中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 966-977 DOI: 10.7536/PC191102 Previous Articles   Next Articles

• Review •

Energy Band Regulation in 2D Perovskite Solar Cells

Yi Zhou1, Jingjing Hu1, Fanning Meng1, Caiyun Liu1, Liguo Gao1,**(), Tingli Ma2,3,**()   

  1. 1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
    2. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
    3. Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
  • Received: Online: Published:
  • Contact: Liguo Gao, Tingli Ma
  • About author:
    ** e-mail: (Liguo Gao);
  • Supported by:
    National Natural Science Foundation of China(21703027); National Natural Science Foundation of China(51772039); National Natural Science Foundation of China(201903010); National Natural Science Foundation of China(51972293)
Richhtml ( 96 ) PDF ( 1434 ) Cited
Export

EndNote

Ris

BibTeX

Perovskite solar cells(PSCs) have achieved more than 25% efficiency in just a decade, which are of great commercial value. This is because the three-dimensional(3D) perovskite(PVK) layer has many advantages, such as suitable bandgap, high absorption coefficient and long electron diffusion length. However, unstability is still an urgent problem to be solved in 3D PSCs. Comparing with 3D perovskite materials, 2D perovskite crystals have recently attracted increasing attention due to some unique properties for improving stability. The hydrophobic bulky alkylammonium cations in 2D perovskite lattices can block the accessible pathways of moisture invasion, making them promising candidates for optoelectronic devices. Meanwhile, due to the tolerance of 2D perovskite to organic and inorganic elements, its chemical composition and energy band also change. This review highlights the importance of energy bands in 2D PSCs and summarizes bandgap regulation and energy level alignment(ELA) of 2D perovskite, which plays an important role in guiding the preparation of high-efficiency and stable low-dimensional perovskite solar cells.

