中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 119-132 DOI: 10.7536/PC190603 Previous Articles   Next Articles

Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells

Lei Wang1,2, Qin Zhou1,2, Yuqiong Huang1,2, Bao Zhang1,**(), Yaqing Feng1,2   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • Received: Online: Published:
  • Contact: Bao Zhang
  • About author:
  • Supported by:
    National Key R&D Program of China(2016YFE0114900); National Natural Science Foundation of China(21761132007)
Richhtml ( 106 ) PDF ( 3660 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the emerging organic and inorganic hybrid perovskite solar cells have made rapid progress. In just ten years, its photoelectric conversion efficiency has rapidly developed from 3.8% to the current certified efficiency of 25.2%, which is regarded as one of the most potential solar cells. Although perovskite solar cells have high photoelectric conversion efficiency comparable to polysilicon thin film cells, the long-term stability of the cells remains a major challenge hindering their commercialization. There are many defects on the surface and grain boundary of perovskite. Interface passivation is an important and effective strategy to improve the stability of perovskite solar cells. Two-dimensional perovskite materials are organic amine and inorganic layer alternate layered perovskite, with bulky organic ammonium cations. Compared with the traditional three-dimensional perovskite materials, the stability for the environment is good, with the flexible and adjustable structure. The 3D perovskite’s surface is modified by a two-dimensional perovskite to passivate defects, ensuring the stability and at the same time improving the efficiency of perovskite solar cells. In addition, suitable passivation agent molecules can also passivate defects effectively. This paper reviews the unstable factors of perovskite solar cells, summarizes the research progress in interface passivation of perovskite solar cell, points out the great potential of two-dimensional perovskite materials’ development and the principle of finding suitable passivation agent molecules, which is expected to provide useful guidance for obtaining high-performance perovskite solar cells and realizing commercialization.

