中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2638-2650 DOI: 10.7536/PC220422 Previous Articles   Next Articles

• CONTENTS •

Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides

Wei Zhang1,2(), Kang Xie1,2, Yunhao Tang1,2, Chuan Qin1,2, Shan Cheng1,2, Ying Ma3   

  1. 1 College of Energy and Power Engineering, Changsha University of Science and Technology,Changsha 410114, China
    2 Key Laboratory of Renewable Energy and Electric Power Technology of Hunan Province,Changsha 410114, China
    3 Yonker Environmental Protection Company Limited,Changsha 410330, China.
  • Received: Revised: Online: Published:
  • Contact: Wei Zhang
  • Supported by:
    national natural science foundation of China(52006016); state scholarship fund awarded by China scholarship(201808430112); natural science foundation of Hunan province(2020JJ4098); natural science foundation of Hunan province(2021JJ40573); Key projects of scientific research project of Hunan Provincial Department of Education(21A0216); Changsha Municipal Natural Science Foundation(kq2014104); young teachers growth plan project of CSUST(2019QJCZ044); key laboratory of renewable energy electric technology of Hunan province(2018ZNDL004); key laboratory of renewable energy electric technology of Hunan province(2020ZNDL001); 2022 Graduate research and innovation project at Changsha University of Science and Technology(CXCLY2022092)
Richhtml ( 38 ) PDF ( 805 ) Cited
Export

EndNote

Ris

BibTeX

Selective catalytic reduction (SCR) technology is the most widely used industrial denitration technology at present, the development of catalyst system with excellent activity and anti-poisoning performance is the focus of researchers. Transition metal oxides and metal organic framework (MOF) materials have been widely studied and applied in the field of denitration catalysts because of their excellent redox performance, and researchers found that the combination of transition metal oxides and MOF materials can further improve the denitration activity of the catalyst. This paper summarizes the research progress of a series of single transition metal based MOF denitration catalysts and composite transition metal based MOF denitration catalysts mainly used in NH3-SCR reaction in recent years, and expounds the strengthening methods of water resistance, sulfur poisoning resistance and thermal stability of transition metal based MOF denitration catalysts, The main research directions of transition metal based MOF denitration catalysts in the future are prospected: new transition metal based MOF denitration catalysts with excellent denitration activity, water and sulfur resistance and thermal stability can be prepared by comprehensively utilizing the characteristics of different transition metal oxides and combined with the strong interaction between metal oxides. Further, transition metal based MOF denitration catalyst can be prepared by combining experiment and simulation to selectively catalyze the reduction of nitrogen oxides to meet the needs of industrialization.