Contents

1 Introduction

2 Structure of 2D PVK

3 Regulations to bandgap of 2D PVK

3.1 Changes in ‘n’

3.2 Component engineering

3.3 Preparation process

4 Regulations of energy level

4.1 Energy level regulations of 2D PVK

4.2 ELA between 2D PVK and charge-transport layer

4.3 3D PVK surface passivation by 2D PVK

5 Conclusion and outlook

Fig.1 Principle of perovskite solar cells and band energy information for several usual charge-transport materials [6,7,8,9]
Fig.2 Schematic diagrams of two-dimension perovskite cutting along <100>, <110>, and <111>[25]. Copyright 2019, John Wiley and Sons.
Fig.3 Schematic diagram of two-dimensional layered structure of Ruddlesden-Popper and Dion-Jacobson phase perovskite
Fig.4 A plot of bandgap as function of the V oc. The line is 90% of the maximum V oc at the Shoreley-Quezer limit[24,37,42,52~61]
Table 1 2D perovskite band information and performance parameters of solar cells
Amino PVK n value CB
(eV)
VB
(eV)
Bandgap
(eV)
V oc
(eV)
J SC
(eV)
FF
(%)
PCE
(%)
ref
BA BA2MA n -1Pb n I3 n +1 1 2.31 4.55 2.24 0.58 0.06 29 0.01 62
2 2.89 4.88 1.99 0.80 1.50 33 0.39
3 3.53 5.38 1.85 0.93 9.42 46 4.02
4 3.87 5.43 1.56 0.87 9.08 30 2.39
3 3.61 5.57 1.96 1.05 11.23 68 7.99 85
3.74 5.70 1.96 1.23 13.61 72 12.07
3 4.08 5.90 1.82 0.93 3.16 43 1.26 86
3.88 5.70 1.82 0.97 12.79 55 6.82
BA2MA n -1Sn n I3 n +1 4 4.10 5.80 1.70 1.11 17.50 73 14.28 59
3 3.21 4.76 1.55 0.38 8.9 57 1.94 78
4 3.29 4.76 1.47 0.23 24.1 45 2.53
BA2Cs n -1Pb n I3 n +1 3 3.20 5.40 2.20 0.96 8.88 57 4.84 74
BDA BDAMAnPbnI3n+1 1 3.37 5.12 1.75 49
2 3.72 5.40 1.68
3 3.80 5.44 1.64
4 3.87 5.49 1.62
5 3.92 5.52 1.60 1.04 20.01 79 16.38
BEA BEA0.5MA n Pb n I3 n +1 1 3.21 5.24 2.03 53
2 3.57 5.37 1.80
3 3.85 5.45 1.60 1.06 20.62 68 14.86
CMA CMA2MA n Pb n I3 n +1 2 3.54 5.67 2.13 54
9 4.21 5.82 1.61 1.10 19.04 72 15.05
DAT DATMA n -1Pb n I3 n +1 3 3.59 5.36 1.77 1.01 2.17 44 0.97 87
GA GAPbI3 - 3.70 6.20 2.50 0.65 0.40 63 0.16 71
GA2PbI4 3.46 5.96 2.50 0.64 1.28 55 0.45
GAMA n Pb n I3 n +1 4 3.90 5.50 1.60 0.92 17.71 80 13.13 88
HA HAMA n -1Pb n I3 n +1 1 3.52 5.89 2.37 0.53 2.65 36 0.50 70
2 4.02 6.00 1.98 0.64 6.93 63 2.79
3 3.65 5.61 1.96 0.72 13.61 60 5.90
4 3.86 5.65 1.79 0.73 8.04 66 3.86
IC2H4NH3 (IC2H4NH3)2MA n -1Pb n I3 n +1 - 3.70 5.72 2.02 0.80 7.28 67 3.93 84
3.71 5.70 1.99 0.83 8.76 71 5.15
3.72 5.70 1.98 0.85 12.31 66 6.96
4.08 5.71 1.63 0.89 14.33 63 8.00
4.08 5.70 1.62 0.84 11.51 70 6.77
PA PA2MA n -1Pb n I3 n +1 5 3.75 5.42 1.67 1.13 18.89 49 10.41 58
PDA PDAMA n -1Pb n I3 n +1 4 4.00 5.65 1.65 0.98 19.50 69 13.30 24
PEI PEI2MA n -1Pb n I3 n +1 3 3.57 5.52 1.95 1.21 6.63 53 4.23 41
5 3.64 5.44 1.80 1.16 10.22 59 6.98
7 3.69 5.39 1.70 1.10 13.13 65 9.39
PEA PEA2MA n -1Pb n I3 n +1 3 3.17 5.27 2.10 73
5 3.55 5.27 1.72
10 3.57 5.27 1.70
40 3.71 5.23 1.52
1 2.37 4.73 2.36 0.71 0.48 44 0.15 72
2 3.25 5.37 2.12 0.77 2.38 65 1.19
3 3.59 5.53 1.94 0.76 4.48 48 1.62
5 3.65 5.30 1.65 1.11 15.01 67 11.01 56
2 3.58 5.72 2.14 89
10 4.19 5.84 1.65
PEA2MA n -1Pb n I3 n +1 5 3.60 5.22 1.63 1.18 15.40 74 13.2 90
F-PEA2MA n -1Pb n I3 n +1 5 4.13 5.72 1.59 1.06 18.00 76 14.3
MeO-PEA2MA n -1Pb n I3 n +1 5 3.42 5.02 1.60 1.10 12.10 71 9.4
PEA2MA n -1Pb n Br3 n +1 3 3.11 5.49 2.38 91
5 3.42 5.77 2.35
PEA2MA n -1Pb n (I x Cl1- x )3 n +1 6(I:Cl=12:7) 4.40 6.01 1.61 0.99 13.38 70.23 9.32 92
6(I:Cl=19:0) 4.32 5.92 1.60 0.93 10.58 66.36 6.52
6(I:Cl=14:5) 4.18 5.78 1.60 1.01 14.37 74.68 10.94
6(I:Cl=17:2) 4.34 5.91 1.57 0.95 18.18 73.66 12.78
PEA2FA n -1Pb n I3 n +1 1 2.40 4.73 2.33 0.77 20.21 62 9.68 77
2 3.37 5.37 2.00 0.79 20.32 61 9.81
3 3.74 5.53 1.79 0.826 21.19 66 11.46
PEA2FA n -1Sn n I3 n +1 - 3.50 4.90 1.40 0.47 20.07 74 6.98 79
FA x PEA1- x PbI3 - 4.20 5.70 1.50 1.04 22.08 77 17.71 52
PeDA PeDAMA n -1Pb n I3 n +1 1 2.28 4.30 2.02 49
2 2.62 4.60 1.98
3 3.15 4.98 1.83
4 3.28 5.04 1.76
5 3.64 5.29 1.65 1.10 15.28 77 12.95
PMA PMA2CuBr4 - 3.86 5.67 1.81 0.68 0.73 0.41 0.2 93
POPA (pyrene-O-propyl-NH3)2PbI4 1 2.30 4.60 2.30 1.04 2.81 47 1.38 65
ThMA ThMA2MA n -1Pb n I3 n +1 3 3.95 5.54 1.59 1.07 18.89 76 15.42 42
BdA BdAPbI4 1 2.96 5.33 2.37 0.87 2.89 43 1.08 64
HdA HdAPbI4 1 3.12 5.56 2.44 0.73 1.74 47 0.59
OdA OdAPbI4 1 2.93 5.36 2.43 0.73 0.05 47 0.01
Fig.5 Optical properties of BA-based 2D perovskite (a) absorption spectra and (b) photoluminescence spectra.Copyright 2015,American Chemical Society[62]
Fig.6 Schematic diagram of immersion-method for 2D perovskite film.[84] Copyright 2016, John Wiley and Sons.
Fig.7 (a) Schematics of 3D perovskite film with 2D perovskite at grain boundaries and band structure of each layer in device[98] under a CC-BY 4.0 license(creativecommons.org/licenses/by/4.0/);(b) Energy band alignment of BA2MA2Pb3I10-based perovskite film with and without NH4SCN;(c) Molecular structure of organic spacer cations: PEA, F-PEA and MeO-PEA and its energy band information[90]. Copyright 2017, John Wiley and Sons.
Fig.8 (a) Device structure of 2D perovskite as interface modification;(b) Schematic diagram of energy level alignment of perovskite and PCBM interface and (c) thermal degradation mechanism of 2D perovskite as interface modified device[30]. Copyright 2017,WILEY-VCH.
[1]
Kojima A , Teshima K , Shirai Y , Miyasaka T . J. Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

