中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 458-474 DOI: 10.7536/PC220822 Previous Articles   Next Articles

• Review •

MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms

Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen()   

  1. Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wangchongchen@bucea.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22176012); Beijing Natural Science Foundation(8202016)
Richhtml ( 185 ) PDF ( 2186 ) Cited
Export

EndNote

Ris

BibTeX

MIL-101(Fe) is a typical Fe-based metal-organic framework (Fe-MOF), which demonstrates the advantages of flexible structure, large specific surface area, large porosity, and adjustable pore size. In recent years, MIL-101(Fe) and its composites have been extensively studied in the field of water pollution remediation, especially in the hexavalent chromium (Cr(Ⅵ)) reduction and advanced oxidation processes for removing organic pollutants in water. The water stability, light absorption activity and the carrier separation efficiency can be significantly improved by functional modification with specific functional materials. In this review, the preparation strategies of MIL-101(Fe) and its composites, as well as their application as heterogeneous catalysts for photocatalysis, H2O2 activation, and persulfate activation were introduced. The future development of MIL-101(Fe) and its composites as catalysts for water purification is prospected.

Contents

1 Introduction

2 Preparation of MIL-101(Fe) and its composites

2.1 MIL-101(Fe)

2.2 MIL-101(Fe) composites

3 MIL-101(Fe) and its composites for reduction of Cr(Ⅵ)

4 Advanced oxidative degradation of organic pollutants in wastewater by MIL-101(Fe) and their composites

4.1 Photocatalysis

4.2 Activation of H2O2

4.3 Activation of persulfate

5 Water stability and biotoxicity of MIL-101(Fe)

6 Conclusions and prospective

Fig. 1 Number of publications of MIL-101(Fe) during the past eight years (source: Web of Science, date: 6th January 2023, keywords: MIL-101(Fe) and catalysis)
Fig. 2 The morphologies of MIL-101(Fe) synthesized via (a) solvothermal method[18]; (b) microwave-assisted method[21]; (c) electrochemical method[23] and (d) room temperature method; the morphologies of (e) MIL-101(Fe)/g-C3N4 composite[27]; (f) MIL-101(Fe)/CuS composite[30] and (g) Ag/AgCl/MIL-101(Fe) composite[32] synthesized via in-situ synthesis, one-step synthesis and room temperature impregnation, respectively
Table 1 MIL-101(Fe) and its composites for photocatalytic Cr(Ⅵ) reduction
Fig. 3 (a) Performances of photocatalytic Cr(Ⅵ) reduction over different materials[44]; schematic illustration of photocatalytic Cr(Ⅵ) reduction mechanism of (b) MA[42]; (c) g-C3N4/NH2-MIL-101(Fe)[45]; (d) Ag/AgCl/MIL-101(Fe)[32]
Fig. 4 (a) Schematic diagram of the separation and transfer of photo-generated electron-hole pairs in MIL-101(Fe) under visible light irradiation[59]; (b) schematic diagram of the preparation process of m-MIL-101-1.0[64]; (c) schematic diagram of the transfer process and photocatalytic mechanism of e- and h+ in m-MIL-101-1.0[64]; (d) proposed charge separation process and catalytic mechanism for TCH photodegradation over MIL-101(Fe)/WO3 hybrid system[74]; (e) TEM image of TiO2/MIL-101(Fe)[63]; (f) schematic diagram of adsorption and photocatalytic mechanism of CFs/TiO2/MIL-101(Fe)[63]
Table 2 MIL-101(Fe) and its composites for photocatalytic organic pollutants degradation
Catalyst/dosage (g·L-1) Polluant/Volume (mL)/
Concentration (mg·L-1)/pH
Light source Reaction time (min) Degradation efficiency (%) ref
MIL-101(Fe)/0.5 tetracycline/100/50/- 300 W Xe lamp (λ≥ 420 nm) 180 96.6 59
V2O5/NH2-MIL-101(Fe)-10/0.5 tetracycline/100/-/- ultraviolet-visible light from a 300 W xenon lamp 120 88.3 60
NH2-MIL-101(Fe)/Cu2O-2/1 rhodamine B/100/4.8/- 300 W Xe lamp (λ≥ 420 nm) 90 92 61
Electrospun graphene oxide/MIL-101(Fe)/poly (acrylonitrile-co-maleic
acid) nanofiber/2
rhodamine B/20/-/- ultraviolet lamp (16 W) 20 93.7 62
carbon fibers/TiO2/MIL-101(Fe)/2 17β-estradiol/100/3/-;tetracycline/100/20/- visible light 60 87.4 (17β-estradiol)/94.2 (tetracycline) 63
m-MIL-101-1.0/0.5 tetracycline/20/20/- 300 W Xe lamp (λ≥ 420 nm) 60 85.41 64
Magnetic MIL-101(Fe)/TiO2/1 tetracycline/50/20/7 solar light 10 92.76 65
5-Bi2MoO6/MIL-101(Fe)/0.3 rhodamine B/100/15/6.5 blue light LED 83.2 90 66
MIL-101(Fe)/gC3N4/0.5 bisphenol A/40/10/6.8 150 W halogen cold light source (λ≥ 420 nm) 240 94.8 27
1%Ag/AgCl/MIL-101(Fe/)1 phenol/50/10/6 300 W Xe lamp (λ≥ 420 nm) 30 70 32
g-C3N4/NH2-MIL-101(Fe)/1 2,6-dichlorophen/30/10/-
2,4,5-trichlorophenol/30/10/-
300 W Xe-lamp 180 98.7 (2,6-
dichlorophen)/
97.3 (2,4,5-
trichlorophenol)
67
Cu2O/Fe3O4/MIL-101(Fe)/0.5 ciprofloxacin//20/7 500 W Xe lamp 105 99.2 43
NCQDs/MIL-101(Fe)/0.5 tetracycline/100/10/- 500 W Xe lamp (λ≥ 420 nm) 180 100 68
g-C3N4@NiO/Ni-3@MIL-101/0.01 ibuprofen/30/30/- 500W Xenon (λ>400 nm) 120 95.6 69
Tm@Yb@Y/NMF/0.03 tetracycline/levofloxacin/ rhodamine B/60/20/- 500 W Xe lamp 50 47 (tetracycline)/