Fig. 1 (a) Illustration of the 3D hybrid perovskite structure ABX3, showing the corner-sharing [BX6]4- octahedra (A is an organic cation, B is a metal cation and X is a halide); (b) Upon exposure to moisture, UV light or heat, 3D perovskites decompose into either the precursor materials or a 0D hydrated phase; (c) Illustration showing the degradation processes initiated by infiltration of O2 through the grains in a 3D perovskite[23] (Reproduced with permission from ref 23)
Fig. 2 Typical structures of the 2D layered hybrid organic-inorganic perovskite for n=1 with double (a) and single (b) intercalated organic molecule layer[52] (Reproduced with permission from ref 52)
Fig. 3 Illustration showing that 2D perovskites is used as dopant to passivate the crystal grain boundaries of 3D perovskites[24] (Reproduced with permission from ref 24)
Fig. 4 Schematic figure of (a) the perovskite film treated by BA to form a 2D/3D stacking structure and (b,c) 2D/3D molecular junctions on the surface and at grain boundaries of 3D perovskite films induced by BA and BAI treatments, respectively; SEM images of (d) MAPbI3 films, (e) BA-treated MAPbI3 films, and (f) BAI-treated MAPbI3 films[57] (Reproduced with permission from ref 57)
Fig. 5 (a) Schematic of the MP passivation treatment method with FAI and iBAI; (b) Stability test: PCEs monitored in 75% RH condition over a period of 38 d; (c) Distribution of PCE, VOC, JSC, and FF of devices with various passivation compositions[59] (Reproduced with permission from ref 59)
Fig. 6 Schematic of the surface of perovskite with (a) PEAI modification wherein the PEA+ ion seemed to stand vertically and (b) ODAI modification wherein the ODA2+ ion seemed to lie horizontally (color: atom, red: I, gray: Pb, blue: H, yellow: C and brown: N); (c) Device performance as a function of storage time in an ambient environment with a humidity of about 20%~40% under the dark condition, and the inset shows the final photographs of control (left) and ODAI-modified (right) devices[60] (Reproduced with permission from ref 60)
Fig. 7 (a) Molecular structure of the molecules with hygroscopic molecules, (b) Molecular structure of the molecules with Lewis base functional groups[62,64] (Figure a is reproduced with permission from ref 62, Figure b is reproduced with permission from ref 64)
Fig. 8 Images of unmodified FAPbI3, A-FAPbI3, BA-FAPbI3, and PA-FAPbI3 films after different durations (fresh, 3 d, 4 months) of exposure under (50 ± 5)% RH air[65] (Reproduced with permission from ref 65)
Fig. 9 UV-vis absorption spectra of aged MAPbI3 films with and without surface passivation with OA in a dark and humid environment; (a) The absorption spectra of MAPbI3 before and after 1 week of aging; (b) The absorption spectra of MAPbI3 film with OA before and after 1 and 4 weeks of aging, Insets show photographic images of the corresponding samples[68] (Reproduced with permission from ref 68)
Fig. 10 The structure of planar heterojunction devices[69] (Reproduced with permission from ref 69)
Fig. 11 Schematic illustration of defect passivation and water repellence induced by BAA incorporation[70] (Reproduced with permission from ref 70)
Fig. 12 (a) Schematic representation of AVA passivation at lattice termination of MAPbI3, schematic representation of enhanced stability resulting from AVA passivation of surface defect sites of MAPbI3: in the absence of AVA (b), oxygen can access iodide vacancies at grain boundaries, resulting under irradiation in superoxide mediated photodegradation; in the presence of AVA (c), AVA binds to these iodide vacancies, inhibiting this degradation[71] (Reproduced with permission from ref 71)
Fig. 13 The potential surface defect sites in perovskite[72] (Reproduced with permission from ref 72)
Fig. 14 (a) Photographs of the pristine and passivated perovskite films before and after high humidity aging; (b) XRD patterns of freshly prepared and aged perovskite films. (c) Stability test of the reference and 2-MP passivated devices stored in ambient air with a relative humidity of 60%~70% at room temperature[77] (Reproduced with permission from ref 77)
Table 1 Summary of defect passivation for PSCs: passivator, structure, perovskite materials, passivation functional group, passivation type (two-dimensional passivation)/targeted defect (molecular passivation) and photovoltaic parameters without (C) and with (P) passivation (A: average; PVK: perovskite)
Passivator Structure Perovskite Passivation
functional
group
Passivation
type/
Targeted
defects
Jsc[mA/
cm2]
(C/P)
Voc[V]
(C/P)
FF
(C/P)
PCE
[%]
(C/P)
ref
PEAI MAPbI3 Ammonium 2D 23.58/22.69 1.104/1.146 0.7685/0.7632 20.0/19.84 56
BA/BAI MAPbI3 Amine/Ammonium 2D 22.20/22.49、22.59 1.08/1.11, 1.09 0.74/0.78, 0.77 17.75/19.56、18.85 57
ZnPc MAPbI3 Ammonium 2D 22.93/23.23 1.08/1.09 0.76/0.77 18.83/19.56 58
ODAI FAPbI3 Ammonium 2D 24.81/24.90 1.04/1.13 0.78/0.75 20.23/21.18 60
FPEAI Cs0.1(FA0.83
MA0.17)0.9
Pb(I0.83Br0.17)3
Ammonium 2D 22.04/22.80 1.090/1.126 0.80/0.80 19.22/20.54 61
BA FAPbI3 Amine Undercoor-
dinated Pb2+ or the iodide ions
22.7/23.6 1.01/1.12 0.70/0.73 15.7/19.2 65
PVP MAPbI3 N donor
(pyridine
group)
Undercoordinated Pb2+ 20.1/22.0 0.90/1.05 0.64/0.66 11.6/15.1 66
PEO MAPbI3 O donor Undercoordinated Pb2+ 19.823/20.850 1.055/1.105 0.750/0.754 15.552/17.194 67
OA MAPbI3 Carboxyl group Surface Pb2+
and/or CH3NH3+
24.4/23.5 0.86/0.93 36.0/41.7 7.62/9.11 68
Passivator Structure Perovskite Passivation
functional
group
Passivation
type/
Targeted
defects
Jsc[mA/
cm2]
(C/P)
Voc[V]
(C/P)
FF
(C/P)
PCE
[%]
(C/P)
ref
PCDTBT CH3NH3 PbIxCl3-x S, N donor Undercoordinated Pb2+ 20.87/21.71 0.91/0.94 0.69/0.77 13.19/15.76 69
BAA Cs/FA/MA PVK
MAPbI3
Amine Undercoordinated Pb2+ 23.4/23.4
22.0/22.5
1.06/1.16
1.08/1.18
0.684/0.794
0.772/0.817
17.0/21.5
18.3/21.7
70
PBDB-T (CsPbI3)0.04
(FAPbI3)0.82
(MAPbBr3)0.14
O donor Undercoordinated Pb2+ 21.73/22.39 1.075/1.113 0.740/0.778 17.28/19.38 72
AQ310 (FAPbI3)0.85
(MAPbBr3)0.15
Carboxyl group Undercoordinated Pb2+ 21.76/21.80 1.11/1.15 0.780/0.784 18.84(17.98 A)/19.66(19.43 A) 73
LL MAPbI3 Bipolarity Anionic defects 21.35/24.09 1.00/1.02 0.728/0.741 15.55/18.20 74
FAL Cs0.05(MA0.17
FA0.83)0.95
Pb(I0.83Br0.17)3
Amine The sites of
MA/FA vacancies
22.56/23.33 1.02/1.33 0.743/0.777 17.08/20.48 75
2-MP MAPbI3 N donor (pyridine
ring) and S donor
Undercoordinated Pb2+ 22.56/22.61 1.09/1.16 0.7464/0.7744 18.35/20.28 77
HS MAPbI3 the-COO-/-SO3- anionic and Na+
cationic groups
Undersaturated Pb2+ and I- in
MAPbI3 and Ti4+ in TiO2
21.29/23.34 1.090/1.114 0.7407/0.7731 17.20/20.10 78
[1]
Chen S, Shi G. Adv. Mater., 2017,29:1605448.
[2]
Yan J L, Qiu W M, Wu G, Heremans P, Chen H Z . J. Mater. Chem. A, 2018,6:11063.
[3]
Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C . Science, 2013,342:344. https://www.ncbi.nlm.nih.gov/pubmed/24136965