Contents

1 Introduction

2 Transition metal based MOF denitration catalyst

2.1 Mono-transition metal based MOF denitration catalysts

2.2 Double-transition metal based MOF denitration catalysts

3 Enhancement of antitoxicity of transition metal based MOF denitration catalysts

3.1 Enhancing the water resistance of transition metal based MOF denitration catalysts

3.2 Enhancing the sulfur resistance of transition metal based MOF denitration catalysts

4 Method for enhancing thermal stability of transition metal based MOF denitration catalysts

4.1 Adding metal clusters

4.2 Optimizing the molar ratio of metal ions to organic ligands

5 Conclusion and Prospect

Table 1 Mono-transition metal based MOF denitration catalysts reported in the literature in recent years
Fig. 1 Bimetallic modified MOF denitration catalysts[44]
Fig. 2 Elements with practical application and development potential for the preparation of MOF denitration catalyst (Blue: elements that have been used to prepare MOF denitration catalyst; Yellow: elements that have been applied to prepare MOF catalyst; Red: elements that have been used to prepare denitration catalyst; Orange: elements that have been used to prepare MOF catalyst and denitration catalyst, but not used to prepare MOF denitration catalyst)
Fig.3 TEM images of (a) Mn-MOF-74, (b) P123-Mn-MOF-74, (c) PVP-Mn-MOF-74 and (d) Mn-MOF-74- CH3[11]
Fig.4 Mn/Ce-400-Air (a)Mechanism of SO2 removal by NH3-SCR (b) Sedimentation and decomposition of Ce2(SO4)3[127]
Fig.5 Comparison of thermal stability of NJU-Bai62 with some representative MOFs with permanent porosity[133]
Fig.6Summ ary and prospect of transition metal based MOF denitration catalysts concept map
[1]
Chen H Y, Wei Z, Kollar M, Gao F, Wang Y, Szanyi J, Peden C H F. J Catal., 2015, 329: 490.
[2]
Devaiah D, Padmanabha R E, Benjaram M R, Panagiotis G S. Catalysts., 2019, 9(4): 349.
[3]
Nakajima F, Hamada I. Catal. Today., 1996, 29: 109.
[4]
Luck F, Roiron J. Catal. Today., 1989, 4(2): 205.
[5]
Ciambelli P, Lisi L, Russo G, Volta J C. Appl. Catal. B: Environ., 1995, 7: 1.
[6]
Fritz A, Pitchon V. Appl. Catal. B: Environ., 1997, 13(1): 1.
[7]
Cheng X X, Bi X T. Particuology., 2014, 16: 1.
[8]
Skalska K, Miller J S, Ledakowicz S. Sci. Total Environ., 2010, 408(19): 3976.
[9]
Heck R M. Catal. Today., 1999, 53(4): 519.
[10]
Pu Y, Xie X, Jiang W, Yang L, Jiang X, Yao L. Chinese Chem Lett., 2020, 31(10): 2549.
[11]
Wang S, Gao Q, Dong X, Wang Q, Niu Y, Chen Y, Jiang H. Catalysts., 2019, 9(12): 1004.
[12]
Sun X Y, Shi Y, Zhang W, Li C Y, Zhao Q D, Gao J S, Li X Y. Catal Commun., 2018, 114, 104.
[13]
Zhang W, Tang Y H, Yin Y S, Gong W C. Chem Eng Prog., 2021, 40(3): 1425.
[14]
Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N, Hu T D. Appl Catal B: Environ., 2010, 96: 408.
[15]
Zhang J, Zhang C C, Zhang Y H, Li C Y. M Environ R., 2021, 1395: 249.
[16]
Sultana A, Sasaki M, Hamada H. Catal Today., 2012, 185(1): 284.
[17]
Sun L, Xu Y J, Cao Q Q, Hu B Q, Wang C, Jing G H. Prog Chem., 2010, 22(10): 1882.
(孙亮, 许悠佳, 曹青青, 胡冰清, 王超, 荆国华. 化学进展,2010, 22(10): 1882.).
[18]
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Chem Soc Rev., 2020, 49: 2751.