pmid: 19366264
[2]
[2019-11-29]. https://www.nrel.gov/pv/cell-efficiency.html. https://www.nrel.gov/pv/cell-efficiency.html
[3]
Snaith H J . J. Phys. Chem. Lett., 2013,4:3623.
[4]
D’Innocenzo V , Grancini G , Alcocer M J P , Kandada A R S , Stranks S D , Lee M M , Lanzani G , Snaith H J , Petrozza A . Nat. Commun., 2014,5:3586. https://www.ncbi.nlm.nih.gov/pubmed/24710005

pmid: 24710005
[5]
Rong Y , Hu Y , Mei A , Tan H , Saidaminov M I , Seok S I , McGehee M D , Sargent E H , Han H . Science, 2018,361:8235.
[6]
Fakharuddin A , De R F , Watson T M , Schmidt-Mende L , Jose R . APL Mater., 2016,4:091505.
[7]
Zhao E , Gao L , Yang S , Wang L , Cao J , Ma T . Nano Res., 2018,11:5913.
[8]
Yang S , Guo Z , Gao L , Yu F , Zhang C , Fan M , Wei G , Ma T . Sol. RRL, 2019,3:1900212.
[9]
Meng F , Gao L , Yan Y , Cao J , Wang N , Wang T , Ma T . Carbon, 2019,145:290.
[10]
Rakstys K , Igci C , Nazeeruddin M K . Chem. Sci., 2019,10:6748. doi: 10.1039/c9sc01184f https://www.ncbi.nlm.nih.gov/pubmed/31391896

pmid: 31391896
[11]
Huang J , Tan S , Lund P D , Zhou H . Energy Environ. Sci., 2017,10:2284.
[12]
Ava T T , Al Mamun A , Marsillac S , Namkoong G . Appl. Sci., 2019,9:188.
[13]
Zhang F , Bi D , Pellet N , Xiao C , Li Z , Berry J J , Zakeeruddin S M , Zhu K , Grätzel M . Energy Environ. Sci., 2018,11:3480.
[14]
Zhang F , Shi W D , Luo J S , Pellet N , Yi C Y , Li X , Zhao X M , Dennis T J S , Li X G , Wang S R , Xiao Y , Zakeeruddin S M , Bi D Q , Grätzel M . Adv. Mater., 2017,29:7.
[15]
Meng F N , Liu A M , Gao L G , Cao J M , Yan Y L , Wang N , Fan M Q , Wei G Y , Ma T L . J. Mater. Chem. A, 2019,7:8690.
[16]
Smith I C , Hoke E T , Solis-Ibarra D , McGehee M D , Karunadasa H I . Angew. Chem. -Int. Edit., 2014,53:11232.
[17]
Saliba M , Matsui T , Seo J Y , Domanski K , Cor-rea-Baena J P , Nazeeruddin M K , Zakeeruddin S M , Tress W , Abate A , Hagfeldt A , Grätzel M . Energy Environ. Sci., 2016,9:1989. doi: 10.1039/c5ee03874j https://www.ncbi.nlm.nih.gov/pubmed/27478500