doi: 10.1126/science.1243167 pmid: 24136965
[4]
Lin Q Q, Armin A, Burn P L, Meredith P . Nature Photonics, 2015,9:687.
[5]
Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser J E. Nature Photonics, 2014,8:250.
[6]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015,15:3692. https://www.ncbi.nlm.nih.gov/pubmed/25633588

doi: 10.1021/nl5048779 pmid: 25633588
[7]
Kojima A, Teshima K, Shirai Y, Miyasaka T . J. Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

doi: 10.1021/ja809598r pmid: 19366264
[8]
Zimmermann I, Aghazada S, Nazeeruddin M K. Angew. Chem. Int. Ed., 2019,58:1072. https://www.ncbi.nlm.nih.gov/pubmed/30462878

doi: 10.1002/anie.201811497 pmid: 30462878
[9]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J . Science, 2012,338:643. https://www.ncbi.nlm.nih.gov/pubmed/23042296

doi: 10.1126/science.1228604 pmid: 23042296
[10]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I . Science, 2017,356:1376. https://www.ncbi.nlm.nih.gov/pubmed/28663498

doi: 10.1126/science.aan2301 pmid: 28663498
[11]
Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Gratzel M, Seok S I . J. Am. Chem. Soc., 2013,135:19087. https://www.ncbi.nlm.nih.gov/pubmed/24313292

doi: 10.1021/ja410659k pmid: 24313292
[12]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J . Nature Energy, 2018,3:682.
[13]
NREL Efficiency Chart Vol. 2019. [2019-05-30]https://www.nrel.gov/pv/cell-efficiency.html. https://www.nrel.gov/pv/cell-efficiency.html
[14]
Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M . Science, 2015,347:519. https://www.ncbi.nlm.nih.gov/pubmed/25635092

