中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 136-150 DOI: 10.7536/PC200652 Previous Articles   Next Articles

• Review •

Fabrication and Stability of All-Inorganic Perovskite Solar Cells

Huirong Peng1,2, Molang Cai1,2,3,*(), Shuang Ma1,2, Xiaoqiang Shi1,2, Xuepeng Liu1,2, Songyuan Dai1,2,3,*()   

  1. 1 School of New Energy, North China Electric Power University,Beijing 102206, China
    2 Beijing Key Laboratory of Novel Thin-Film Solar Cells,Beijing 102206, China
    3 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China
  • Received: Revised: Online: Published:
  • Contact: Molang Cai, Songyuan Dai
  • Supported by:
    National Key R&D Program of China(2018YFB1500101); the 111 Project(B16016); the National Natural Science Foundation of China(51702096); the National Natural Science Foundation of China(U1705256); the National Natural Science Foundation of China(51572080); the National Natural Science Foundation of China(61904053); and the Fundamental Research Funds for the Central Universities(2019MS026); and the Fundamental Research Funds for the Central Universities(2019MS027)
Richhtml ( 110 ) PDF ( 3441 ) Cited
Export

EndNote

Ris

BibTeX

The all-inorganic perovskite solar cells(PSCs) have attracted much attention because of their good thermal stability, high carrier mobility and excellent compatibility with tandem devices. With the in-depth study of all-inorganic PSCs and continuous optimization of the fabrication process, the power conversion efficiency of all-inorganic PSCs have exceeded 19%. However, the phase stability of all-inorganic perovskite materials is relatively poor, therefore, the preparation and long-term application of all-inorganic PSCs in the air environment still faces great challenges. By analyzing the phase transition mechanism of all-inorganic perovskite, many researchers have proposed various methods including additive engineering, interface engineering and the development of all-inorganic perovskite quantum dot solar cells to improve their long-term stability. This review summarizes the research progress of all-inorganic PSCs in recent years from the aspects of all-inorganic perovskite materials and structure of solar cells, the fabrication method of the active layer and its phase stability.

Contents:

