxidation processes that can help develop treatment technologies to efficiently eliminate PHOPs.

Contents

1 Introduction

2 Reductive or oxidative degradation of PHOPs

2.1 Perfluorinated compounds

2.2 Chlorophenols

2.3 Polybrominated diphenyl ethers

3 Consecutive Reductive and Oxidative degradation of PHOPs

3.1 Traditional chemical reduction and Fenton like oxidation

3.2 Photochemical reduction and oxidation

3.3 Electrochemical reduction and oxidation

3.4 Photo-electrocatalytic reduction and oxidation

3.5 Mechanochemical reduction and oxidation

3.6 Hydrated electron-mediated reduction and persulfate-based catalytic oxidation

4 Conclusion and outlook

Table 1 Standard redox potential of some common reactive species[7?~9].
Fig.1 A schematic representation for MC degradation of PFOA in the presence of both Al2O3 and PDS[16]
Table 2 Reactive species for reductive degradation of polybrominated diphenyl ethers[51,55,59,60????? ~66]
Fig.2 A schematic representation for electron-transfer- mediated degradation of polybrominated diphenyl ethers (PBDEs) and dependence of reductive debromination rate of PBDEs on Br number in the Br-rich ring[67]
Fig.3 Structures of typical polybrominated diphenyl ethers (a) and their photocatalytic degradation rate constants via reduction[67] (b) or oxidation ( or kOx)[72] (c) pathway. $ k_{\text {red, BDE47 }}$ represents the photocatalytic reduction rate constant of BDE47
Table 3 Synergistically consecutive reduction and oxidation of per- and poly-halogenated organic pollutants
Pollutant, concentration
/mmol·L-1
Degradation reaction conditionsb Treatment efficiency /% ref
Degradation Dehalogenation TOC
removal
CnF2n+1COO- (n=2~7), 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 73-93 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 95-100 - 99
C4F9$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 32.4 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 95.0 - 99
C6F13$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-S$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 53.4 - 99
Ox: PDS (5 mmol·L-1),120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 97 - 99
C8F17$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 80.1 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 100 - 99
C4F9C2H4COO-, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 24 h - 17.8 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 68.2 - 99
Ox-Red - 94.3 - 99
Ox-Red-Ox - 99.2 - 99
C6F13C2H4COO-, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 68.7 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 55.1 - 99
Red-Ox - 87.3 - 99
Ox-Red-Ox - 94.3 - 99
C8F17C2H4COO-, 0.50 Red: UV-$\mathrm{SO}_{4}^{2-}$, pH 12.0, 8 h - 75.7 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 33.7 - 99
Ox-Red - 68.6 - 99
Ox-Red-Ox - 77.8 - 99
C4F9C2H4$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 32.4 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 49.0 - 99