pmid: 27478500
[18]
Shen H , Duong T , Peng J , Jacobs D , Wu N , Gong J , Wu Y , Karuturi S K , Fu X , Weber K , Xiao X , White T P , Catchpolea K . Energy Environ. Sci., 2018,11:394.
[19]
Bush K A , Palmstrom A F , Yu Z J , Boccard M , Cheacharoen R , Mailoa J P , McMeekin D P , Hoye R L Z , Bailie C D , Leijtens T , Ian M P , Maxmillian C M , Nicholas R , Rohit P , Sarah S , Duncan H , Wen M , Farhad M , Henry J S , Tonio B , Zachary C H , Stacey F B , Michael D M . Nat. Energy, 2017,2:17009.
[20]
Bailie C D , McGehee M D . MRS Bull., 2015,40:681.
[21]
Jiang Q , Zhao Y , Zhang X , Yang X , Chen Y , Chu Z , Ye Q , Li X , Yin Z , You J . Nat. Photonics, 2019,13:460. doi: 10.1038/s41566-019-0398-2 https://doi.org/10.1038/s41566-019-0398-2
[22]
Gao L , Zhang F , Xiao C , Chen X , Larson B W , Berry J J , Zhu K . Adv. Funct. Mater., 2019 29:1901652. doi: 10.1002/adfm.v29.47 https://onlinelibrary.wiley.com/toc/16163028/29/47
[23]
Tsai H H , Nie W Y , Blancon J C , Toumpos C C S , Asadpour R , Harutyunyan B , Neukirch A J , Verduzco R , Crochet J J , Tretiak S , Pedesseau L , Even J , Alam M A , Gupta G , Lou J , Ajayan P M , Bedzyk M J , Kanatzidis M G , Mohite A D . Nature, 2016,536:312. https://www.ncbi.nlm.nih.gov/pubmed/27383783

pmid: 27383783
[24]
Yang R , Li R , Cao Y , Wei Y , Miao Y , Tan W L , Jiao X , Chen H , Zhang L , Chen Q , Zhang H , Zou W , Wang Y , Yang M , Yi C , Wang N , Gao F , McNeill C R , Qin T , Wang J , Huang W . Adv. Mater., 2018 30:1804771. doi: 10.1002/adma.v30.51 http://doi.wiley.com/10.1002/adma.v30.51
[25]
Ortiz-Cervantes C , Carmona-Monroy P , Solis-Ibarra D . ChemSusChem, 2019,12:1560. doi: 10.1002/cssc.201802992 https://www.ncbi.nlm.nih.gov/pubmed/30699237

pmid: 30699237
[26]
Saparov B , Mitzi D B . Chem. Rev., 2016,116:4558. doi: 10.1021/acs.chemrev.5b00715 https://www.ncbi.nlm.nih.gov/pubmed/27040120