doi: 10.1039/c9cs00609e pmid: 32236174
[19]
Li B Y, Zhang Y M, Ma D X, Li L, Li G H, Li G D, Shi Z, Feng S H. Chem Commun., 2012, 48: 6151.
[20]
Zhang M H, Huang X W, Chen Y F. Phys Chem Chem Phys., 2016, 18(41): 28854.
[21]
Jiang H X, Wang Q Y, Wang H Q, Chen Y F, Zhang M H. ACS Appl Mater Inter., 2016, 8(40): 26817.
[22]
Hashimoto T, Niwa E, Uematsu C, Miyashita E, Ohzeki T, Shozugawa K, Matsuo M. Sn Appl Sci., 2012, 206: 47.
[23]
Brose P H. J Phys Conf Ser., 2012, 365: 012006.
[24]
Huo S H, Yan X P. J Mater Chem., 2012, 22: 7449.
[25]
Zhang M H, Wang W Y, Chen Y F. Phys Chem Chem Phys., 2018, 20(4): 2211.
[26]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.
[27]
Shi Y, Li C Y, Liu X W, Zhang H, Zhao Q D, Li X Y. Integr Ferroelectr., 2017, 181(1): 14.
[28]
Wang P, Zhao H M, Sun H, Yu H T, Chen S, Quan X. RSC Adv., 2014,4, 48912.
[29]
Liu T G, Zhao M L, Wang B, Wang M. Opt Laser Technol., 2012, 44(6): 1762.
[30]
Günter T, Carvalho H W P, Doronkin D E, Sheppard T, Glatzel P, Atkins A J, Rudolph J, Jacob C R, Casapu M, Grunwaldt J D. RSC Adv., 2015, 51: 9227.
[31]
Liu Z Z, Shi Y, Li C Y, Zhao Q D, Li X Y. Acta Phys-Chim Sin., 2015, 31(12): 2366.
[32]
Li C Y, Shi Y, Zhang H, Zhao Q D, Xue F H, Li X Y. Integr Ferroelectr., 2016, 172(1): 169.
[33]
Huang W H, Yang G P, Chen J, Chen X, Zhang C P, Wang Y Y, Shi Q Z. Cryst Growth Des, 2012, 13: 66.
[34]
Jia M C, Chen E Y, Menon A G, Tan H Y, Hor A T S, Schreyer M K, Xu J. Crystengcomm, 2012, 15:654.
[35]
Jiang H X, Wang S T, Wang C X, Chen Y F, Zhang M H. J Cheminformatics., 2018, 22: 95.
[36]
Yang Y, Shukla P, Wang S B, Rudolph V, Chen X M, Zhu Z H. RSC Adv., 2013, 3: 17065.
[37]
Shu H, Liu Y L, Jia Y. J Mol Struct., 2022, 1251: 132046.
[38]
Calleja G, Sanz R, Orcajo G, Briones D, Leo P, Martínezb F. Catal Today., 2014, 227: 130.
[39]
Jiang H X, Zhou J L, Wang C X, Li Y H, Chen Y F, Zhang M H. Ind Eng Chem Res., 2017, 56: 3542.
[40]
Li S C, Zhai Y, Wei X X, Zhang Z, Kong X F, Tang F S. Chemcatchem., 2021, 13(3): 940.
[41]
Sakai M, Hamaguchi T, Tanaka T. Appl Catal A-Gen., 2019, 582: 117105.
[42]
Chen H F, Xia Y, Huang H, Gan Y P, Tao X Y, Liang C, Luo J M, Fang R Y, Zhang J, Zhang W K, Liu X S. Chem Eng J., 2017, 330: 1195.
[43]
Liu Y, Yao W Y, Cao X L, Weng X L, Wang Y, Wang H Q, Wu Z B. Appl Catal B-Environ., 2014, 160: 684.
[44]
Wang L J, Deng H, Furukawa H, Gandara F, Cordova K E, Peri D, Yaghi O M. Inorg Chem., 2014, 53(12): 5881.
[45]
Liu X Q, Huang H, Liu C, Zhuo M, Hong F S. Cell Death Differ., 2009, 130: 141.
[46]