Ox-Red - 60.8 - 99
Ox-Red-Ox - 95.7 - 99
C6F13C2H4$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 53.4 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 50.4 - 99
Ox-Red - 91.5 - 99
Ox-Red-Ox - 98.8 - 99
C8F17C2H4$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 80.1 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 18.9 - 99
Ox-Red - 72.6 - 99
Ox-Red-Ox - 81.8 - 99
PCP, 0.027 Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1),He (10 min)-air (5 min)-O2 (20 mL·min-1, 5.75 h) 100 100 - 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mM), air (0.5 h)-O2 (20 mL·min-1, 5.5 h) 100 98 - 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), O2 (20 mL·min-1, 6 h) 100 48 - 77
2,4.6-TCP 0.10 Fe/Cu bimetallic single-atom catalyst anchored on N-doped porous carbon (FeCuSA-NPC) as the cathode, Pt sheet as the anode, pH 5.0, potential (E) of -0.6 V, 1.5 h 90 - 84 (4 h) 85
0.025 Pd-loaded Cu/Cu2O/CuO heterostructure nanowire array (CuxO@Pd) as the photocathode, TiO2 nanorod array loaded FTO (TiO2 NR/FTO) as the photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 98.5 84.5 42.2 91
2, 4-DCP 0.31 Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), He (10 min)-air (5 min)-O2 (20 mL·min-1, 5.75 h) 100 100 70% 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), air (0.5 h)-O2 (20 mL·min-1, 5.5 h) 100 100 62% 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), O2 (20 mL·min-1, 6 h) 100 97 75% 77
FeCuSA-NPC as the cathode, Pt sheet as the anode, pH 5.0, E = -0.6 V, 1.5 h - 92.5 88 (4 h) 85
0.12
Fe and P codoped carbon aerogel (Fe-P-CA) as the cathode, TiO2 NR/FTO photoanode, pH 7.0, E =-1.2 V, xenon lamp irradiation, 0.5 h 98 - - 89
0.31
Fe-P-CA cathode, TiO2 NR/FTO photoanode, pH 7.0, E = -1.2 V, O2 (300 mL·min-1 ), 0.5 h 98 91 - 89
Fe-P-CA cathode, TiO2 NR/FTO photoanode, pH 7.0, E = -1.2V, N2 (300 mL·min-1), 0.5 h 98 33 - 89
Two-compartment reactor, WO3/Mo@BiVO4 loaded FTO (WO3/Mo@BiVO4/FTO) as the photoanode, Pd/Ni foam as the cathode, 2, 4-DCP in cathode chamber, pH 2.42, E = 1.2 V, light irradiation, 4 h 100 100 - 90
0.61
Two-compartment reactor, WO3/Mo@BiVO4/FTO photoanode, Pd/Ni foam as the cathode, transfer phenol generated in cathode chamber to anode chamber, add 2, 4-DCP to cathode chamber, pH 2.42, E = 1.2 V, light irradiation, 4 h 100 100 45 90
0.031
CuxO@Pd photocathode, TiO2 NR/FTO photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 99.5 91 44.2 91
2-CP, 0.20 5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, Fe2+ (0.05 mM), pH 3.0, current density (J) of 25 mA·cm-2, 1 h 100 100 70.33 87
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, pH 3.0, J = 25 mA·cm-2, 1 h 92.0 - 33.45 87
2 Pt sheets as cathode and anode, Fe2+ (0.05 mM), pH 3, J = 25 mA·cm-2, 1 h 88.9 - 21.15 87
3-CP 0.39 PdFe alloy-embedded carbon aerogels (PdFe/CA) as the cathode, graphite sheet as the anode, N2 (300 mL·min-1), pH 5, current (I) of 20 mA, E = 2.5-3.0 V, 6 h - 56 48 84