pmid: 27040120
[27]
Etgar L . Energy Environ. Sci., 2018,11:234. doi: 10.1039/C7EE03397D http://xlink.rsc.org/?DOI=C7EE03397D
[28]
Grancini G , Nazeeruddin M K . Nat. Rev. Mater., 2019,4:4.
[29]
Lin Y , Bai Y , Fang Y J , Chen Z L , Yang S , Zheng X P , Tang S , Liu Y , Zhao J J , Huang J . S. J. Phys. Chem. Lett., 2018,9:654.
[30]
Bai Y , Xiao S , Hu C , Zhang T , Meng X , Lin H , Yang Y , Yang S . Adv. Energy Mater., 2017,7:1701038.
[31]
Ali N , Wang X , Rauf S , Attique S , Khesro A , Ali S , Mushtaq N , Xiao H , Yang C P , Wu H . Sol. Energy, 2019,189:325.
[32]
Kim H , Lee S U , Lee D Y , Paik M J , Na H , Lee J , Seok S I . Adv. Energy Mater., 2019,9:1902740.
[33]
Lin Y , Bai Y , Fang Y , Wang Q , Deng Y , Huang J . ACS Energy Lett., 2017,2:1571.
[34]
Kim H , Huynh K A , Kim S Y , Le Q V , Jang H W . Phys. Status Solidi RRL, 2019,14:1900435.
[35]
Gao L , Zhang F , Chen X , Xiao C , Larson B W , Dunfield S P , Berry J J , Zhu K . Angew. Chem. Int. Ed., 2019,58:11737.
[36]
Zhou N , Shen Y H , Li L , Tan S Q , Liu N Zheng G H J , Chen Q , Zhou H P . J. Am. Chem. Soc., 2018 140:459. doi: 10.1021/jacs.7b11157 https://www.ncbi.nlm.nih.gov/pubmed/29243924

pmid: 29243924
[37]
Zhang X , Ren X D , Liu B , Munir R , Zhu X J , Yang D , Li J B , Liu Y C , Smilgies D M , Li R P , Yang Z , Niu T Q , Wang X L , Amassian A , Zhao K , Liu S Z . Energy Environ. Sci., 2017,10:2095.
[38]
Quan L N , Yuan M , Comin R , Voznyy O , Beaure-gard E M , Hoogland S , Buin A , Kirmani A R , Zhao K , Amassian A , Kim D H , Sargent E H . J. Am. Chem. Soc., 2016,138:2649. doi: 10.1021/jacs.5b11740 https://www.ncbi.nlm.nih.gov/pubmed/26841130

pmid: 26841130
[39]
Ma C , Leng C , Ji Y , Wei X , Sun K , Tang L , Yang J , Luo W , Li C , Deng Y , Feng S , Shen J , Lu S , Du C , Shi H . Nanoscale, 2016,8:18309. doi: 10.1039/c6nr04741f https://www.ncbi.nlm.nih.gov/pubmed/27714126

pmid: 27714126
[40]
Grancini G , Roldan-Carmona C , Zimmermann I , Mos-coni E , Lee X , Martineau D , Narbey S , Oswald F , De An-gelis F , Graetzel M , Nazeeruddin M K . Nat. Commun., 2017,8:15684. https://www.ncbi.nlm.nih.gov/pubmed/28569749

pmid: 28569749
[41]
Yao K , Wang X , Xu Y , Li F , Zhou L . Chem. Mater., 2016,28:3131.
[42]
Lai H , Kan B , Liu T , Zheng N , Xie Z , Zhou T , Wan X , Zhang X , Liu Y , Chen Y . J. Am. Chem. Soc., 2018,140:11639. doi: 10.1021/jacs.8b04604 https://www.ncbi.nlm.nih.gov/pubmed/30157626

pmid: 30157626
[43]
Mao L , Ke W , Pedesseau L , Wu Y , Katan C , Even J , Wasielewski M R , Stoumpos C C , Kanatzidis M G . J. Am. Chem. Soc., 2018,140:3775. https://www.ncbi.nlm.nih.gov/pubmed/29465246

pmid: 29465246
[44]
Li X , Ke W , Traore B , Guo P , Hadar I , Kepenekian M , Even J , Katan C , Stoumpos C C , Schaller R D , Kanatzidis M G . J. Am. Chem. Soc., 2019,141:12880. https://www.ncbi.nlm.nih.gov/pubmed/31313919

pmid: 31313919
[45]
Chen M , Ju M G , Hu M , Dai Z , Hu Y , Rong Y , Han H , Zeng X C , Zhou Y , Padture N P . ACS Energy Lett., 2018,4:276.
[46]
Ahmad S , Fu P , Yu S , Yang Q , Liu X , Wang X , Wang X , Guo X , Li C . Joule, 2019,3:794.
[47]
Li Y , Milic J V , Ummadisingu A , Seo J Y , Im J H , Kim H S , Liu Y , Dar M I , Zakeeruddin S M , Wang P , Hagfeldt A , Grätzel M . Nano Lett., 2019,19:150. doi: 10.1021/acs.nanolett.8b03552 https://www.ncbi.nlm.nih.gov/pubmed/30540195