1 Introduction

2 All-inorganic perovskite solar cells

2.1 Crystal structure of all-inorganic perovskite materials

2.2 Architecture of all-inorganic perovskite solar cells

3 Fabrication methods of all-inorganic perovskite films

3.1 Solution processing technique

3.2 Vacuum processing technique

4 Research progress on the phase stability of all-inorganic perovskite

4.1 Mechanism of phase instability

4.2 Strategy for improving phase stability

5 Conclusion and outlook

Fig. 1 Crystal structure of CsPbX3phases[27] : (a) α-CsPbX3;(b) β-CsPbX3;(c) γ-CsPbX3; and(d) δ-CsPbX3.
Fig. 2 (a) Scanning electron microscopy(SEM) images of thin films obtained without and with HI annealing at 335 and 100 ℃, respectively[13];(b) Absorption spectra of CsPbI2Br fabricated by using precursor of(2CsI-PbI2-PbBr2) and(2CsI-HPbI3+ x -PbBr2). The two inserted pictures are the corresponding films photos[43];(c) Schematic of the evolution of the CsPbI2Br ?lm with the introduction of DMSO[46];(d) Steady-state photoluminescence(PL) spectra of CsPbI2Br films prepared without and with DMSO adducts[48];(e) Time-resolved PL of CsPbI2Br films prepared without and with DMSO adducts[48]
Fig. 3 Fig. 3 (a) Schematic illustration of CsPbI2Br perovskite crystallization process via gradient thermal annealing(GTA) or gradient thermal annealing with anti-solvent(GTA-ATS) processing[49] ;(b) Schematic illustration of CsPbI3 perovskite crystallization procedures via solvent-controlled growth(SCG)[16]
Fig. 4 (a) Schematic process for the preparation of CsPbBr3 ?lms obtained by the face-down dipping process[54] ;(b) Schematic process for the vacuum processing technique[42] .
Fig. 5 Fig. 5 (a) Structural phase transitions in CsPbI3 under versus temperature[63] ;(b) Schematic illustration of water-induced degradation process of all-inorganic perovskite[65] .
Table 1 Stability performance of the CsPbX3 based thin film or device after being partially replaced by different elements
Fig. 6 (a) The photograph and stability of devices based on α-CsPbI3 and CsPb0.96Bi0.04I3after exposing in air without any encapsulation[77] ;(b) Normalized power conversion efficiency(PCE) of unencapsulated CsPbI2Br and CsPb0.95Eu0.05I2Br devices monitored under continuous white light exposure as a function of time[79] ;(c) Schematic diagram of EDA 2+ and CsPbI3 cross-linking to improve phase stability[87] ;(d) XRD pattern and images of the CsPbI3·0.025EDAPbI4 film heated at 100 ℃ in a dry box for 1 week, the insets are their photographs[87] ;(e) Mechanism of PVP-induced cubic phase stability[88] ;(f) Schematic representation of CsPbI3 crystal formation from precursor solution without or with the zwitterion[30]
Fig. 7 (a) Schematic illustration of gradient Br - doping and PTA + organic cation surface passivation on CsPbI3 perovskite thin ?lm[15] ;(b) XRD patterns of CsPbI3 and PTABr-CsPbI3 thin ?lms after being exposed to 80%± 5% RH at ~35 ℃ for 0.5 h, inset is their photographs[15] ;(c) Schematic illustration of organic cation surface termination using $PEA^{+}$[29] ;(d) PCE decay of the PEA +-CsPbI3 and CsPbI3-based devices as a function of storage time in a dark and dry box with <20% RH[29] ;(e) Long-term stability of normalized PCE of CsPbI2Br-PEAX based devices stored in ambient conditions with >60% RH[98] ;(f) The air stability(humidity: ≈30%) of CsPbI2Br devices with and without DPP-DTT treatment[99]