0.20 PdFe/CA cathode, graphite sheet as the anode, O2, pH 5, I = 20 mA, E = 2.5-3.0 V, 6 h 100 100 100 84
0.16 FeCuSA-NPC cathode, Pt sheet as the anode, pH 5.0, E= -0.6 V, 1.5 h 100 - 90 (4 h) 85
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1),pH 3.0, J = 25 mA·cm-2, 1 h 100 100 69.3 (6 h) 87
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, pH 3.0, J = 25 mA·cm-2, 1 h 75.6 - 32.3 (6 h) 87
2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1), pH 3.0, J = 25 mA·cm-2, 1 h 60.5 - 22.4 (6 h) 87
4-CP - Red: 0.5%Pd-0.5%Fe/C(1.25 g·L-1), NaOH (1.1 eqiv), H2 (10 mL·L-1), 1 h 100 100 - 78
After 1 h at Red, stop H2-purging, adjust solution pH to 5, add (10%), and react for another 1 h 100 100 - 78
0.16 FeCuSA-NPC cathode, Pt sheet as the anode, pH 5.0, E = -0.6 V, 1.5 h 100 100 92 (4 h) 85
FeCuSA-NPC cathode, Pt sheet as the anode, pH 5.0, O2, E = -0.6 V, 1.5 h 95 - 41 85
0.20 5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1), pH 3.0, J = 25 mA·cm-2, 6 h 100 100 71.7 87
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, pH 3.0, J = 25 mA·cm-2, 6 h 83.1 - 34.5 87
2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1), pH 3, J = 25 mA·cm-2, 6 h 78.2 - 20.6 87
CuxO@Pd photocathode, TiO2 NR/FTO photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 99.8 90.5 46.2 91
p-chloroaniline, 0.039 CuxO@Pd photocathode, TiO2 NR/FTO photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 99.8 98.7 59.2 91
BDE209 0.010 Fe0@Fe3O4 (10 g·L-1), pH 7.1, ultrasonic (US) irradiation, 36 h 80 11.9 - 73
Fe0@Fe3O4 (10 g·L-1), pH 7.1, US, 1.5 h; afterthat, add H2O2, US, 48 h 25 - - 73
Fe0@Fe3O4 (10 g·L-1), pH 7.1, US, 36 h; afterthat, add H2O2, US, 48 h 85 13.8 - 73
0.29 g Fe0 (0.16 g), ball-to-sample mass ratio (mb/ms) of 185:1, 400 rpm, 2 h 24.0 - - 98
Bi2O3 (0.68 g), mb/ms = 185:1, 400 rpm, 2 h 66.0 - - 98
Fe0 (0.16 g), Bi2O3 (0.68 g), mb/ms = 185:1, 400 rpm,
2 h
96.6 - - 98
BDE47 0.010 Red: Fe/Ag (1g·L-1), no pH adjustment (≈7), US, 2 h 100 95 - 75
Ox: Fe/Ag (1g·L-1), pH 3, add H2O2 (4 mg·L-1 for each time) at 0, 1, 2, 3, 4, 6, 8, 10, 15 and 20 min, total reation time (ttol) of 30 min 10 - - 75
Red-Ox 100 100 100 75
0.010 Red: Zn0 (0.3 g·L-1), cetyltrimethylammonium chloride (CTAB, 0.05 g·L-1), pH 4, N2, 2 h 98.6 40.2 - 79
After 2 h reaction at Red, adjust solution pH to 3,and then add both H2O2 (30, 30 and 10 mg·L-1) and Fe2+ (15, 15 and 5 mg·L-1) at 0, 20 and 90 min, ttol in the seconde stage of 2 h 100 88.6 - 79
0.010 rGO/TiO2 (0.1 g·L-1), Ar-saturated CH3CN-H2O (v/v/, 1∶1), CH3OH (0.25 mol·L-1), xenon lamp irradiation, 14 h 100 25 - 72
rGO/TiO2 (0.1 g·L-1), air-saturated H2O, xenon lamp irradiation, 14 h 54.3 43.8 - 72
rGO/TiO2 (0.1 g·L-1), air-saturated H2O, CH3OH (0.12 mmol·L-1), xenon lamp irradiation, 14 h 100 100 - 72
TBBPA 0.009 Red: Fe/Ag (0.8 g·L-1), no pH adjustment (≈7), US, 70 min 100 >98 - 76