70 (levofloxacin)/
77 (rhodamine B)
70
NH2-MIL-101(Fe)/Ti3C2Tx/1 phenol/chlorophenol/100/23.5/- 300 W Xe lamp (λ≥ 420 nm) 60 99.36 (phenol)/
99.83 (chlorophenol)
71
Table 3 MIL-101(Fe) and its composites for organic pollutants degradation via activation of H2O2
Catalyst/dosage (g·L-1) Polluant/Volume (mL)/ Concentration (mg·L-1)/pH H2O2 dosage Light source Reaction time (min) Degradation efficiency (%) ref
MIL-101(Fe)/0.1 phenol/150/50/4 15 mM in dark 30 62 83
Fe3O4/MIL-101(Fe)/0.5 rhodamine B/100/10/7 20 mM in dark 30 100 85
NH2-MIL-101(Fe)/0.1 rhodamine B/50/0.025 mM/7.22 0.5 mL in dark 4 100 86
GA/MIL-101(Fe)/0.1 phenol/50/0.1 mM/5 6 mM in dark 40 99 84
MIL-101(Fe,Cu)/0.1 ciprofloxacin/100/20/7 3 mM in dark 30 100 87
NH2-MIL-101(Fe) -EPU/0.5 tetrabromobisphenol A/20/1.84 mM/3 165 mM light-emitting diodes (λ≥ 400 nm) 120 120 88
MIL-101(Fe,Co)/0.2 ciprofloxacin/100/20/5 5 mM in dark 30 97.8 89
NH2-MIL-101(Fe)/0.2 bisphenol A/50/50/6 10 mM in dark 30 100 24
MIL-101 (Fe)/PANI/Pd/0.05 methylene Blue/-/25/7 1 M - 34 92 90
MoS2@NH2-MIL-101(Fe)/0.2 rhodamine B/50/50/-
bisphenol A/50/20/-
1.76 mM 300 W Xe lamp 10 97.4 (RhB)
99.9 (BPA)
91
Fe/Ce-MIL-101/0.3 norfloxacin/-/10/7 20 mM in dark 60 94.8 92
TiO2@17%NH2-MIL-101(Fe)/1 methylene Blue/100/50/- - 300 W Xe lamp (λ≥ 420 nm) 30 96 93
CNT@MIL-101(Fe)/0.5 ciprofloxacin/100/3.02 μM/3 165 mM white light LEDs, 360-830 nm 45 90 94
GO@MIL-101(Fe)/0.5 tris(2-chloroethyl) phosphate/-/3.51μM/3 165 mM multiple wavelength LEDs 30 95 95
AFG@30MIL-101(Fe)/0.4 diazinon/50/30/9
atrazine/50/30/2
1.5 mL high-pressure mercury-
vapor lamp (400 W and λ = 546.8 nm)
120 100 (diazinon)
81 (atrazine)
96
MIL/Co/(3%)GO/0.2 direct Red 23/-/100/3
reactive Red 198/-/100/3
50 μL 100 W LED projector 70 99.93
(Direct Red 23)
99.65
(Reactive Red 198)
97
MIL-101(Fe)@Zn/Co-ZIFs/0.2 rhodamine B/50/100/5 90 mM 350 W Xe lamp (λ≥ 420 nm) 180 98 98
MIL-101(Fe)/Bi2WO6/Fe(Ⅲ)/
0.5
methylene Blue/100/20/- 500 μL 200 W incandescent lamp 75 86.7 99
MIL-101(Fe)-NH2@Al2O3/0.3 norfloxacin/50/10/- 15 μL 350 W Xe lamp 97.3 100 80
Fig. 5 (a) Schematic diagram showing the design strategy of GA/MIL-101(Fe)[84]; (b) schematic diagram of the proposed mechanisms involved for BPA degradation in Fe-BDC-NH2/H2O2 system[84]; (c) schematic diagrams of the proposed mechanism involved in CIP degradation by CUMSs/MIL-101(Fe, Cu)/H2 O 2 [87]; (d) illustration of the proposed reaction mechanism for TC-HCl removal in MIL-101(Fe)/H2O2/visible light system[103]
Table 4 MIL-101(Fe) and its composites for organic pollutants degradation via activation of persulfate
Catalyst/Dosage (g·L-1) Polluant/Volume (mL)/ Concentration (mg·L-1)/pH PS dosage Light source Reaction time (min) Degradation efficiency (%) ref
MIL-101(Fe)/0.625 acid orange 7/25/80/6.16 15 mM in dark 120 95 108
Fe3O4@MIL-101/1 acid orange 7/10/25/3.58 25 mM in dark 60 98.1 109
Quinone-modified NH2-MIL-101(Fe)/0.2 bisphenol A/25/60/5.76 10 mM in dark 120 97.7 110
6 wt% Co-MIL-101(Fe)/0.2
6 wt% Cu-MIL-101(Fe)/0.2
acid orange 7/100/0.1 mM/- 8 mM in dark 180 92 (6 wt% Co-MIL-101(Fe))
98 (6 wt% Co-MIL-101(Fe))
17
g-C3N4/MIL-101(Fe)/0.5 bisphenol A/-/10/- 1 mM 350 W Xe lamp (λ≥ 400 nm) 60 98 111
MIL-101(Fe) via vacuum thermal treatment/0.1 X-3B/100/100/- 15 mM in dark 180 95.7 112
MIL-101(Fe)/0.5 tris(2-chloroethyl)
phosphate/20/3.51 μM/-
500 mg·L-1 light-emitting diodes (LEDs) with emission peaks 180 > 90 113
MIL-101(Fe)/TiO2/1 tetracycline/-/80/7 1 g·L-1 500 W Xe lamp 30 93.02 114
MIL-101(Fe)-NH2/1 amaranth/200/50/7 200 mg·L-1 150 W visible light 30 100 115
NH2-MIL-101(Fe)/0.02 bisphenol F/200/20/5 1 mM in dark 120 100 116
MIL-101(Fe)/1 methylene Blue/20/10/7 500 mg·L-1 in dark 25 > 90 117
N,S:CQD/MIL-101(Fe)/0.4 bisphenol A/100/20/- 3 mM 350 W Xe lamp (λ≥ 400 nm) 60 100 118
CuS-modified MIL-101(Fe)/0.1 E. coli/100/ 107.5 cfu·
mL-1/6.5
50 μM white LED lamps (11,000 Lux, 400~700 nm) 40 100 30
TiO2@MIL-101(Fe)/1.052 nitrobenzene/28.5/800 μM/- 1.6 mM Xe lamp (λ≥ 420 nm) 240 66.53 31
RGO/MIL-101(Fe)/0.5 trichlorophenol/-/20/3 20 mM in dark 180 92 119
MIL-101(Fe)/0.1 orange G/50/15/3 0.05 mM in dark 40 74 120
MIL-101(Fe)/g-C3N4/0.08 tetracycline hydrochloride/
50/-/3.5
0.85 mM 30-W LED lamp (λ=410~760 nm) 40 99 121
NH2-MIL-101(Fe)-ferrocene/0.2 bisphenol A/25/60/5.76 10 mM in dark 40 100 122
NH2-MIL-101(FeCo)-2/0.005 orange G/99/0.2 nM/7 2 mM in dark 45 100 123
M/Z2/0.01 2-chlorophenol/100/100/9 300 mg·L-1 in dark 10 90.3 124
Fig. 6 (a) The possible elimination mechanism of AO7 by MIL-101(Fe)[108]; (b) scheme of the strategy for the syntheses of defective MIL-101(Fe) by modulating synthesis using HBC, HAC, OA, and CA, respectively (Fe, dark orange; C, black; O, red; H, white)[128]; (c) schematic diagram of the reaction mechanism of the PS activation by RGO/MIL101(Fe)[119]; (d) possible photocatalytic degradation mechanism in the N, S: CQD/MIL-101(Fe)/PS/vis system[118]
[1]
Wang C C, Yi X H, Wang P. Appl. Catal. B Environ., 2019, 247: 24.