doi: 10.1126/science.aaa2725 pmid: 25635092
[15]
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J . Science, 2015,347:967. https://www.ncbi.nlm.nih.gov/pubmed/25636799

doi: 10.1126/science.aaa5760 pmid: 25636799
[16]
Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ. Sci., 2016,9:1752.
[17]
Zong Y, Zhou Y, Zhang Y, Li Z, Zhang L, Ju M, Chen M, Pang S, Zeng X C, Padture N P . Chem., 2018,4:1404.
[18]
Deng W, Liang X, Kubiak P S, Cameron P J. Adv. Energy Mater., 2018,8:1701544.
[19]
Li W, Zhang C, Ma Y, Liu C, Fan J, Mai Y, Schropp R E I . Energy Environ. Sci., 2018,11:286. http://xlink.rsc.org/?DOI=C7EE03113K

doi: 10.1039/C7EE03113K
[20]
张佳维(Zhang J W) . 山东化工(Shandong Chemical Industry), 2018,47:66.
[21]
Correa-Baena J P, Saliba M, Buonassisi T, Gratzel M, Abate A, Tress W, Hagfeldt A . Science, 2017,358:739. https://www.ncbi.nlm.nih.gov/pubmed/29123060

doi: 10.1126/science.aam6323 pmid: 29123060
[22]
Kieslich G, Sun S J, Cheetham A K. Chem. Sci., 2014,5:4712.
[23]
Grancini G, Nazeeruddin M.K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019. 4:4.
[24]
a) Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D, Boyen H G . Adv. Energy Mater., 2015. 5:1500477;

pmid: 27909338
b) Dualeh A, Gao P, Seok S I, Nazeeruddin M K, Grätzel M. Chem. Mater., 2014. 26:6160; https://www.ncbi.nlm.nih.gov/pubmed/27109865

doi: 10.1021/acs.jpcb.6b02165 pmid: 27909338
c) Lee S W, Kim S, Bae S, Cho K, Chung T, Mundt L E, Lee S, Park S, Park H, Schubert M C, Glunz S W, Ko Y, Jun Y, Kang Y, Lee H S, Kim D. Sci. Rep., 2016. 6:38150; https://www.ncbi.nlm.nih.gov/pubmed/27909338

doi: 10.1038/srep38150 pmid: 27909338
d) Niu G, Guo X, Wang L. J. Mater. Chem. A., 2015. 3:8970.

pmid: 27909338
[25]
a) Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L, Cheng Y B . J. Mater. Chem. A, 2015. 3:8139;

pmid: 32260930
b) Leguy A M A, Hu Y, Campoy-Quiles M, Alonso M I, Weber O J, Azarhoosh P, van Schilfgaarde M, Weller M T, Bein T, Nelson J, Docampo P, Barnes P R F. Chem. Mater., 2015. 27:3397; https://www.ncbi.nlm.nih.gov/pubmed/32260930

doi: 10.1039/c3tb20386g pmid: 32260930
c) Zhang L, Sit P H L. J. Phys. Chem. C, 2015,119:22370.

pmid: 32260930
[26]
Soufiani A M, Hameiri Z, Meyer S, Lim S, Tayebjee M J Y, Yun J S, Ho-Baillie A, Conibeer G J, Spiccia L, Green M A . Adv. Energy Mater., 2017,7:1602111.
[27]
Wang D, Wright M, Elumalai N K, Uddin A. Sol. Energy Mater. Sol. Cells, 2016,147:255.
[28]
Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J. Energy Environ. Sci., 2016,9:323.
[29]
Aristidou N, Eames C, Sanchez-Molina I, Bu X N, Kosco J, Islam M S, Haque S A . Nature Communications, 2017,8:15218. https://www.ncbi.nlm.nih.gov/pubmed/28492235