Fig. 8 (a) Structure and SEM cross-section of the CsPbI3quantum dots devices[89];(b) Dependence of the photoluminescence quantum yield(PL QYs) of the OA/m-QDs and TOP-QDs on their particle size[104];(c) Change of the PL QY of the OA/m-QDs, TOP-QDs with versus storage time under ambient conditions[104];(d) UV-vis absorption spectra of the CsSnx Pb1- x I3 QDs. The inset shows their corresponding normalized steady-state PL spectra[12];(e)J-V curves of the best cells without(control) and with CsAc post-treatment. Inset is the PCE distribution histograms of control and CsAc-treated cells, measured under reverse scan[107]
Fig. 9 Fig. 9 (a)Schematic illustration of the CsPbI3 ?lms prepared from PbI2 or HPbI3 with CsI based precursor solutions[44] ;(b) XRD patterns acquired from a CsPbI3 thin film and powders scratched from the films. Brown lines indicate the standard β-CsPbI3 XRD pattern[31] ;(c) XRD patterns of γ-CsPbI3 thin film before and after being stored in air for 30 days[32]
[1]
Song J Z, Li J H, Li X M, Xu L M, Dong Y H, Zeng H B. Adv. Mater., 2015, 27: 7162.
[2]
Sutherland B R, Sargent E H. Nat. Photonics , 2016, 10: 295.
[3]
Yang L Y, Barrows A T, Lidzey D G, Wang T. Rep. Prog. Phys. , 2016, 79: 026501.
[4]
Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Science , 2013, 342: 344.
[5]
Ju C G , Zhang B , Feng Y Q . Progress in Chemistry , 2016, 28: 219.
琚成功, 张宝, 冯亚青. 化学进展, 2016, 28: 219.
[6]
Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W. Science , 2014, 345: 295.
[7]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science , 2012, 338: 643.
[8]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science , 2017, 356: 1376.
[9]
Yang Y, Peng H R, Liu C, Arain Z, Ding Y, Ma S, Liu X L, Hayat T, Alsaedi A, Dai S Y. J. Mater. Chem. A , 2019, 7: 6450.
[10]
Shi X Q, Chen R C, Jiang T T, Ma S, Liu X P, Ding Y, Cai M L, Wu J H, Dai S Y. Sol. RRL , 2020, 4: 1900198.
[11]
[2020-04-01]https://www.nrel.gov/pv/assets/images/thumb-best-research -cell-efficiencies-190416.png.
[12]
Liu F, Ding C, Zhang Y H, Ripolles T S, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Yanagida M, Noguchi H, Shen Q. J. Am. Chem. Soc., 2017, 139: 16708.
[13]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. J. Mater. Chem. A , 2015, 3: 19688.
[14]
Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A. J. Phys. Chem. Lett., 2017, 8: 67.
[15]
Wang Y, Zhang T Y, Kan M, Zhao Y X. J. Am. Chem. Soc., 2018, 140: 12345.
[16]
Wang P Y, Zhang X W, Zhou Y Q, Jiang Q, Ye Q F, Chu Z M, Li X X, Yang X L, Yin Z G, You J B. Nat. Commun. , 2018, 9: 2225.
[17]
Yin W J, Yan Y, Wei S H. J. Phys. Chem. Lett. , 2014, 5: 3625.
[18]
Ahmad W, Khan J, Niu G D, Tang J. Sol. RRL , 2017, 1: 1700048.
[19]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. J. Phys. Chem. Lett., 2016, 7: 746.
[20]
Ding X H, Chen H B, Wu Y H, Ma S, Dai S Y, Yang S F, Zhu J. J. Mater. Chem. A , 2018, 6: 18258.
[21]
Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X. Angew. Chem. Inter. Edit., 2019, 58: 16691.
[22]
Shi J L, Wang Y, Zhao Y X. Energy Environ. Sci., 2019, 2: 73.
[23]
Wang B, Novendra N, Navrotsky A. J. Am. Chem. Soc., 2019, 141: 14501.
[24]
Guo X D , Niu G D , Wang L D . Acta Chimica Sinica , 2015, 73: 211.
郭旭东, 牛广达, 王立铎. 化学学报, 2015, 73: 211.
[25]
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J. ACS Nano , 2018, 12: 3477.
[26]
Dastidar S, Hawley C J, Dillon A D, Gutierrez-Perez A D, Spanier J E, Fafarman A T. J. Phys. Chem. Lett., 2017, 8: 1278.
[27]
Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z. Nat. Commun., 2018, 9: 4544.
[28]