Ox: Fe-Ag (0.8 g·L-1), pH 3, US, add H2O2 (2 mg·L-1 min-1) at 10 min, further react for 20 min 40 - - 76
Red-Ox 100 100% 99.2 76
0.018 Red: MoS2/SnIn4S8 (0.5 g·L-1), pH 7, N2 (10 mL·min-1), visible light irradiation, 6 h 100 93.1 0 81
Ox: MoS2/SnIn4S8 (0.5 g·L-1), pH 12, O2 (10 mL·min-1), visible light irradiation, 6 h 93.4 - 21.3 81
Red-Ox 100 93.1 60.2 81
0.10 Red: TiO2 (0.6 g·L-1), CH3OH (0.5 mmol·L-1), pH 12, N2, Hg lamp (365~366 nm) irradiation, 4 h 90 90 - 80
Ox: TiO2 (0.6 g·L-1), CH3OH (0.5 mmol·L-1), pH 12, N2, Hg lamp (365~366 nm) irradiation, 4 h 70 60 - 80
Red (2 h)-Ox (2 h) 92 40 - 80
0.037 Red: Pd-Fe nanoparticles modified Ni foam (Pd/Fe@Ni) as cathode, graphite anode, pH 3, J = 0.083 mA·cm-2, N2 (1.5 L·min-1), 1 h 100 89 - 82
Ox: Pd/Fe@Ni cathode, graphite anode, pH 3, J = 0.083 mA·cm-2, O2 (1.5 L·min-1), 1 h 83 43 - 82
Red (0.5 h)-Ox (0.5 h) 100 80 - 82
2,4,6-TBP,0.10 AgPd nanoparticles supported on β-cyclodextrin polymers (AgPd@CDs; 0.5 g·L-1), H2O2 (5 mmol·L-1), pH 7.0, 1.5 h 11.9 - - 86
Ti sheet as cathode, RuO2/Ti sheet as anode, J = 5.0 mA·cm-2, pH 7.0, 1.5 h 21.2 - - 86
Ti sheet as cathode, RuO2/Ti sheet as anode, CDs (0.5 g·L-1), pH 7.0, 1.5 h 45.0 0 45.0 86
Ti sheet as cathode, RuO2/Ti sheet as anode, AgPd@CDs (0.5 g·L-1), pH 7.0, J = 5.0 mA·cm-2, 1.5 h 100 73 73 86
4-BP,0.58 two cathode chambers (C) and one anode (A) chamber, bimetallic Pd-Fe nanoparticles loaded graphene (Pd/Fe@Gr) as cathodes, Ti/IrO2/RuO2 anode, pH 7.0, J = 25 mA·cm-2, H2 (0.5 h)-air (5 h) 100 (C)
99.5 (A)
82.5 (C)
89.1 (A)
94.9 (C)
93.4 (A)
83
Fig.4 Photocatalytic debromination of BDE47 over rGO/TiO2 via different pathways including reduction (Red), oxidation (Ox) or consecutive reduction and oxidation (Red-Ox)[72]
Fig.5 A schematic representation for synchronous reduction-oxidation of 4-chlorophenol using a bifunctional Fe/Cu bimetallic single-atom catalyst anchored on N-doped porous carbon (FeCuSA-NPC) as anode and Pt sheet as cathode[85]
Fig.6 A schematic representation for synergetic photoelectrocatalytic (PEC) reduction-oxidation of p-chloroaniline using dual photo-electrodes[91]
[1]
Fujii S, Polprasert C, Tanaka S, Hong Lien N P, Qiu Y. J. Water Supply Res. Technol. Aqua, 2007, 56(5): 313.
[2]
Wu Z H, Li R X, Zhang Y F, Zhu L Y. J. Hazard. Mater., 2021, 420: 126675.
[3]
Zhou J, Li S J, Liang X X, Feng X M, Wang T C, Li Z, Zhu L Y. J. Hazard. Mater., 2021, 404: 124134.
[4]
Shan G Q, Xiang Q, Feng X M, Wu W, Yang L P, Zhu L Y. Sci. Total. Environ., 2021, 781: 146747.
[5]
Shan G Q, Qian X, Chen X, Feng X M, Cai M H, Yang L P, Chen M, Zhu L Y, Zhang S F. J. Hazard. Mater., 2021, 411: 125049.
[6]
Chen M, Zhu L Y, Wang Q, Shan G Q. Environ. Pollut., 2021, 268: 115887.
[7]
Buxton G V, Greenstock C L, Helman W P, Ross A B, Phys. Chem. Ref. Data, 1988, 17: 513.
[8]
Xu Y, Schoonen M A A. Am. Mineral., 2000, 85: 543.
[9]
Yang S Y, Zhang Y T, Zheng D. Progress in Chemistry, 2016, 28: 934.
(杨世迎, 张宜涛, 郑迪. 化学进展, 2016, 28: 934.).