Zhang W J, Suzuki M, Xie Y P, Bao L P, Cai W T, Slanina Z, Nagase S, Xu M, Akasaka T, Lu X. J Am Chem Soc., 2013, 135(34): 12730.
[47]
Kim J, Kim D H, Kwon D W, Lee K Y, Ha H P. Appl Surf Sci., 2020, 518: 146238.
[48]
Liu Y, Zhao J, Lee J M. Chemcatchem., 2018, 10(7): 1499.
[49]
Wang P, Sun H, Quan X, Chen S. J Hazard Mater., 2016, 301: 512.
[50]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Peng L. Chen Eng J., 2018, 344: 469.
[51]
Zhang X, Shen B X, Zhang X Q, Wang F M, Chi G L, Si M. RSC Adv., 2017, 7: 5928.
[52]
Xie S Z, Li L L, Jin L J, Wu Y H, Liu H, Qin Q J, Wei X L, Liu J X, Dong L H, Li B. Appl Surf Sci., 2020, 515: 146014.
[53]
You X C, Sheng Z Y, Yu D Q, Yang L, Xiao X, Wang S. Appl Surf Sci., 2017, 423: 845.
[54]
Xie S Z, Qin Q J, Liu H, Jin L J, Wei X L, Liu J X, Liu X, Yao Y C, Dong L H, Li B. ACS Appl Mater Inter., 2020, 12(43): 48476.
[55]
Yoon J W, Seo Y K, Hwang Y K, Chang J S, Leclerc H, Wuttke S, Bazin P, Vimont A, Daturi M, Bloch E. Angew Chem Int Edit., 2010, 49: 5949.
[56]
Rosi N L, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi O M. J Am Chem Soc., 2005, 127:1504.
[57]
Jiang H X, Niu Y, Wang Q Y, Chen Y F, Zhang M H. Catal Commun., 2018, 113: 46.
[58]
Jiang B Q, Zhao S, Wang Y L, Wenren Y S, Zhu Z C, Harding J, Zhang X L, Tu X, Zhang X M. Appl Catal B-Environ., 2021, 286: 119886.
[59]
Yao Z, Qu D L, Guo Y X, Yang Y J, Huang H. Adv Mater Sci Eng., 2019.
[60]
Zhang W, Shi Y, Li C Y, Zhao Q D, Li X Y. Catal Lett., 2016, 146: 1956.
[61]
Boroń P, Chmielarz L, Dzwigaj S. Appl Catal B-Environ., 2015, 168: 377.
[62]
Shi Y, Sun X Y, Zhang W, Li C Y, Zhao Q D, Gao J S, Li X Y. Ferroelectrics., 2018, 522(1): 20.
[63]
Li C Y, Shi Y, Yu F Y, Chu Q, Sun X Y. Ferroelectrics., 2020, 565(1): 26.
[64]
Chang F M, Chen J C, Wei M Y. Fuel., 2010, 89(8): 1919.
[65]
M.Serra R, G.Aspromonte S, E.Miró E, V.Boix A. Appl Catal B-Environ., 2015, 166: 592.
[66]
Huang P B, Tian L Y, Zhang Y H, Shi F N. Inorg Chim Acta., 2021, 525: 120473.
[67]
Wang L B, Wang J J, Yue E L, Tang L, Wang X, Hou X Y, Zhang Y Q, Ren Y X, Chen X L. Spectrochim Actaa., 2022, 265: 120340.
[68]
Liu Y, Ma L N, Shi W J, Lu Y K, Hou L, Wang Y Y. J Solid State Chem., 2019, 277: 636.
[69]
Feng T K, Zhang S W, Li C E, Li T. Green Chem., 2022, 24(4): 1474.
[70]
Liu Y M, Bu Q X, Xu J X, Liu X, Zhang X P, Lu G P, Zhou B J. Mol Catal., 2021, 502: 111405.
[71]
Sargazi G, Afzali D, Ebrahimi A K, Badoei-dalfard A, Malekabadi S, Karami Z. Mater Sci Eng-C., 2018, 93: 768.
[72]
Badoei-dalfard A, Sohrabi N, Karami Z, Sargazi G. Biosens Bioelectron., 2019, 141: 11420.