doi: 10.1016/j.apcatb.2019.01.091
[2]
Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415.

doi: 10.1039/C4CS90059F
[3]
Ren X Y, Wang C C, Li Y, Wang P, Gao S J. J. Hazard. Mater., 2023, 445: 130552.

doi: 10.1016/j.jhazmat.2022.130552
[4]
Zhang Y M, Yuan S, Day G, Wang X, Yang X Y, Zhou H C. Coord. Chem. Rev., 2018, 354: 28.

doi: 10.1016/j.ccr.2017.06.007
[5]
Qian Y T, Zhang F F, Pang H. Adv. Funct. Mater., 2021, 31(37): 2104231.
[6]
Chu H Y, Wang T Y, Wang C C. Progress in Chemistry, 2022, 34 (12): 2700.
(楚宏宇, 王天宇, 王崇臣. 化学进展, 2022, 34 (12): 2700.).
[7]
Li X Y, Zhang H C, Wang P Y, Hou J, Lu J, Easton C D, Zhang X W, Hill M R, Thornton A W, Liu J Z. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[8]
Chen X R, Tong R L, Shi Z Q, Yang B, Liu H, Ding S P, Wang X, Lei Q F, Wu J, Fang W J. ACS Appl. Mater. Interfaces, 2018, 10(3): 2328.

doi: 10.1021/acsami.7b16522
[9]
Jie B R, Lin H D, Zhai Y X, Ye J Y, Zhang D Y, Xie Y F, Zhang X D, Yang Y Q. Chem. Eng. J., 2023, 454: 139931.
[10]
Hu Y H, Zhang L. Adv. Mater., 2010, 22(20): E117.