Zhang J R, Hodes G, Jin Z W, Liu S Z. Angew. Chem. Inter. Edit., 2019, 58: 15596.
[29]
Wang Y, Zhang T Y, Kan M, Li Y H, Wang T, Zhao Y X. Joule , 2018, 2: 2065.
[30]
Wang Q, Zheng X P, Deng Y H, Zhao J J, Chen Z L, Huang J S. Joule , 2017, 1: 371.
[31]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X. Science , 2019, 365: 591.
[32]
Zhao B Y, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q W, Ding J, Ge Q Q, Feng Y Q, Hu J S. J. Am. Chem. Soc., 2018, 140: 11716.
[33]
Becker P, Márquez J A, Just J, Al-Ashouri A, Hages C, Hempel H, Jošt M, Albrecht S, Frahm R, Unold T. Adv. Energy Mater., 2019, 9: 1900555.
[34]
Que Y P , Weng J , Hu L H , Dai S Y . Progress in Chemistry , 2016, 28: 40.
阙亚萍, 翁坚, 胡林华, 戴松元. 化学进展, 2016, 28: 40.
[35]
Zhang T, Wang F, Chen H, Ji L, Wang Y F, Li C, Raschke M B, Li S B. ACS Energy Lett., 2020, 5: 1619.
[36]
Hu Y Q, Xu Q F, Ruan W, Zhang S F, Yang C L, Yan Z, Xu F. Sol. RRL , 2019, 3: 1900287.
[37]
Liu C, Li W Z, Zhang C L;, Ma Y P, Fan J D, Mai Y H. J. Am. Chem. Soc., 2018, 140: 3825.
[38]
Xiang S S, Li W P, Wei Y, Liu J M, Liu H C, Zhu L Q, Yang S H, Chen H N. iScience , 2019, 15: 156.
[39]
Shan X Y , Wang S M , Meng G , Fang X D . Progress in Chemistry , 2019, 31: 714.
单雪燕, 王时茂, 孟钢, 方晓东. 化学进展, 2019, 31: 714.
[40]
Yang Y , Lin F Y , Zhu C T , Chen T , Ma S P , Luo Y , Zhu L , Guo X Y . Acta Chimica Sinica , 2020, 78: 217.
杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 化学学报, 2020, 78: 217.
[41]
Yang Y , Gao J , Cui J R , Guo X Y . Journal of Inorganic Materials , 2015, 30: 1131.
杨英 , 高菁, 崔嘉瑞, 郭学益. 无机材料学报, 2015, 30: 1131.
[42]
Tai Q D, Tang K C, Yan F. Energy Environ. Sci., 2019, 12: 2375.
[43]
Wang Y, Zhang T Y, Xu F, Li Y H, Zhao Y X. Sol. RRL , 2018, 2: 1700180.
[44]
Xiang S S, Fu Z H, Li W P, Wei Y, Liu J M, Liu H C, Zhu L Q, Zhang R F, Chen H N. ACS Energy Lett., 2018, 3: 1824.
[45]
Mariotti S, Hutter O S, Phillips L J, Yates P J, Kundu B, Durose K. ACS Appl. Mater. Interfaces , 2018, 10: 3750.
[46]
Zai H C, Zhang D L, Li L, Zhu C, Ma S, Zhao Y Z, Zhao Z G, Chen C F, Zhou H P, Li Y J, Chen Q. J. Mater. Chem. A , 2018, 6: 23602.
[47]
Zhang S S, Wu S H, Chen W T, Zhu H M, Xiong Z Z, Yang Z C, Chen C L, Chen R, Han L Y, Chen W. Mater. Today Energy , 2018, 8: 125.
[48]
Yin G N, Zhao H, Jiang H, Yuan S H, Niu T Q, Zhao K, Liu Z K, Liu S Z. Adv. Funct. Mater. , 2018, 28: 1803269.
[49]
Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F. Joule , 2019, 3: 191.
[50]
Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015, 6: 2452.
[51]
Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. J. Am. Chem. Soc., 2016, 138: 15829.
[52]
Liu D J, Hu Z P, Hu W, Wangyang P H, Yu K, Wen M Q, Zu Z Q, Liu J, Wang M, Chen W W, Zhou M, Tang X S, Zang Z G. Mater. Lett., 2017, 186: 243.
[53]
Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J. Phys. Chem. Lett. , 2016, 7: 167.
[54]
Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R Q, Yang Y, Yu T. ACS Appl. Mater. Interfaces , 2018, 10: 9541.
[55]
Duan J L, Zhao Y Y, He B L, Tang Q W. Angew. Chem. Inter. Edit. , 2018, 57: 3787.
[56]
Duan J L, Dou D W, Zhao Y Y, Wang Y D, Yang X Y, Yuan H W, He B L, Tang Q W. Mater. Today Energy , 2018, 10: 146.
[57]
Khazaee M, Sardashti K, Sun J P, Zhou H, Clegg C, Hill I G, Jones J L, Lupascu D C, Mitzi D B. Chem. Mater., 2018, 30: 3538.
[58]
Li H, Tong G Q, Chen T T, Zhu H W, Li G P, Chang Y J, Wang L, Jiang Y. J. Mater. Chem. A , 2018, 6: 14255.
[59]
Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T. ACS Omega , 2017, 2: 4464.
[60]