doi: S0956-5663(19)30499-3 pmid: 31220726
[73]
Meng Y J, Wang Y D, Liu L J, Ma F Q, Zhang C H, Dong H X. Sep Purif Technol., 2022, 28: 120946.
[74]
Guo Z Q, Yang F J, Yang R R, Sun Lei, Li Yuan, Xu J Z. Sep Purif Technol., 2021, 274: 118949.
[75]
Capková D, Kazda T, Čechb O, Király N, Zelenka T, Čudek P, Sharma A, Hornebecq V, Fedorková A S, Almášid M. J Energy Storage., 2022, 51: 104419.
[76]
Wang L B, Wang J J, Yue E L, Tang L, Bai C, Wang X, Hou X Y, Zhang Y Q. Spectrochim Actaa., 2022, 269:120752.
[77]
E.Emam H, Abdelhamid H N, M.Abdelhameed R. Dyes Pigments., 2018, 159: 491.
[78]
Li Z S, Huang G H, Liu K, Tang X K, Peng Q, Huang J, Ao M L, Zhang G F. J Clean Prod., 2020, 272: 122892.
[79]
Almáši M, Zeleñák V, Kuchár J, Bourrelly S, Llewellyn P L. Colloid Surface A., 2016, 496: 114.
[80]
Wang J J, Chen Y, Liu M J, Fan R Y, Si P P, Yang J, Pan Y Y, Chen Y, Zhao S S, Xu J L. Polyhedron., 2018, 154: 411.
[81]
Chitpakdee C, Junkaew A, Maitarad P, Shi L Y, Promarak V, Kungwan N, Namuangruk S. Chem Eng J., 2019, 369: 124.