doi: 10.1002/adma.200902096
[11]
Yaghi O M, Li H L. J. Am. Chem. Soc., 1995, 117(41): 10401.

doi: 10.1021/ja00146a033
[12]
FÉrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, SurblÉ S, Margiolaki I. Science, 2005, 309(5743): 2040.

doi: 10.1126/science.1116275
[13]
Biswas S, Couck S, Grzywa M, Denayer J F M, Volkmer D, Van Der Voort P. Eur. J. Inorg. Chem., 2012, 2012(15): 2481.

doi: 10.1002/ejic.v2012.15
[14]
Taghizadeh M, Tahami S. Rev. Chem. Eng., 2022,DOI:10.1015/revce-2021-0050.

doi: 10.1015/revce-2021-0050
[15]
Ravi Y, Prasanthi I, Behera S, Datta K K R. ACS Appl. Nano Mater., 2022, 5(4): 5857.

doi: 10.1021/acsanm.2c01083
[16]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.

doi: 10.1021/cs501169t
[17]
Duan M J, Guan Z Y, Ma Y W, Wan J Q, Wang Y, Qu Y F. Chem. Pap., 2018, 72(1): 235.

doi: 10.1007/s11696-017-0276-7
[18]
Li Z C, Liu X M, Jin W, Hu Q S, Zhao Y P. J. Colloid Interface Sci., 2019, 554: 692.

doi: 10.1016/j.jcis.2019.07.046
[19]
Yang M, Tang J, Ma Q Q, Zheng N N, Tan L. J. Porous Mater., 2015, 22(5): 1345.

doi: 10.1007/s10934-015-0011-0
[20]
Wang F X, Wang C C. Research of Environmental Sciences, 2021, 34(12): 2924.
(王茀学, 王崇臣. 环境科学研究, 2021, 34(12): 2924.).
[21]
Taylor-Pashow K M L, Della Rocca J, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131(40): 14261.

doi: 10.1021/ja906198y pmid: 19807179
[22]
Dong Y N, Hu T D, Pudukudy M, Su H Y, Jiang L H, Shan S Y, Jia Q M. Mater. Chem. Phys., 2020, 251: 123060.

doi: 10.1016/j.matchemphys.2020.123060
[23]
Wu W B, Decker G E, Weaver A E, Arnoff A I, Bloch E D, Rosenthal J. ACS Cent. Sci., 2021, 7(8): 1427.

doi: 10.1021/acscentsci.1c00686
[24]
Huang P P, Yao L L, Chang Q, Sha Y H, Jiang G D, Zhang S H, Li Z. Chemosphere, 2022, 291: 133026.

doi: 10.1016/j.chemosphere.2021.133026
[25]
Zhao X D, Zhang C W, Liu B S, Zhao H F, Gao X L, Wang Y Y, Zhang Y Z, Liu D H, Wang C C. Resour. Conserv. Recycl., 2023, 188: 106647.

doi: 10.1016/j.resconrec.2022.106647
[26]
Zhang L, Wang C Y, Wang C C. Resour. Conserv. Recycl., 2023, 190: 106805.

doi: 10.1016/j.resconrec.2022.106805
[27]
Zhao F P, Liu Y P, Ben Hammouda S, Doshi B, Guijarro N, Min X B, Tang C J, Sillanpää M, Sivula K, Wang S B. Appl. Catal. B Environ., 2020, 272: 119033.

doi: 10.1016/j.apcatb.2020.119033
[28]
Huo Q, Liu G Q, Sun H H, Fu Y F, Ning Y, Zhang B Y, Zhang X B, Gao J, Miao J R, Zhang X L, Liu S Y. Chem. Eng. J., 2021, 422: 130036.

doi: 10.1016/j.cej.2021.130036
[29]
Vu T A, Le G H, Dao C D, Dang L Q, Nguyen K T, Dang P T, Tran H T K, Duong Q T, Nguyen T V, Lee G D. RSC Adv., 2014, 4(78): 41185.

doi: 10.1039/C4RA06522K
[30]
Jiang Y N, Wang Z J, Huang J B, Yan F, Du Y, He C S, Liu Y, Yao G, Lai B. Chem. Eng. J., 2022, 439: 135788.

doi: 10.1016/j.cej.2022.135788
[31]
Xu J J, Wang S Y, Yan C Y, Adeel Sharif H M, Yang B. Chemosphere, 2022, 288: 132666.

doi: 10.1016/j.chemosphere.2021.132666
[32]
Gong J Q, Zhang W W, Sen T, Yu Y C, Liu Y C, Zhang J L, Wang L Z. ACS Appl. Nano Mater., 2021, 4(5): 4513.

doi: 10.1021/acsanm.1c00119
[33]
O’Brien T J, Ceryak S, Patierno S R. Mutat. Res., Fundam. Mol. Mech. Mutagen., 2003, 533(1/2): 3.

doi: 10.1016/j.mrfmmm.2003.09.006
[34]
Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B Environ., 2016, 193: 198.

doi: 10.1016/j.apcatb.2016.04.030
[35]
Al-Fartusie F S, Mohssan S N. Indian J. Adv. Chem. Sci., 2017, 5(3): 127.
[36]
Wang C C, Ren X Y, Wang P, Chang C. Chemosphere, 2022, 303: 134949.
[37]
Wang F X, Yi X H, Wang C C, Deng J G. Chinese Journal of Catalysis., 2017, 38(12): 2141.