doi: 10.7536/PC151121
[10]
Tang H Q, Xiang Q Q, Lei M, Yan J C, Zhu L H, Zou J. Chem. Eng. J., 2012, 184: 156.
[11]
Liu Y, Chen S, Quan X, Yu H, Zhao H, Zhang Y. Environ. Sci. Technol., 2015, 49 (22), 13528.
[12]
Li S, Zhang G, Zhang W, Zheng H, Zhu W, Sun N, Zheng Y, Wang P, Chem. Eng. J., 2017, 326, 756.
[13]
Liu C S, Higgins C P, Wang F, Shih K. Sep. Purif. Technol., 2012, 91: 46.
[14]
Song Z, Tang H Q, Wang N, Wang X B, Zhu L H. Adv. Environ. Res., 2014, 3(3): 185.
[15]
Guo L, Yuan Y J, Feng L Z, Zhang Z, Gong J M. Acta Sci Circum, 2020, 40(06): 2045.
(郭丽, 袁颐进, 冯丽贞, 张哲, 龚静鸣. 环境科学学报, 2020, 40(06): 2045.).
[16]
Wang N, Lv H Q, Zhou Y Q, Zhu L H, Hu Y, Majima T, Tang H Q. Environ. Sci. Technol., 2019, 53(14): 8302.