doi: 10.1016/j.cej.2019.03.053
[82]
Yu C L, Huang B C, Dong L F, Chen F, Yang Y, Fan Y M, Yang Y X, Liu X Q, Wang X N. Chem Eng J., 2017, 316: 1059.
[83]
Dranga B A, Koeser H. Appl Catal B-Environ., 2015, 166: 302.
[84]
Gao C, Xiao B, Shi J W, He C, Wang B R, Ma D D, Cheng Y H, Niu C M. J Catal., 2019, 380: 55.

doi: 10.1016/j.jcat.2019.10.003
[85]
Chen Z, Bian C, Fan C, Li T. Chinese Chem Lett., 2022, 33(2): 893.
[86]
Chang H Z, Li J H, Yuan J, Chen L, Dai Y, Arandiyan H, Xu J Y, Hao J M. Catal Today., 2013, 201: 139.87] Wang M M, Ren S, Jiang Y H, Su B X, Chen Z C, Liu W Z, Yang J, Chen L. Fuel., 2022, 319:123763.
[88]
Liu X S, Yu Q F, Chen H F, Jiang P, Li J F, Shen Z Y. Appl Surf Sci., 2020, 508: 144694.
[89]
Liu Z, Han J, Zhao L, Wu Y W, Wang H X, Pei X Q, Xu M X, Lu Q, Yang Y P. Appl Catal A-Gen., 2019, 587: 117263.
[90]
Jiang W K, Liu H J, Liao Q, Tang T, Liu J, Liu Z, Xie L, Yan J. Polyhedron., 2021, 196: 114983.
[91]
Sun W Y, Guo J, Ou H, Zhang L, Wang D G, Ma Z H, Zhu B K, Ali I, Naz L. J Solid State Chem., 2022, 16: 123073.
[92]
Xiao F Y, Gao W, Wang H, Wang Q, Bao S J, Xu M W. Mater Lett., 2021, 286: 129264.
[93]
Wang X K, Wang Y T, Lu K B, Jiang W F, Dai F N. Chinese Chem Lett., 2021, 32(3): 1169.
[94]
Zhang Y, Wei N, Xing Z Q, Han Z B. Appl Catal A-Gen., 2020, 602: 117668.
[95]
Guo X M, Tian X Y, Xu X, He J R. J Environ Chem Eng., 2021, 9(6): 106428.
[96]
Yan B C, Tan J, Zhang H F, Liu L D, Chen L, Qiao Y Q, Liu X Y. Mat Sci Eng-C., 2022, 6: 112699.
[97]
You D, Shi H, Yang L M, Shao P H, Yin K, Wang H Z, Luo S L, Luo X B. Chem Eng J., 2022, 435: 134874.
[98]
Cai W, Yu X, Cao Y, Hu C Y, Wang Y, Zhan Y X, Bu Y F. J Environ Chem Eng., 2022, 10(3): 107461.
[99]
Du J K, Chai J L, Li Q M, Zhang W, Tang B H J. Colloid Surface A., 2022, 632: 127810.
[100]
S.Alqarni D, Marshall M, R.Gengenbach T, Lippi R, L.Chaffee A. Micropor Mesopor Mat., 2022, 27: 111855.
[101]
Wu N, Guo H, Xue R, Wang M Y, Cao Y J, Wang X Q, Xu M N, Wang W. Colloid Surface A., 2021, 618: 126484.
[102]
Hu Y, Yang H L, Ma S J, Li J H, Liu X, Tian Y J, Jin L, Lin Z X. Micropor Mesopor Mat., 2022, 330: 111632.
[103]
Pan W Z, Li Z, Qiu S, Dai C B, Wu S Y, Zheng X, Guan M, Gao F L. Mater Today Bio., 2022, 13: 100214.
[104]
Zhang X Y, Ma Q Q, Liu X F, Niu H W, Luo L, Li R F, Feng X. Food Chem., 2022, 382: 132379.
[105]
Tan Z K, Gong J L, Fang S Y, Li J, Cao W C, Chen Z P. Appl Surf Sci., 2022, 590: 153059.
[106]
Wang B H, Yan B. Talanta., 2020, 208: 120438.
[107]
Li Z X, Zhang Y, Cao Y M, Zhou S L, Han Y H, Yue L. Mater Lett., 2021, 282: 128647.
[108]
Xue K, He R, Yang T, Wang J, Sun R, Wang L, Yu X, Omeoga U, Pi S, Yang T, Wang W. Appl Surf Sci., 2019, 493: 41.
[109]
Liao J M, Xue Z H, Sun H, Xue F J, Zhao Z X, Wang X X, Dong W, Yang D X, Nie M. J Alloy Compd., 2022, 898: 162991.
[110]
Guo M C, Zhong W D, Wu T, Han W D, Gao X S, Ren X M. J Solid State Chem., 2022, 309: 123005.
[111]
You D, Shi H, Yang L M, Shao P H, Yin K, Wang H Z, Luo S L. Chem Eng J., 2022, 435: 134874.
[112]
Rajabalizadeh Z, Seifzadeh D, Khodayarib A, Sohrabnezhad S. J Magnes Alloy., 2021, 7.
[113]
Qi L Q, Li J T, Yao Y, Zhang Y J. J Hazard Mater., 2019, 366: 492.
[114]
Wang H J, Huang B C, Yu C L, Lu M J, Huang H, Zhou Y L. Appl Catal A-Gen., 2019, 588: 117207.
[115]
Zhang N Q, Li L C, Guo Y Z, He J D, Wu R, Song L Y, Zhang G Z, Zhao J S, Wang D S, He H. Appl Catal B Environ., 2020, 270(5): 118860.
[116]
Zhang J, Li X C, Chen P A, Zhu B Q. Materials., 2018, 11(9): 1632.
[117]
Ma Y S, Tang X Y, Chen M, Mishima A, Li L C, Hori A, Wu X Y, Ding L F, Kusaka S, Matsuda R. Chem Commun., 2022, 58: 1139.
[118]
Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem Soc Rev., 2016, 45: 2327.
[119]
Yang C, Kaipa U, Mather Q Z, Wang X P, Nesterov V, Venero A F, Omary M A. J Am Chem Soc., 2011, 133: 18094.