Kottokkaran R, Gaonkar H A, Bagheri B, Dalal V L. J. Vac .Sci. Technol. A , 2018, 36: 041201.
[61]
Goldschmidt V M. Naturwissenschaften , 1926, 14: 477.
[62]
Li Z, Yang M J, Park J S, Wei S H, Berry J J, Zhu K. Chem.Mater., 2016, 28: 284.
[63]
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J. ACS Nano , 2018, 12: 3477.
[64]
Zhang J R, Jin Z W, Liang L, Wang H R, Bai D L, Bian H, Wang K, Wang Q, Yuan N Y, Ding J N, Liu S Z. Adv. Sci (Weinh ), 2018, 5: 1801123.
[65]
Ding X H, Cai M L, Liu X Y, Ding Y, Liu X P, Wu Y H, Hayat T, Alsaedi A, Dai S Y. ACS Appl. Mater. Interfaces , 2019, 11: 37720.
[66]
Chu W B, Saidi W A, Zhao J, Prezhdo O V. Angew. Chem. Inter. Edit. , 2020, 59: 6435.
[67]
Wang K, Li Z Z, Zhou F G, Wang H R, Bian H, Zhang H, Wang Q, Jin Z W, Ding L M, Liu S Z. Adv. Energy Mater. , 2019, 9: 1902529.
[68]
Zhao H, Xu J, Zhou S J, Li Z Z, Zhang B, Xia X, Liu X L, Dai S Y, Yao J X. Adv. Funct. Mater., 2019, 29: 1808986.
[69]
Lau C F J, Wang Z P, Sakai N, Zheng J H, Liao C H, Green M, Huang S, Snaith H J, Ho-Baillie A. Adv. Energy Mater. , 2019, 9: 1901685.
[70]
Wang Z, Shi Z J, Li T T, Chen Y H, Huang W. Angew. Chem. Inter. Edit., 2017, 56: 1190.
[71]
Meng H G, Shao Z P, Wang L, Li Z P, Liu R R, Fan Y P, Cui G L, Pang S P. ACS Energy Lett., 2020, 5: 263.
[72]
Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J. Adv. Energy Mater. , 2016, 6: 1502458.
[73]
Akkerman Q A, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L. Nat. Energy , 2016, 2.
[74]
Liu C, Li W Z, Li H Y, Wang H M, Zhang C L, Yang Y G, Gao X Y, Xue Q F, Yip H L, Fan J D, Schropp R E I, Mai Y H. Adv. Energy Mater., 2019, 9: 1803572.
[75]
Lau C F J, Deng X F, Zheng J H, Kim J, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A. J. Mater. Chem. A , 2018, 6: 5580.
[76]
Swarnkar A, Mir W J, Nag A. ACS Energy Lett., 2018, 3: 286.
[77]
Hu Y Q, Bai F, Liu X B, Ji Q M, Miao X L, Qiu T, Zhang S F. ACS Energy Lett., 2017, 2: 2219.
[78]
Guo Z L, Zhao S, Liu A M, Kamata Y, Teo S, Yang S Z, Xu Z H, Hayase S, Ma T L. ACS Appl. Mater. Interfaces , 2019, 11: 19994.
[79]
Xiang W C, Wang Z W, Kubicki D J, Tress W, Luo J S, Prochowicz D, Akin S, Emsley L, Zhou J T, Dietler G, Grätzel M, Hagfeldt A. Joule , 2019, 3: 205.
[80]
Lau C F J, Zhang M, Deng X F, Zheng J H, Bing J M, Ma Q S, Kim J, Hu L, Green M A, Huang S J, Ho-Baillie A. ACS Energy Lett., 2017, 2: 2319.
[81]
Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. J. Am. Chem. Soc., 2017, 139: 14009.
[82]
Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F. ACS Energy Lett., 2018, 3: 970.
[83]
Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y H, Shen Q, Hayase S. Angew. Chem. Inter Edit. , 2018, 57: 12745.
[84]
Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H. Nano Lett., 2017, 17: 2028.
[85]
Guo Y X, Zhao F, Tao J H, Jiang J C, Zhang J G, Yang J P, Hu Z G, Chu J H. ChemSusChem , 2019, 12: 983.
[86]
Wang L , Huo Z P , Yi J X , Ahmed A , Tasawar H , Dai S Y . Progress in Chemistry , 2017, 29: 870.
王露, 霍志鹏, 易锦馨 , Ahmed A , Tasawar H , 戴松元. 化学进展, 2017, 29: 870.
[87]
Zhang T Y, Dar M I, Li G, Xu F, Guo N J, Gratzel M, Zhao Y. Adv. Sci., 2017, 3: e1700841.
[88]
Li B, Zhang Y N, Fu L, Yu T, Zhou S J, Zhang L Y, Yin L W. Nat. Commun., 2018, 9: 1076.
[89]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science , 2016, 354: 92.
[90]
McHale J M, Auroux A, Perrotta A J, Navrotsky A. Science , 1997, 277: 788.
[91]
Liu C, Yang Y, Xia X, Ding Y, Arain Z, An S J, Liu X P, Cristina R C, Dai S Y, Nazeeruddin M K. Adv. Energy Mater., 2020, 10: 1903751.