doi: 10.1038/ncomms15218 pmid: 28492235
[30]
Qiu W M, Ray A, Jaysankar M, Merckx T, Bastos J P, Cheyns D, Gehlhaar R, Poortmans J, Heremans P . Adv. Funct. Mater., 2017,27:1700920.
[31]
Saliba M, Matsui T, Seo J Y, Domanski K Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M . Energy Environ. Sci., 2016,9:1989. https://www.ncbi.nlm.nih.gov/pubmed/27478500

doi: 10.1039/c5ee03874j pmid: 27478500
[32]
Li F, Wang H, Kufer D, Liang L L, Yu W L, Alarousu E, Ma C, Li Y Y, Liu Z X, Liu C X, Wei N N, Wang F, Chen L, Mohammed O F, Fratalocchi A, Liu X G, Konstantatos G, Wu T. Adv. Mater., 2017,29:1602432.
[33]
Chen H L, Fu W F, Huang C Y, Zhang Z Q, Li S X, Ding F Z, Shi M M, Li C Z, Jen A K Y, Chen H Z . Adv. Energy Mater., 2017,7:1700012.
[34]
Dong Q, Liu F Z, Wong M K, Tam H W, Djurisic A B, Ng A N, Surya C, Chan W K, Ng A M C . ChemSusChem, 2016,9:2597. https://www.ncbi.nlm.nih.gov/pubmed/27504719

doi: 10.1002/cssc.201600868 pmid: 27504719
[35]
Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T . Nature Communications, 2017,8:13938. https://www.ncbi.nlm.nih.gov/pubmed/28067308

doi: 10.1038/ncomms13938 pmid: 28067308
[36]
Koushik D, Verhees W J H, Kuang Y H, Veenstra S, Zhang D, Verheijen M A, Creatore M, Schropp R E I . Energy Environ. Sci., 2016,10:91.
[37]
Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J . J. Mater. Chem. A, 2017,5:5486.
[38]
Gao P, Cho K T, Abate A, Grancini G, Reddy P Y, Srivasu M, Adachi M, Suzuki A, Tsuchimoto K, Gratzel M, Nazeeruddin M K. Phys. Chem. Chem. Phys., 2016,18:27083. https://www.ncbi.nlm.nih.gov/pubmed/27400647

doi: 10.1039/c6cp03396b pmid: 27400647
[39]
Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park H . Nano Lett., 2017,17:2028. https://www.ncbi.nlm.nih.gov/pubmed/28170276

doi: 10.1021/acs.nanolett.7b00050 pmid: 28170276
[40]
Du M H . J. Mater. Chem. A, 2014,2:9091.
[41]
Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M . Science, 2017,358:768. https://www.ncbi.nlm.nih.gov/pubmed/28971968

doi: 10.1126/science.aam5655 pmid: 28971968
[42]
Zhang J J, Zhang L Y, Li X H, Zhu X Y, Yu J G, Fan K. ACS Sustainable Chem. Eng., 2019,7:3487. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b05734

doi: 10.1021/acssuschemeng.8b05734
[43]
Gao P, Yusoff A B, Nazeeruddin M K . Nature Communications, 2018. 9:5028. https://www.ncbi.nlm.nih.gov/pubmed/30487520

doi: 10.1038/s41467-018-07382-9 pmid: 30487520
[44]
Yang Y, Yang M, Moore D T, Yan Y, Miller E M, Zhu K, Beard M C . Nat. Energy, 2017,2:16207.
[45]
Shao Y, Xiao Z, Bi C, Yuan Y, Huang J . Nat. Commun., 2014,5:5784. https://www.ncbi.nlm.nih.gov/pubmed/25503258

doi: 10.1038/ncomms6784 pmid: 25503258
[46]
Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H . Nat. Commun., 2015,6:7081. https://www.ncbi.nlm.nih.gov/pubmed/25953105

doi: 10.1038/ncomms8081 pmid: 25953105
[47]
Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Energy Environ. Sci., 2014,7:2359.
[48]
De Marco N, Zhou H, Chen Q, Sun P, Liu Z, Meng L, Yao E P, Liu Y, Schiffer A, Yang Y . Nano Lett., 2016,16:1009. https://www.ncbi.nlm.nih.gov/pubmed/26790037