doi: 10.1021/acs.est.9b00486 pmid: 31149813
[17]
Wu Y Y, Hu Y X, Han M Q, Ouyang Y M, Xia L C, Huang X F, Hu Z F, Li C H. Chem. Eng. J., 2021, 425: 130672.
[18]
Yang Y Q, Ji W Q, Li X Y, Zheng Z H, Bi F K, Yang M H, Xu J C, Zhang X D. Chem. Eng. J., 2021, 420: 129934.
[19]
Maria J R, Paula R, Beatriz G R, Ane U, Inmaculada O. Sep. Purif. Technol., 2020, 240: 116637.
[20]
Zhan Y H, Qin Y X, Chen B L, Zhou Z, Cao H M, Liang Y. Environ. Chem., 2022(1): 46.
(詹宇航, 秦雅鑫, 陈博磊, 周珍, 曹慧明, 梁勇. 环境化学, 2022(1): 46.).
[21]
Panchangam S C, Lin A Y C, Shaik K L, Lin C F. Chemosphere, 2009, 77(2): 242.

doi: 10.1016/j.chemosphere.2009.07.003 pmid: 19665756
[22]
Li X Y, Zhang P Y, Jin L, Shao T, Li Z M, Cao J J. Environ. Sci. Technol., 2012, 46(10): 5528.
[23]
Song Z, Dong X L, Wang N, Zhu L H, Luo Z H, Fang J D, Xiong C H. Chem. Eng. J., 2017, 317: 925.
[24]
Song Z, Dong X L, Fang J D, Xiong C H, Wang N, Tang X M. J. Hazard. Mater., 2019, 377: 371.
[25]
Wang J Z, Cao C S, Zhang Y, Zhang Y Q, Zhu L Y. Appl. Catal. B Environ., 2021, 286: 119911.
[26]
Yuan Y, Feng L, He X, Liu X, Xie N, Ai Z, Zhang L, Gong J. J. Hazard. Mater., 2022, 432: 127176.
[27]
Niu J F, Wang C, Shang E X. Sci. Sin. Technol., 2017, 47(12): 1233.
(牛军峰, 王冲, 商恩香. 中国科学: 技术科学, 2017, 47(12): 1233.).
[28]
Lin H, Niu J F, Ding S Y, Zhang L L. Water Res., 2012, 46(7): 2281.
[29]
Niu J F, Lin H, Gong C, Sun X M. Environ. Sci. Technol., 2013, 47(24): 14341.
[30]
Ma Q C, Liu L, Cui W, Zhao J, Ma Q. RSC Adv., 2015, 5: 84856.
[31]
Zhong C, Wei K, Han W, Wang L, Sun X, Li J. J. Electroanal. Chem., 2013, 705: 68.
[32]
Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ. Sci. Technol., 2012, 46(18): 10191.
[33]
Lin H, Niu J F, Xu J L, Huang H O, Li D, Yue Z H, Feng C H. Environ. Sci. Technol., 2013, 47(22): 13039.
[34]
García-Gómez C, Drogui P, Zaviska F, Seyhi B, Gortáres-Moroyoqui P, Buelna G, Neira-Sáenz C, Estrada-alvarado M, Ulloa-Mercado R G. J. Electroanal. Chem., 2014, 732: 1.
[35]
Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Environ. Sci. Technol., 2006, 40(3): 1049.
[36]
Cao H M, Zhang W L, Wang C P, Liang Y N, Sun H W. Chemosphere, 2022, 292: 133436.
[37]
Liu G, Feng C, Shao P. Environ. Sci. Technol., 2021,.
[38]
Shirom M, Stein G. J. Chem. Phys., 1971, 55: 3372.
[39]
Ma X J, Zhou Y M, Gu S Q, Mei S, Zhu G Y, Yu M, Wu Y Q, Ping Y H, Hong K, Zhang J, Mao P, Wu Z Y. Chemosphere, 2022, 287: 132228.
[40]
Song Z, Tang H Q, Wang N, Zhu L H. J. Hazard. Mater., 2013, 262: 332.
[41]
Qu Y, Zhang C, Li F, Chen J, Zhou Q. Water Res., 2010, 44: 2939.
[42]
Bentel M J, Yu Y C, Xu L H, Li Z, Wong B M, Men Y J, Liu J Y. Environ. Sci. Technol., 2019, 53(7): 3718.
[43]
Park H, Vecitis C D, Cheng J, Choi W, Mader B T, Hoffmann M R. J. Phys. Chem. A, 2009, 113: 690.
[44]
Lim J, Yang Y, Hoffmann M R. Environ. Sci. Technol., 2019, 53: 6972.
[45]
Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35(9) : 1771.
[46]
Vallejo M, San Román M F, Ortiz I. Environ. Sci. Technol., 2013, 47(21): 12400.

doi: 10.1021/es403246g pmid: 24099517
[47]
Shen X T, Zhu L H, Liu G X, Tang H Q, Liu S S, Li W Y. New J. Chem., 2009, 33(11): 2278.
[48]
Huang A Z, Wang N, Lei M, Zhu L H, Zhang Y Y, Lin Z F, Yin D Q, Tang H Q. Environ. Sci. Technol., 2013, 47(1): 518.
[49]
Huang A Z, Zhang Z M, Wang N, Zhu L H, Zou J. J. Hazard. Mater., 2016, 302: 158.
[50]
Xue N D, Chen X Y, Liu H B. Chin. J. Environ. Eng., 2016, 10(5): 2157.
(薛南冬, 陈宣宇, 刘寒冰. 环境工程学报, 2016, 10(5): 2157.)
[51]
Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39(7): 2280.
[52]
Yu K, Gu C, Boyd S A, Liu C, Sun C, Teppen B J, Li H. Environ. Sci. Technol., 2012, 46(16): 8969.
[53]
Li A, Tai C, Zhao Z S, Wang Y W, Zhang Q H, Jiang G B, Hu J T. Environ. Sci. Technol., 2007, 41(19): 6841.
[54]
Fu R B, Xu Z, Peng L, Bi D S. Environ. Sci. Pollut. Res., 2016, 23: 23983.
[55]
Liang D W, Yang Y H, Xu W W, Peng S K, Lu S F, Xiang Y. J. Hazard. Mater., 2014, 278: 592.
[56]
Zhuang Y, Jin L T, Luthy R G. Chemosphere, 2012, 89(4): 426.

doi: 10.1016/j.chemosphere.2012.05.078 pmid: 22732301
[57]
Wang R, Lu G N, Lin H Z, Huang K B, Tang T, Xue X L, Yang X J, Yin H, Dang Z. Environ. Pollut., 2017, 222: 331.