pmid: 30540195
[48]
Ke W , Mao L , Stoumpos C C , Hoffman J , Spanopoulos I , Mohite A D , Kanatzidis M G . Adv. Energy Mater., 2019,9:1803384.
[49]
Zheng Y , Niu T , Qiu J , Chao L , Li B , Yang Y , Li Q , Lin C , Gao X , Zhang C , Xia Y , Chen Y , Huang W . Sol. RRL, 2019,3:1900090.
[50]
Huang P , Kazim S , Wang M , Ahmad S . ACS Energy Lett., 2019,4:2960.
[51]
Wang Z , Song Z , Yan Y , Liu S , Yang D . Adv. Sci., 2019,6:1801704.
[52]
Li N , Zhu Z , Chueh C C , Liu H , Peng B , Petrone A , Li X , Wang L , Jen A K Y . Adv. Energy Mater., 2017,7:1601307.
[53]
Li P , Liang C , Liu X L , Li F , Zhang Y , Liu X T , Gu H , Hu X , Xing G , Tao X , Song Y . Adv Mater., 2019,31:1901966. doi: 10.1002/adma.v31.35 https://onlinelibrary.wiley.com/toc/15214095/31/35
[54]
Wei Y , Chu H , Tian Y , Chen B , Wu K , Wang J , Yang X , Cai B , Zhang Y , Zhao J . Adv. Energy Mater., 2019,9:1900612.
[55]
Ma C , Shen D , Ng T W , Lo M F , Lee C S . Adv. Mater., 2018,30:1800710.
[56]
Zhang X , Wu G , Fu W , Qin M , Yang W , Yan J , Zhang Z , Lu X , Chen H . Adv. Energy Mater., 2018,8:1702498.
[57]
Fu W , Wang J , Zuo L , Gao K , Liu F , Ginger D S , Jen A K Y . ACS Energy Lett., 2018,3:2086.
[58]
Cheng P , Xu Z , Li J , Liu Y , Fan Y , Yu L , Smilgies D M , Mueller C , Zhao K , Liu S F . ACS Energy Lett., 2018,3:1975.
[59]
Wu G , Zhou J , Zhang J , Meng R , Wang B , Xue B , Leng X , Zhang D , Zhang X , Bi S , Zhou Q , Wei Z , Zhou H , Zhang Y . Nano Energy, 2019,58:706.
[60]
Wang Z , Lin Q , Chmiel F P , Sakai N , Herz L M , Snaith H J . Nat. Energy, 2017,2:17135.
[61]
Rajagopal A , Stoddard R J , Jo S B , Hillhouse H W , Jen A K . Nano Lett., 2018,18:3985. doi: 10.1021/acs.nanolett.8b01480 https://www.ncbi.nlm.nih.gov/pubmed/29733214

pmid: 29733214
[62]
Cao D H , Stoumpos C C , Farha O K , Hupp J T , Kanatzidis M G . J. Am. Chem. Soc., 2015,137:7843.
[63]
Mao L , Tsai H , Nie W , Ma L , Im J , Stoumpos C C , Malliakas C D , Hao F , Wasielewski M R , Mohite A D , Kanatzidis M G . Chem. Mater., 2016,28:7781.
[64]
Safdari M , Svensson P H , Hoang M T , Oh I , Kloo L , Gardner J M . J. Mater. Chem. A, 2016,4:15638.
[65]
Passarelli J V , Fairfield D J , Sather N A , Hendricks M P , Sai H , Stern C L , Stupp S I . J. Am. Chem. Soc., 2018,140:7313. doi: 10.1021/jacs.8b03659 https://www.ncbi.nlm.nih.gov/pubmed/29869499

pmid: 29869499
[66]
Li X , Guo P , Kepenekian M , Hadar I , Katan C , Even J , Stoumpos C C , Schaller R D , Kanatzidis M G . Chem. Mater., 2019,31:3582.
[67]
Cho K T , Paek S , Grancini G , Roldán-Carmona C , Gao P , Lee Y , Nazeeruddin M K . Energy Environ. Sci., 2017,10:621.
[68]
Eperon G E , Stranks S D , Menelaou C , Johnston M B , Herz L M , Snaith H J . Energy Environ. Sci., 2014,7:982.
[69]
Noh J H , Im S H , Heo J H , Mandal T N , Seok S I . Nano Lett., 2013,13:1764. doi: 10.1021/nl400349b https://www.ncbi.nlm.nih.gov/pubmed/23517331