doi: 10.1021/acs.nanolett.5b04060 pmid: 26790037
[49]
Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y . Nano Lett., 2014,14:4158. https://www.ncbi.nlm.nih.gov/pubmed/24960309

doi: 10.1021/nl501838y pmid: 24960309
[50]
Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Gratzel M . Nat. Chem., 2015,7:703. https://www.ncbi.nlm.nih.gov/pubmed/26291941

doi: 10.1038/nchem.2324 pmid: 26291941
[51]
Wang Q, Chen B, Liu Y, Deng Y, Bai Y, Dong Q, Huang J. Energy Environ. Sci., 2017,10:516.
[52]
Ahmad S, Guo X. Chinese Chemical Letters, 2018,29:657.
[53]
Mao L L, Tsai H, Nie W Y, Ma L, Im J, Stoumpos C C, Malliakas C D, Hao F, Wasielewski M R, Mohite A D, Kanatzidis M G. Chem. Mater., 2016,28:7781.
[54]
Abdel-Aal S K, Abdel-Rahman A S . J. Cryst. Growth, 2017,457:282.
[55]
Mercier N, Riou A . Chem. Commun., 2004,33:844.
[56]
Chen J, Lee D, Park N G. ACS Appl. Mater. Interfaces, 2017,9:36338. https://www.ncbi.nlm.nih.gov/pubmed/28952714

doi: 10.1021/acsami.7b07595 pmid: 28952714
[57]
Lin Y, Bai Y, Fang Y J, Chen Z L, Yang S, Zheng X P, Tang S, Liu Y, Zhao J J, Huang J S . J. Phys. Chem. Lett., 2018,9:654. https://www.ncbi.nlm.nih.gov/pubmed/29350044

doi: 10.1021/acs.jpclett.7b02679 pmid: 29350044
[58]
Li C P, Lv X D, Cao J, Tang Y . Chin. J. Chem., 2019,37:30.
[59]
Cho Y Y, Soufiani A M, Yun J S, Kim J C, Lee D S, Seidel J, Deng X F, Green M A, Huang S J, Ho-Baillie A W Y . Adv. Energy Mater., 2018,8:1703392.
[60]
Luo W, Wu C C, Wang D, Zhang Y Q, Zhang Z H, Qi X, Zhu N, Guo X, Qu B, Xiao L X, Chen Z J. ACS Appl. Mater. Interfaces, 2019. 11:9149. https://www.ncbi.nlm.nih.gov/pubmed/30715841

doi: 10.1021/acsami.8b22040 pmid: 30715841
[61]
Zhou Q, Liang L S, Hu J J, Cao B B, Yang L K, Wu T J, Li X, Zhang B, Gao P. Adv. Energy Mater., 2019,9:1802595.
[62]
Zhang H, Nazeeruddin M K, Choy W C H . Adv. Mater., 2019,31:1805702.
[63]
Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G . Nat. Energy, 2016,1:15016.
[64]
Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z. Adv. Mater., 2018,30:1706576.
[65]
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N. Adv. Mater., 2016,28:9986. https://www.ncbi.nlm.nih.gov/pubmed/27677653

doi: 10.1002/adma.201603062 pmid: 27677653
[66]
Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T . ChemSusChem, 2017,10:2473. https://www.ncbi.nlm.nih.gov/pubmed/28371487

doi: 10.1002/cssc.201700271 pmid: 28371487
[67]
Kim M, Motti S G, Sorrentino R, Petrozza A. Energy Envir. Sci., 2018,11:2609.
[68]
Abdelmageed G, Sully H R, Naghadeh S B Ali A E H, Carter S A, Zhang J Z . ACS Appl. Energy Mater., 2018,1:387. https://pubs.acs.org/doi/10.1021/acsaem.7b00069