[92]
Shi E Z, Yuan B, Shiring S B, Gao Y, Akriti, Guo Y F, Su C, Lai M L, Yang P D, Kong J, Savoie B M, Yu Y, Dou L T. Nature , 2020, 580: 614.
[93]
Jiang Y Z, Yuan J, Ni Y, Yang J E, Wang Y, Jiu T G, Yuan M J, Chen J. Joule , 2018, 2: 1356.
[94]
Wu T H, Wang Y B, Dai Z S, Cui D Y, Wang T, Meng X Y, Bi E B, Yang X D, Han L Y. Adv. Mater., 2019, 31: 1900605.
[95]
Peng H R, Cai M L, Zhou J Y, Yang Y, Ding X H, Tao Y, Wu G, Liu X P, Pan J H, Dai S Y. Solar RRL , 2020, 2000216.
[96]
Xu W Z, He F, Zhang M, Nie P B, Zhang S W, Zhao C, Luo R P, Li J Z, Zhang X, Zhao S C, Li W D, Kang F Y, Nan C W, Wei G D. ACS Energy Lett., 2019, 4: 2491.
[97]
Meng F N , Liu C Y , Gao L G , Ma T L . Progress in Chemistry , 2020, 32: 817.
孟凡宁, 刘彩云, 高立国, 马廷丽. 化学进展, 2020, 32: 817.
[98]
Wang H R, Bian H, Jin Z W, Liang L, Bai D L, Wang Q, Liu S Z. Sol. RRL , 2018, 2: 1800216.
[99]
Zhao H, Yang S M, Han Y, Yuan S H, Jiang H, Duan C Y, Liu Z K, Liu S Z. Adv. Mater. Technol., 2019, 4: 1900311.
[100]
Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y. Nat. Commun., 2020, 11: 177.
[101]
Wang L , Zhou Q , Huang Y Q , Zhang B , Feng Y Q . Progress in Chemistry , 2020, 32: 119.
王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 化学进展, 2020, 32: 119.
[102]
Liu H W, Wu Z N, Shao J R, Yao D, Gao H, Liu Y, Yu W L, Zhang H, Yang B. ACS Nano , 2017, 11: 2239.
[103]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15: 3692.
[104]
Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q. ACS Nano , 2017, 11: 10373.
[105]
Tolbert S H, Herhold A B, Johnson C S, Alivisatos A P. Phys. Rev. Lett., 1994, 73: 3266.
[106]
Sanehira E M, Marshall A R, Christians J A, Harvey S P, Luther J M. Sci. Adv., 2017, 3: eaao4204.
[107]
Ling X F, Zhou S J, Yuan J Y, Shi J W, Qian Y L, Larson B W, Zhao Q, Qin C C, Li F C, Shi G Z, Stewart C, Hu J X, Zhang X L, Luther J M, Duhm S, Ma W L. Adv. Energy Mater., 2019, 9: 1900721.
[108]
Zeng Z B, Zhang J, Gan X L, Sun H R, Shang M H, Hou D G, Lu C J, Chen R J, Zhu Y J, Han L Y. Adv. Energy Mater., 2018, 8: 1801050.
[109]
Qiu Z W, Li N X, Huang Z J, Chen Q, Zhou H P. Small Methods , 2020, 4: 1900877.
[110]
Tian J J, Xue Q F, Yao Q, Li N, Brabec C J, Yip H L. Adv. Energy Mater., 2020, 10: 2000183.
[1] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[2] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[3] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[4] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[5] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[6] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[7] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[8] Dongdong Zha, Wen Zhou, Peng Yin, Bin Guo, Bengang Li, Yanan Huang. Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(7): 1044-1055.
[9] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[10] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[11] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[12] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[13] Lu Wang, Zhipeng Huo, Jinxin Yi, Ahmed Alsaedi, Tasawar Hayat, Songyuan Dai. Functional Additives for Perovskite Layer in Organic and Inorganic Hybrid Perovskite Solar Cells [J]. Progress in Chemistry, 2017, 29(8): 870-878.
[14] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[15] Sun Yiran, Yang Mingxuan, Yu Fei, Chen Junhong, Ma Jie. Synthesis of Graphene Aerogel Adsorbents and Their Applications in Water Treatment [J]. Progress in Chemistry, 2015, 27(8): 1133-1146.