doi: S0269-7491(16)31229-5 pmid: 28034557
[58]
Luo S, Yang S G, Sun C, Gu J D. Sci. Total. Environ., 2012, 429: 300.
[59]
Wang R, Tang T, Lu G N, Zheng Z Q, Huang K B, Li H F, Tao X Q, Yin H, Shi Z Q, Lin Z, Wu F C, Dang Z. Sci. Total. Environ., 2019, 661: 18.

doi: 10.1016/j.scitotenv.2019.01.166
[60]
Zhao Y K, Wang Y Y, Ji H W, Ma W H, Chen C C, Zhao J C. Prog. Chem., 2017, 29(9): 911.
(赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城, 赵进才. 化学进展, 2017, 29(9): 911.).

doi: 10.7536/PC170510
[61]
Sun C Y, Zhao D, Chen C C, Ma W H, Zhao J C. Environ. Sci. Technol., 2009, 43(1): 157.
[62]
Lei M, Wang N, Zhu L H, Xie C S, Tang H Q. Chem. Eng. J., 2014, 241: 207.
[63]
Lei M, Wang N, Zhu L H, Tang H Q. Chemosphere, 2016, 150: 536.
[64]
Lei M, Wang N, Zhu L H, Zhou Q L, Nie G, Tang H Q. Appl. Catal. B Environ., 2016, 182: 414.
[65]
Li L, Chang W, Wang Y. Chem. Eur. J., 2014, 20: 11163.
[66]
Wang R, Tang T, Wei Y C, Dang D, Huang K B, Chen X W, Yin H, Tao X Q, Lin Z, Dang Z, Lu G N. Environ. Int., 2019, 127: 5.

doi: S0160-4120(18)32753-3 pmid: 30889398
[67]
Guo S, Zhu L H, Majima T, Lei M, Tang H Q. Environ. Sci. Technol., 2019, 53(8): 4433.
[68]
Bonin P M L, Edwards P, Bejan D, Lo C C, Bunce N J, Konstantinov A D. Chemosphere, 2005, 58(7): 961.
[69]
Konstantinov A, Bejan D, Bunce N J, Chittim B, McCrindle R, Potter D, Tashiro C. Chemosphere, 2008, 72(8): 1159.

doi: 10.1016/j.chemosphere.2008.03.046 pmid: 18472139
[70]
Peverly A A, Pasciak E M, Strawsine L M, Wagoner E R, Peters D G. J. Electroanal. Chem., 2013, 704: 227.
[71]
Su J Y, Lu N, Zhao J J, Yu H T, Huang H, Dong X L, Quan X. J. Hazard. Mater., 2012, 231/232: 105.
[72]
Lei M, Wang N, Guo S, Zhu L, Ding Y, Tang H. Chem. Eng. J., 2018, 345: 586.
[73]
Tan L, Lu S Y, Fang Z Q, Cheng W, Tsang E P. Appl. Catal. B Environ., 2017, 200: 200.
[74]
Moradi M, Eslami A. J. Water Process. Eng., 2020, 36: 101288.
[75]
Luo S, Yang S, Xue Y, Liang F, Sun C. J. Hazard. Mater., 2011, 192: 1795.

doi: 10.1016/j.jhazmat.2011.07.015 pmid: 21807460
[76]
Luo S, Yang S G, Sun C, Wang X D. Water Res., 2011, 45(4): 1519.