pmid: 23517331
[70]
Jung M H . J. Mater. Chem. A, 2019,7:14689.
[71]
Kulkarni S A , Baikie T , Muduli S , Potter R , Chen S , Yanan F , Bishop P , Lim S S , Sum T C , Mathews N , White T . J. Jpn. J. Appl. Phys., 2017, 56: 08MC05.
[72]
Gan X , Wang O , Liu K , Du X , Guo L , Liu H . Sol. Energy Mater. Sol. Cells, 2017,162:93.
[73]
Yuan M , Li Na Q , Comin R , Walters G , Sabatini R , Voznyy O , Hoogland S , Zhao Y , Beauregard E M , Kanjanaboos P , Lu Z , Kim D H , Sargent E H . Nat. Nanotechnol., 2016,11:872. https://www.ncbi.nlm.nih.gov/pubmed/27347835

pmid: 27347835
[74]
Liao J F , Rao H S , Chen B X , Kuang D B , Su C Y J . Mater. Chem. A, 2017,5:2066.
[75]
Zhou Y , Yang M , Pang S , Zhu K , Padture N P . J. Am. Chem. Soc., 2016,138:5535. doi: 10.1021/jacs.6b02787 https://www.ncbi.nlm.nih.gov/pubmed/27088448

pmid: 27088448
[76]
Yan J , Fu W , Zhang X , Chen J , Yang W , Qiu W , Wu G , Liu F , Heremans P , Chen H . Mater. Chem. Front., 2018,2:121.
[77]
Ke L , Gan X , Zhao W , Guo L , Liu H . J. Alloys Compd., 2019,788:954.
[78]
Cao D H , Stoumpos C C , Yokoyama T , Logsdon J L , Song T B , Farha O K , Wasielewski M R , Hupp J T , Kanatzidis M G . ACS Energy Lett., 2017,2:982.
[79]
Ran C , Xi J , Gao W , Yuan F , Lei T , Jiao B , Hou X , Wu Z . ACS Energy Lett., 2018,3:713.
[80]
Bat-El C , Wierzbowska M , Etgar L . Adv. Funct. Mater., 2017,27:1604733.
[81]
Chen Y , Sun Y , Peng J , Zhang W , Su X , Zheng K , Pullerits T , Liang Z . Adv. Energy Mater., 2017,7:1700162.
[82]
Zheng Y C , Yang S , Chen X , Chen Y , Hou Y , Yang H G . Chem. Mater., 2015,27:5116.
[83]
Wang S , Ma J , Li W , Wang J , Wang H , Shen H , Li J , Wang J , Luo H , Li D . J. Phys. Chem. Lett., 2019,10:2546. doi: 10.1021/acs.jpclett.9b01011 https://www.ncbi.nlm.nih.gov/pubmed/31050442

pmid: 31050442
[84]
Koh T M , Shanmugam V , Schlipf J , Oesinghaus L , Muller-Buschbaum P , Ramakrishnan N , Swamy V , Mathews N , Boix P P , Mhaisalkar S G . Adv. Mater., 2016,28:3653. doi: 10.1002/adma.201506141 https://www.ncbi.nlm.nih.gov/pubmed/26990287

pmid: 26990287
[85]
Chen J , Lian X , Zhang Y , Yang W , Li J , Qin M , Lu X , Wu G , Chen H . J. Mater. Chem. A, 2018,6:18010.
[86]
Zhang X , Wu G , Yang S , Fu W , Zhang Z , Chen C , Liu W , Yan J , Yang W , Chen H . Small, 2017,13:1700611.
[87]
Yao Z , Zhou Y , Yin X , Li X , Han J , Tai M , Zhou Y , Li J , Hao F , Lin H . CrystEngComm, 2018,20:6704.
[88]
Zhang Y , Chen J , Lian X , Qin M , Li J , Andersen T R , Lu X , Wu G , Li H , Chen H . Small Methods, 2019,3:1900375.
[89]
Qing J , Liu X K , Li M , Liu F , Yuan Z , Tiukalova E , Yan Z , Duchamp M , Chen S , Wang Y , Bai S , Liu J , Snaith H J , Lee C , Sum T , Gao F . Adv. Energy Mater., 2018,8:1800185.
[90]
Fu W , Liu H , Shi X , Zuo L , Li X , Jen A K Y . Adv. Funct. Mater., 2019,29:1900221.
[91]
Quan L N , Zhao Y , de Arquer F P G , Sabatini R , Walters G , Voznyy O , Comin R , Li Y , Fan J Z , Tan H , Pan J , Yuan M , Bakr O M , Lu Z , K D , Sargent E H . Nano Lett., 2017,17:3701. https://www.ncbi.nlm.nih.gov/pubmed/28475344