doi: 10.1016/S1872-2067(17)62947-4
(王茀学, 衣晓虹, 王崇臣, 邓积光. 催化学报, 2017, 38(12): 2141.).
[38]
Li Y H, Yi X H, Li Y X, Wang C C, Wang P, Zhao C, Zheng W W. Environ. Res., 2021, 201: 111596.

doi: 10.1016/j.envres.2021.111596
[39]
Wang J W, Qiu F G, Wang P, Ge C J, Wang C C. J. Clean. Prod., 2021, 279: 123408.

doi: 10.1016/j.jclepro.2020.123408
[40]
Zhou Y C, Wang P, Fu H F, Zhao C, Wang C C. Chin. Chem. Lett., 2020, 31(10): 2645.

doi: 10.1016/j.cclet.2020.02.048
[41]
Du X D, Yi X H, Wang P, Zheng W W, Deng J G, Wang C C. Chem. Eng. J., 2019, 356: 393.

doi: 10.1016/j.cej.2018.09.084
[42]
Zhao Q, Yi X H, Wang C C, Wang P, Zheng W W. Chem. Eng. J., 2022, 429: 132497.

doi: 10.1016/j.cej.2021.132497
[43]
Doan V D, Huynh B A, Le Pham H A, Vasseghian Y, Le V T. Environ. Res., 2021, 201: 111593.

doi: 10.1016/j.envres.2021.111593
[44]
Shi L, Wang T, Zhang H B, Chang K, Meng X G, Liu H M, Ye J H. Adv. Sci., 2015, 2(3): 1500006.
[45]
Liu B K, Wu Y J, Han X L, Lv J H, Zhang J T, Shi H Z. J. Mater. Sci. Mater. Electron., 2018, 29(20): 17591.

doi: 10.1007/s10854-018-9862-x
[46]
Liu J, Hao D D, Sun H W, Li Y, Han J L, Fu B, Zhou J C. Ind. Eng. Chem. Res., 2021, 60(33): 12220.

doi: 10.1021/acs.iecr.1c01777
[47]
Sadeghian S, Pourfakhar H, Baghdadi M, Aminzadeh B. Chemosphere, 2021, 268: 129365.

doi: 10.1016/j.chemosphere.2020.129365
[48]
Pattappan D, Kavya K V, Vargheese S, Kumar R T R, Haldorai Y. Chemosphere, 2022, 286: 131875.

doi: 10.1016/j.chemosphere.2021.131875
[49]
Jiang J M, Huang F H, Bai R, Zhang J L, Wang L. J. Environ. Chem. Eng., 2022, 10(3): 107908.
[50]
Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew. Chem. Int. Ed., 2012, 51(14): 3364.

doi: 10.1002/anie.v51.14
[51]
Ai L H, Zhang C H, Li L L, Jiang J. Appl. Catal. B Environ., 2014, 148/149: 191.
[52]
Li Y X, Wang X, Wang C C, Fu H F, Liu Y B, Wang P, Zhao C. J. Hazard. Mater., 2020, 399: 123085.

doi: 10.1016/j.jhazmat.2020.123085
[53]
Li Y X, Fu H F, Wang P, Zhao C, Liu W, Wang C C. Environ. Pollut., 2020, 256: 113417.

doi: 10.1016/j.envpol.2019.113417
[54]
Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Crit. Rev. Environ. Sci. Technol., 2021, 51(8): 751.

doi: 10.1080/10643389.2020.1734433
[55]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.

doi: 10.1016/j.apsusc.2016.07.030
[56]
Li X Y, Pi Y H, Wu L Q, Xia Q B, Wu J L, Li Z, Xiao J. Appl. Catal. B Environ., 2017, 202: 653.

doi: 10.1016/j.apcatb.2016.09.073
[57]
Ndolomingo M J, Bingwa N, Meijboom R. J. Mater. Sci., 2020, 55(15): 6195.

doi: 10.1007/s10853-020-04415-x
[58]
Tzou Y M, Chen K Y, Cheng C Y, Lee W Z, Teah H Y, Liu Y T. Environ. Pollut., 2020, 261: 114024.
[59]
Wang D B, Jia F Y, Wang H, Chen F, Fang Y, Dong W B, Zeng G M, Li X M, Yang Q, Yuan X Z. J. Colloid Interface Sci., 2018, 519: 273.

doi: 10.1016/j.jcis.2018.02.067
[60]
Huang C, Wang J, Li M J, Lei X F, Wu Q. Solid State Sci., 2021, 117: 106611.

doi: 10.1016/j.solidstatesciences.2021.106611
[61]
Geng J G, Ma J L, Li F, Ma S Q, Zhang D, Ning X F. Ceram. Int., 2021, 47(10): 13291.

doi: 10.1016/j.ceramint.2020.09.239
[62]
Huang Z J, Lai Z, Zhu D Y, Wang H Y, Zhao C X, Ruan G H, Du F Y. J. Colloid Interface Sci., 2021, 597: 196.