doi: 10.1016/j.watres.2010.10.039 pmid: 21190709
[77]
Yalfani M S, Georgi A, Contreras S, Medina F, Kopinke F D. Appl. Catal. B Environ., 2011, 104(1/2): 161.
[78]
Wu W, Yu J W, Liu S J, Liu Y, Ma X X, Xia C H. Environ Chem, 2018, 37: 2522.
(武雯, 于嘉文, 刘苏静, 刘莺, 马宣宣, 夏传海. 环境化学, 2018, 37: 2522.).
[79]
Wei L Y, Zhou B, Xiao K, Yang B, Yu G, Li J Y, Zhu C Z, Zhang J M, Duan H B. J. Hazard. Mater., 2020, 385: 121551.
[80]
Guo Y G, Lou X Y, Xiao D X, Xu L, Wang Z H, Liu J S. J. Hazard. Mater., 2012, 241/242: 301.
[81]
Weng R G, Tian F, Yu Z D, Ma J C, Lv Y C, Xi B D. Chemosphere, 2021, 285: 131542.
[82]
Hou Y P, Peng Z B, Wang L, Yu Z B, Huang L R, Sun L F, Huang J. J. Hazard. Mater., 2018, 343: 376.
[83]
Xu D D, Song X Z, Qi W Z, Wang H, Bian Z Y. Chem. Eng. J., 2018, 333: 477.
[84]
Shen X Q, Xiao F, Zhao H Y, Chen Y, Fang C, Xiao R, Chu W H, Zhao G H. Environ. Sci. Technol., 2020, 54(7): 4564.
[85]
Zhao K, Quan X, Su Y, Qin X, Chen S, Yu H T. Environ. Sci. Technol., 2021, 55(20): 14194.

doi: 10.1021/acs.est.1c04943 pmid: 34618424
[86]
Guo P C, Yang C W, Chu Z Q, Zhang X, Sheng G P. Appl. Catal. B Environ., 2021, 297: 120467.
[87]
Xie W J, Song C C, Ren W, Zhang J Y, Chen L, Sun J. Chemosphere, 2021, 274: 129654.
[88]
Zhang J, Ji Q H, Lan H C, Zhang G, Liu H J, Qu J H. Environ. Sci. Technol., 2019, 53(24): 14586.

doi: 10.1021/acs.est.9b05389 pmid: 31762267
[89]
Zhang L Q, Wang Y B, Su P D, Mao R, Zhao J L. J. Clean. Prod., 2021, 298: 126808.
[90]
Li K J, Yang Y, Bacha A U R, Feng Y Q, Ajmal S, Nabi I, Zhang L W. Chem. Eng. J., 2019, 378: 122191.
[91]
Zhang J, Zhang G, Lan H C, Qu J H, Liu H J. Environ. Sci. Technol., 2021, 55(5): 3296.

doi: 10.1021/acs.est.0c07271 pmid: 33544573
[92]
Sui H, Rong Y Z, Song J, Zhang D G, Li H B, Wu P, Shen Y Y, Huang Y J. J. Hazard. Mater., 2018, 342: 201.
[93]
Wang H, Huang J, Zhang K, Yu Y, Liu K, Yu G, Deng S, Wang B. J. Hazard. Mater., 2014, 264: 230.
[94]
Zhang Q W, Matsumoto H, Saito F, Baron M. Chemosphere, 2002, 48(8): 787.

pmid: 12222772
[95]
Lv H Q, Wang N, Zhu L H, Zhou Y Q, Li W J, Tang H Q. Green Chem., 2018, 20(11): 2526.
[96]
Zhang K L, Huang J, Yu G, Zhang Q W, Deng S B, Wang B. Environ. Sci. Technol., 2013, 47(12): 6471.
[97]
Yan X, Liu X T, Qi C D, Wang D L, Lin C Y. RSC Adv., 2015, 5(104): 85785.
[98]
Zhang Z, Wang N, Zhu L, Lv H, Dong X, Chai H, Tang H. J. Environ. Chem. Eng., 2017, 5: 915.
[99]
Liu Z K, Bentel M J, Yu Y C, Ren C X, Gao J Y, Pulikkal V F, Sun M, Men Y J, Liu J Y. Environ. Sci. Technol., 2021, 55(10): 7052.
[1] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[4] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[5] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[6] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[7] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[8] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[11] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[12] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[13] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[14] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[15] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.