pmid: 28475344
[92]
Chen H , Xia Y , Wu B , Liu F , Niu T , Chao L , Xing G , Sum T , Chen Y , Huang W . Nano Energy, 2019,56:373.
[93]
Li X , Li B , Chang J , Ding B , Zheng S , Wu Y , Yang J , Yang G , Zhong X , Wang J . ACS Appl. Energy Mater., 2018,1:2709.
[94]
Wang S , Sakurai T , Wen W , Qi Y . Adv. Mater. Interfaces, 2018,5:1800260.
[95]
Stolterfoht M , Caprioglio P , Wolff C M , Márquez J A , Nordmann J , Zhang S , Rothhardt D , Hörmann U , Amir Y , Redinger A , Kegelmann L , Zu F , Albrecht S , Koch N , Kirchartz T , Saliba M , Unold T , Neher D . Energy Environ. Sci., 2019,12:2778.
[96]
Zhang F , Zhu K . Adv. Energy Mater., 2019,10:1902579.
[97]
Yao D , Zhang C , Zhang S , Yang Y , Du A , Waclawik E , Yu X , Wilson G J , Wang H . ACS Appl. Mater. Interfaces, 2019,11:29753 doi: 10.1021/acsami.9b06305 https://www.ncbi.nlm.nih.gov/pubmed/31135124

pmid: 31135124
[98]
Lee J W , Dai Z , Han T H , Choi C , Chang S Y , Lee S J , De Marco N , Zhao H , Sun P , Huang Y , Yang Y . Nat. Commun., 2018,9:3021. doi: 10.1038/s41467-018-05454-4 https://www.ncbi.nlm.nih.gov/pubmed/30069012

pmid: 30069012
[99]
Zhang F , Kim D H , Lu H , Park J S , Larson B W , Hu J , Gao L , Xiao C , Reid O G , Chen X , Zhao Q , Ndione, P F , Berry J J , You W , Walsh A , Beard M C , Zhu K . J. Am. Chem. Soc., 2019,141:5972. https://www.ncbi.nlm.nih.gov/pubmed/30882210

pmid: 30882210
[100]
Lian X , Chen J , Zhang Y , Tian S , Qin M , Li J , Andersen T R , Wu G , Lu X , Chen H . J. Mater. Chem. A, 2019,7:18980.
[101]
Liu B , Long M , Cai M , Ding L , Yang J . Nano Energy, 2019,59:715.
[102]
Gharibzadeh S , Nejand B A , Jakoby M , Abzieher T , Hauschild D , Moghadamzadeh S , Schwenzer J A , Brenner P , Schmager R , Haghighirad A A , Weinhardt L , Lemmer U , Richards B S , Howard I A , Paetzold U W . Adv. Energy Mater., 2019,9:1803699.
[103]
Yuan J , Jiang Y , He T , Shi G , Fan Z , Yuan M . Sci. China: Chem., 2019,62:629.
[104]
Wei F , Jiao B , Dong H , Xu J , Lei T , Zhang J , Yu Y , Ma L , Wang D , Chen J , Hou X , Wu Z . J. Mater. Chem. A, 2019,7:16533.
[105]
Chen J , Seo J Y , Park N G . Adv. Energy Mater., 2018,8:1702714.
[106]
Huang X , Bi W , Jia P , Tang Y , Lou Z , Hu Y , Cui Q , Hou Y , Teng F . Org. Electron., 2019,67:101.
[1] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[2] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[3] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[4] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[5] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[6] Fu Honghong, Luan Weiling, Yuan Binxia, Tu Shandong. Nanocrystal/Polymer Solar Cell [J]. Progress in Chemistry, 2012, (9): 1837-1844.