doi: 10.1016/j.jcis.2021.04.020
[63]
Zhang Y, Xiong M Y, Sun A R, Shi Z, Zhu B, Macharia D K, Li F, Chen Z G, Liu J S, Zhang L S. J. Clean. Prod., 2021, 290: 125782.
[64]
Xie L X, Zhang T S, Wang X Y, Zhu W X, Liu Z L, Liu M S, Wang J, Zhang L, Du T, Yang C Y, Zhu M Q, Wang J L. J. Clean. Prod., 2022, 359: 131808.

doi: 10.1016/j.jclepro.2022.131808
[65]
He L, Dong Y N, Zheng Y E, Jia Q M, Shan S Y, Zhang Y Q. J. Hazard. Mater., 2019, 361: 85.

doi: 10.1016/j.jhazmat.2018.08.079
[66]
Hajiali M, Farhadian M, Tangestaninejad S, Khosravi M. Adv. Powder Technol., 2022, 33(5): 103546.

doi: 10.1016/j.apt.2022.103546
[67]
Su S Y, Xing Z P, Zhang S Y, Du M, Wang Y, Li Z Z, Chen P, Zhu Q, Zhou W. Appl. Surf. Sci., 2021, 537: 147890.

doi: 10.1016/j.apsusc.2020.147890
[68]
Xie Y H, Liu C R, Li D J, Liu Y. Appl. Surf. Sci., 2022, 592: 153312.

doi: 10.1016/j.apsusc.2022.153312
[69]
Cong Y Q, Li Y N, Wang X R, Wei X, Che L, Lv S W. Sep. Purif. Technol., 2022, 297: 121531.

doi: 10.1016/j.seppur.2022.121531
[70]
Ren H H, Bai R, Huang F H, Zhang J L, Wang L. Cryst. Growth. Des., 2022, 22(8): 4864.

doi: 10.1021/acs.cgd.2c00346
[71]
Hu C Y, Jiang Z W, Yang C P, Wang X Y, Wang X, Zhen S J, Wang D M, Zhan L, Huang C Z, Li Y F. Chem. A Eur. J., 2022, 28(54): e202201437.
[72]
Li Y H, Wang P, Wang C C, Liu Y B. Chin. J. Inorg. Chem., 2022, 38(12): 2342.
(李渝航, 王鹏, 王崇臣, 刘艳彪. 无机化学学报, 2022, 38(12): 2342.).
[73]
Shi K X, Qiu F G, Wang J W, Wang P, Li H Y, Wang C C. Sep. Purif. Technol., 2023, 309: 122991.

doi: 10.1016/j.seppur.2022.122991
[74]
Yang H, Zhao Z C, Yang Y P, Zhang Z, Chen W, Yan R Q, Jin Y X, Zhang J. Sep. Purif. Technol., 2022, 300: 121846.

doi: 10.1016/j.seppur.2022.121846
[75]
Guo W X, Zhang F, Lin C J, Wang Z L. Adv. Mater., 2012, 24(35): 4761.

doi: 10.1002/adma.201201075
[76]
Du C Y, Zhang Y, Zhang Z, Zhou L, Yu G L, Wen X F, Chi T Y, Wang G L, Su Y H, Deng F F, Lv Y C, Zhu H. Chem. Eng. J., 2022, 431: 133932.

doi: 10.1016/j.cej.2021.133932
[77]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.

doi: 10.1016/j.jhazmat.2014.04.054 pmid: 24857896
[78]
Fu H F, Song X X, Wu L, Zhao C, Wang P, Wang C C. Mater. Res. Bull., 2020, 125: 110806.
[79]
Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Chem. Eng. J., 2022, 429: 132495.

doi: 10.1016/j.cej.2021.132495
[80]
Zhao Q, Wang C C, Wang P. Chin. Chem. Lett., 2022, 33(11): 4828.

doi: 10.1016/j.cclet.2022.01.033
[81]
Wu L, Wang C C, Chu H Y, Yi X H, Wang P, Zhao C, Fu H F. Chemosphere, 2021, 280: 130659.

doi: 10.1016/j.chemosphere.2021.130659
[82]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9): e5795.
[83]
Gao C, Chen S, Quan X, Yu H T, Zhang Y B. J. Catal., 2017, 356: 125.

doi: 10.1016/j.jcat.2017.09.015
[84]
Zhang Y W, Liu F, Yang Z C, Qian J S, Pan B C. Nano. Res., 2021, 14(7): 2383.

doi: 10.1007/s12274-020-3239-1
[85]
Zhao C C, Dong P, Liu Z M, Wu G R, Wang S J, Wang Y Q, Liu F. RSC Adv., 2017, 7(39): 24453.

doi: 10.1039/C7RA01883E
[86]
Aboueloyoun Taha A, Huang L B, Ramakrishna S, Liu Y. J. Water Process. Eng., 2020, 33: 101004.

doi: 10.1016/j.jwpe.2019.101004
[87]
Liang H, Liu R P, An X Q, Hu C Z, Zhang X W, Liu H J. Chem. Eng. J., 2021, 414: 128669.

doi: 10.1016/j.cej.2021.128669
[88]
Fu J W, Wang L, Chen Y H, Yan D Y, Ou H S. Environ. Sci. Pollut. Res., 2021, 28(48): 68560.

doi: 10.1007/s11356-021-14834-1
[89]
Liang H, Liu R P, Hu C Z, An X Q, Zhang X W, Liu H J, Qu J H. J. Hazard. Mater., 2021, 406: 124692.