doi: 10.1021/acsaem.7b00069
[69]
Zhang C C, Li M, Wang Z K, Jiang Y R, Liu H R, Yang Y G, Gao X Y, Ma H . Mater. Chem. A, 2017,5:2572. http://xlink.rsc.org/?DOI=C6TA08970D

doi: 10.1039/C6TA08970D
[70]
Wu W Q, Yang Z B, Rudd P N, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J S. Sci. Adv., 2019. 5:eaav8925. https://www.ncbi.nlm.nih.gov/pubmed/30873433

doi: 10.1126/sciadv.aav8925 pmid: 30873433
[71]
Lin C T, De Rossi F, Kim J, Baker J, Ngiam J, Xu B, Pont S, Aristidou N, Haque S A, Watson T, McLachlan M A, Durrant J R. J. Mater. Chem. A, 2019,7:3006.
[72]
Qin P L, Yang G, Ren Z W, Cheung S H, So S K, Chen L, Hao J H, Hou J H, Li G. Adv. Mater., 2018,30:1706126.
[73]
Li X, Chen C C, Cai M L, Hua X, Xie F X, Liu X, Hua J L, Long Y T, Tian H, Han L Y. Adv. Energy Mater., 2018,8:1800715.
[74]
Zhang W W, Lei X L, Liu J H, Dong J, Yan X W, Gao W, Dong H, Ran C X, Wu Z X . Phys. Status Solidi (RRL), 2019,13:1800505.
[75]
Zhao S H, Xie J S, Cheng G H, Xiang Y R, Zhu H Y, Guo W Y, Wang H, Qin M C, Lu X H, Qu J L, Wang J N, Xu J B, Yan K Y . Small, 2018,14:1803350.
[76]
Dequilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S. ACS Energy Lett., 2016,1:438. https://pubs.acs.org/doi/10.1021/acsenergylett.6b00236

doi: 10.1021/acsenergylett.6b00236
[77]
Zhang H, Wu Y Z, Shen C, Li E P, Yan C X, Zhang W W, Tian H, Han L Y, Zhu W H. Adv. Energy Mater., 2019: 1803573.
[78]
You S, Wang H, Bi S Q, Zhou J Y, Qin L, Qiu X H, Zhao Z Q, Xu Y, Zhang Y, Shi X H, Zhou H Q, Tang Z Y. Adv. Mater., 2018,30:1706924.
[79]
Ono L K, Qi Y B . J. Phys. Chem. Lett., 2016,7:4764. https://www.ncbi.nlm.nih.gov/pubmed/27791377

doi: 10.1021/acs.jpclett.6b01951 pmid: 27791377
[80]
She L M, Liu M Z, Zhong D Y . ACS Nano, 2015,10:1126. https://www.ncbi.nlm.nih.gov/pubmed/26643387

doi: 10.1021/acsnano.5b06420 pmid: 26643387
[81]
Ohmann R, Ono L K, Kim H S, Lin H P, Lee M V, Li Y Y, Park N G, Qi Y B . J. Am. Chem. Soc., 2015,137:16049. https://www.ncbi.nlm.nih.gov/pubmed/26639900

doi: 10.1021/jacs.5b08227 pmid: 26639900
[82]
Baumann A, Vath S, Rieder P, Heiber M C, Tvingstedt K, Dyakonov V . J. Phys. Chem. Lett., 2015,6, 2350. https://www.ncbi.nlm.nih.gov/pubmed/26266616

doi: 10.1021/acs.jpclett.5b00953 pmid: 26266616
[83]
Heo S, Seo G, Lee Y, Lee D, Seol M, Lee J, Park J B, Kim K, Yun D J, Kim Y S, Shin J K, Ahn T K, Nazeeruddin M K. Energy Environ. Sci., 2017,10:1128.
[84]
Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S . Chem. Soc. Rev., 2019,48:3842. https://www.ncbi.nlm.nih.gov/pubmed/31187791

doi: 10.1039/c8cs00853a pmid: 31187791
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[6] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[7] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[8] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[11] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[12] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[13] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[14] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[15] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.