doi: 10.1021/ja208408n pmid: 21981413
[120]
Wu T J, Shen L J, Luebbers M, Hu C H, Chen Q M, Ni Z, Masel R I. Chem Commun., 2010, 46: 6120.
[121]
Makal T A, Wang X, Zhou H C. Cryst Growth Des., 2013, 13: 4760.
[122]
Zuluaga S, Fuentes Fernandez E M A, Tan K, Xu F, Li J, Chabal Y J, Thonhauser T. J Mater Chem A., 2016, 4: 5176.
[123]
Li H H, Shi W, Zhao K N, Li H, Bing Y M, Cheng P. Inorg Chem., 2012, 51(17): 9200.
[124]
Xiong S C, Peng Y, Wang D, Huang N, Zhang Q F, Yang S J, Chen J J, Li J H. Chem Eng J., 2020, 387: 124090.
[125]
Si Z C, Weng D, Wu X D, Ran R, Ma Z R. Catal Commun., 2012, 17: 146.
[126]
Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Appl Catal B-Environ., 2010, 95: 160.
[127]
Chen J Y, Fu P, Lv D F, Chen Y, Fan M L, Wu J L, Meshram A, Mu B, Li X, Xia Q B. Chem Eng J., 2021, 407(1): 127071.
[128]
Yeo T Y, Ashok J, Kawi S. Renew Sust Energ Rev., 2019, 100: 52.
[129]
Zhu H T, Song L Y, Li K, Wu R, Qiu W G, He H. Catalysts., 2022, 12(3): 341.
[130]
Nguyen H G T, Schweitzer N M, Chang C Y, Drake T L, So M C, Stair P C, Farha O K, Hupp J T, Nguyen S T. ACS Catal., 2014, 4(8): 2496.
[131]
Tranchemontange D J, Mendoza-Cortes J L, Keefee M O, Yaghi O M. Chem Soc Rev., 2009, 38: 1257.
[132]
Joseph T H, Kenneth R P. Science., 2005, 309(5743): 2008.

pmid: 16179465
[133]
Gao Y J, Zhang M X, Chen C, Zhang Y, Gu Y M, Wang Q, Zhang W W, Pan Y, Ma J, Bai Y F. Chem Commun., 2020, 56: 11985.
[134]
Cravillon J, Munzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Chem Mater., 2009, 21(8):1410.
[135]
Wu X W, Zhang D, Wu Z H, Ma J P. Chinese J Struc Chem., 2014, 9: 1326.
[136]
Wang P F, Wu X S, Wei B, Wu G Z. Chinese J Inorg Chem., 2014, 30(7): 1511.
[137]
Zheng X F, Huang Y M, Duan J G, Wang C G, Wen L L, Zhao J B, Li D F. Dalton T., 2014, 43: 8311.
[138]
Wang S, Cui J M, Zhang S Q, Xie X F, Xia W K. Mater Res Express., 2020, 7(2): 1.
[139]
Wang S, Xie X F, Xia W K, Cui J M, Zhang S Q, Du X Y. High Temp Mat Pr-irs., 2020, 39(1): 34.
[140]
Alesaadi S J, Sabzi F. Int J Hydrogen Energ., 2014, 39(27): 14851.
[141]
Dai J, McKee M L, Samokhvalov A. J Porous Mat., 2014, 21(5): 709.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[6] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[7] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[8] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[9] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[10] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[11] Baodong Zhao, Fulei Gao, Yinglei Wang, Yajing Liu, Bin Chen, Yongfei Pan. Azido Energetic Plasticizers for Gun and Rocket Propellants [J]. Progress in Chemistry, 2019, 31(2/3): 475-490.
[12] Qiu Jianhao, He Ming, Jia Mingmin, Yao Jianfeng. Metal Organic Frameworks for Bi- and Multi-Metallic Catalyst and Their Applications [J]. Progress in Chemistry, 2016, 28(7): 1016-1028.
[13] Xie Lijuan, Shi Xiaoyan, Liu Fudong, Ruan Wenquan. Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite [J]. Progress in Chemistry, 2016, 28(12): 1860-1869.
[14] Li Panpan, Yu Feng, Zhu Mingyuan, Tang Changjin, Dai Bin, Dong Lin. Selective Catalytic Reduction De-NOx Catalysts [J]. Progress in Chemistry, 2016, 28(10): 1578-1590.
[15] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.