doi: 10.1016/j.jhazmat.2020.124692
[90]
Karami K, Beram S M, Siadatnasab F, Bayat P, Ramezanpour A. J. Mol. Struct., 2021, 1231: 130007.
[91]
Li Z T, Gu Y F, Li F T. J. Environ. Chem. Eng., 2022, 10(3): 107686.

doi: 10.1016/j.jece.2022.107686
[92]
Bao C S, Zhao J, Sun Y Y, Zhao X L, Zhang X H, Zhu Y K, She X L, Yang D J, Xing B S. Environ. Sci.: Nano, 2021, 8(8): 2347.
[93]
Ma Y W, Lu Y F, Hai G T, Dong W J, Li R J, Liu J H, Wang G. Sci. Bull., 2020, 65(8): 658.

doi: 10.1016/j.scib.2020.02.001
[94]
Yan D Y, Hu H, Gao N Y, Ye J S, Ou H S. Appl. Surf. Sci., 2019, 498: 143836.

doi: 10.1016/j.apsusc.2019.143836
[95]
Lin J L, Hu H, Gao N Y, Ye J S, Chen Y J, Ou H S. J. Water Process. Eng., 2020, 33: 101010.

doi: 10.1016/j.jwpe.2019.101010
[96]
Fakhri H, Farzadkia M, Boukherroub R, Srivastava V, Sillanpää M. Sol. Energy, 2020, 208: 990.

doi: 10.1016/j.solener.2020.08.050
[97]
Bagherzadeh S B, Kazemeini M, Mahmoodi N M. J. Colloid Interface Sci., 2021, 602: 73.

doi: 10.1016/j.jcis.2021.05.181
[98]
Li Y C, Wang X Y, Duan Z Y, Yu D H, Wang Q, Ji D D, Liu W X. Sep. Purif. Technol., 2022, 293: 121099.

doi: 10.1016/j.seppur.2022.121099
[99]
Song R T, Yao J, Yang M, Ye Z B, Xie Z, Zeng X. Nanoscale, 2022, 14(18): 7055.

doi: 10.1039/D1NR07915H
[100]
Lin H D, Jie B R, Ye J Y, Zhai Y X, Luo Z J, Shao G J, Chen R Z, Zhang X D, Yang Y Q. Surf. Interfaces, 2023, 36: 102564.
[101]
Zheng L, Gu Y F, Hua B L, Fu J R, Li F T. Chemosphere, 2022, 307: 135728.

doi: 10.1016/j.chemosphere.2022.135728
[102]
Wang J L, Tang J T. J. Mol. Liq., 2021, 332: 115755.

doi: 10.1016/j.molliq.2021.115755
[103]
Wu Q S, Yang H P, Kang L, Gao Z, Ren F F. Appl. Catal. B Environ., 2020, 263: 118282.

doi: 10.1016/j.apcatb.2019.118282
[104]
Jiang S T, Zhao Z Y, Chen J F, Yang Y, Ding C Y, Yang Y Q, Wang Y X, Liu N, Wang L, Zhang X D. Surf. Interfaces, 2022, 30: 101843.
[105]
Zhang X W, Lan M Y, Wang F, Yi X H, Wang C C. J. Environ. Chem. Eng., 2022, 10(3): 107997.

doi: 10.1016/j.jece.2022.107997
[106]
Zhang X W, Lan M Y, Wang F, Wang C C, Wang P, Ge C J, Liu W. Chem. Eng. J., 2022, 450: 138082.

doi: 10.1016/j.cej.2022.138082
[107]
Yi X H, Wang C C. Progress in Chemistry, 2021, 33(03): 471.
(衣晓虹, 王崇臣. 化学进展, 2021, 33(03): 471.).
[108]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. Appl. Surf. Sci., 2016, 369: 130.

doi: 10.1016/j.apsusc.2016.02.037
[109]
Yue X X, Guo W L, Li X H, Zhou H H, Wang R Q. Environ. Sci. Pollut. Res., 2016, 23(15): 15218.

doi: 10.1007/s11356-016-6702-5
[110]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. J. Hazard. Mater., 2017, 324: 665.

doi: 10.1016/j.jhazmat.2016.11.040
[111]
Gong Y, Yang B, Zhang H, Zhao X. J. Mater. Chem. A, 2018, 6(46): 23703.

doi: 10.1039/C8TA07915C
[112]
Yang J Y, Zeng Z Q, Huang Z G, Cui Y. Catalysts, 2019, 9(11): 906.

doi: 10.3390/catal9110906
[113]
Hu H, Zhang H X, Chen Y, Chen Y J, Zhuang L, Ou H S. Chem. Eng. J., 2019, 368: 273.

doi: 10.1016/j.cej.2019.02.190
[114]
He L, Zhang Y Q, Zheng Y E, Jia Q M, Shan S Y, Dong Y N. J. Porous Mater., 2019, 26(6): 1839.

doi: 10.1007/s10934-019-00778-y
[115]
Zhang M W, Lin K Y A, Huang C F, Tong S P. Sep. Purif. Technol., 2019, 227: 115632.
[116]
Liu Z, Su R D, Sun X, Zhou W Z, Gao B Y, Yue Q Y, Li Q. Sci. Total Environ., 2020, 741: 140464.

doi: 10.1016/j.scitotenv.2020.140464
[117]
Xiao Z Y, Li Y, Fan L, Wang Y X, Li L. J. Colloid Interface Sci., 2021, 589: 298.

doi: 10.1016/j.jcis.2020.12.123
[118]
Jiang H, Zhong Y, Tian K X, Pang H L, Hao Y Y. Appl. Surf. Sci., 2022, 577: 151902.

doi: 10.1016/j.apsusc.2021.151902
[119]
Xu Y Y, Wang Y, Wan J Q, Ma Y W. Chemosphere, 2020, 240: 124849.

doi: 10.1016/j.chemosphere.2019.124849
[120]
Moazeni M, Hashemian S M, Sillanpää M, Ebrahimi A, Kim K H. J. Environ. Manag., 2022, 303: 113897.

doi: 10.1016/j.jenvman.2021.113897
[121]
Bi H, Liu C Z, Li J Y, Tan J. J. Solid State Chem., 2022, 306: 122741.
[122]
Wang Y, Guo W L, Li X H. RSC Adv., 2018, 8(64): 36477.

doi: 10.1039/C8RA07007E
[123]
Li H X, Lou Y C, Zheng J T, Su L Y, Lu S, Xu C, Huang J G, Zhou Q W, Tang J H, Huang M Z. J. Environ. Chem. Eng., 2022, 10(5): 108272.

doi: 10.1016/j.jece.2022.108272
[124]
Gu A T, Wang P, Chen K W, Djam Miensah E, Gong C H, Jiao Y, Mao P, Chen K, Jiang J L, Liu Y, Yang Y. Sep. Purif. Technol., 2022, 298: 121461.

doi: 10.1016/j.seppur.2022.121461
[125]
Ezzatahmadi N, Ayoko G A, Millar G J, Speight R, Yan C, Li J H, Li S Z, Zhu J X, Xi Y F. Chem. Eng. J., 2017, 312: 336.

doi: 10.1016/j.cej.2016.11.154
[126]
Xu L J, Wang J L. Appl. Catal. B Environ., 2012, 123/124: 117.

doi: 10.1016/j.apcatb.2012.04.028
[127]
Jabbari V, Veleta J M, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Chem. Eng. J., 2016, 304: 774.

doi: 10.1016/j.cej.2016.06.034
[128]
Guo H S, Su S N, Liu Y, Ren X H, Guo W L. Environ. Sci. Pollut. Res., 2020, 27(14): 17194.

doi: 10.1007/s11356-020-08316-z
[129]
Ali Khan U, Liu J J, Pan J B, Ma H C, Zuo S L, Yu Y C, Ahmad A, Ullah S, li B S. Ind. Eng. Chem. Res., 2019, 58(1): 79.

doi: 10.1021/acs.iecr.8b04627
[130]
Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230.

doi: 10.1039/c2jm34690g
[131]
Wang Q J, Wang G L, Liang X F, Dong X L, Zhang X F. Appl. Surf. Sci., 2019, 467/468: 320.

doi: 10.1016/j.apsusc.2018.10.165
[132]
Qin X T, Qiang T T, Chen L, Wang S T. Microporous Mesoporous Mater., 2021, 315: 110889.
[133]
Qu D, Sun Z C, Zheng M, Li J, Zhang Y Q, Zhang G Q, Zhao H F, Liu X Y, Xie Z G. Adv. Opt. Mater., 2015, 3(3): 360.

doi: 10.1002/adom.v3.3
[134]
Wang L J, Li X T, Yang B, Xiao K, Duan H B, Zhao H Z. Chem. Eng. J., 2022, 450: 138215.

doi: 10.1016/j.cej.2022.138215
[135]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.

doi: 10.1021/cr5002589
[136]
Kuznicki A, Lorzing G R, Bloch E D. Chem. Commun., 2021, 57(67): 8312.

doi: 10.1039/D1CC02104D
[137]
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris R E, Wuttke S. Chem. Soc. Rev., 2022, 51(2), 464.
[138]
Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto M J, Horcajada P. J. Mater. Chem. B, 2014, 2(3): 262.

doi: 10.1039/c3tb20832j pmid: 32261505
[139]
Ruyra À, Yazdi A, Espín J, CarnÉ-Sánchez A, Roher N, Lorenzo J, Imaz I, Maspoch D. Chem. Eur. J., 2015, 21(6): 2508.

doi: 10.1002/chem.201405380
[1] Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang. Design and Application of Chiral Plasmonic Core-Shell Nanostructures [J]. Progress in Chemistry, 2023, 35(8): 1168-1176.
[2] Chenyan Zhao, Yuxiang Sun, Lili Yang, Minghui Zheng, Shuting Liu, Guorui Liu. Source and Environmental Characteristics of Hexachlorobutadiene [J]. Progress in Chemistry, 2023, 35(7): 1040-1052.
[3] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[4] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[5] Qinghe Li, Botao Qiao, Tao Zhang. Condensed Matter Chemistry in Single-Atom Catalysis [J]. Progress in Chemistry, 2023, 35(6): 821-838.
[6] Fengshou Xiao, Qinming Wu, Chengtao Wang. Condensed Matter Chemistry in Catalysis by Zeolites [J]. Progress in Chemistry, 2023, 35(6): 886-903.
[7] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[8] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[9] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[10] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[11] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[12] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[13] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[14] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[15] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.