中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2270-2282 DOI: 10.7536/PC201145 Previous Articles   Next Articles

• Review •

Gel Polymer Electrolytes in Lithium Batteries

Qi Yang1,2, Nanping Deng2(), Bowen Cheng2, Weimin Kang1,2()   

  1. 1 School of Textile Science and Engineering, Tiangong University,Tianjin 300387, China
    2 State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University,Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Contact: Nanping Deng, Weimin Kang
  • Supported by:
    the National Natural Science Foundation of China(51973157); the National Natural Science Foundation of China(51673148); the National Natural Science Foundation of China(51678411); the China Postdoctoral Science Foundation(2019M651047); the Science and Technology Plans of Tianjin(19PTSYJC00010)
Richhtml ( 274 ) Cited

Lithium batteries have been widely used. However, traditional liquid electrolyte applied in the cell bring about unsatisfactory growth of lithium dendrite and safety problems due to its leak and low boiling point. Gel polymer electrolytes (GPEs) are intermediate substance between liquid electrolyte and solid electrolyte, which can act as not only electrolyte, but also battery separator, which reduce leakage risk of liquid electrolytes and high interface resistance of solid electrolytes. In the review, the preparation methods of different types of GPEs in lithium batteries, such as solution casting, phase conversion, in-situ polymerization, UV(ultraviolet) curing and electrospinning methods are concluded, and the applications of different fibers-based GPEs (poly (vinylidenefluoride, PVDF), poly (vinylidene fluoride-co-hexafluoropropene, PVDF-HFP), polymethyl methacrylate (PMMA), poly acrylonitrile (PAN) and poly-m-phenyleneisophthalamide (PMIA)) in lithium batteries are emphatically summarized. Finally, we conclude with an outlook section to provide some insights on the future prospects of GPEs in lithium batteries. The discussion and proposed strategies in the review will offer more avenues to the practical application of lithium batteries with high electrochemical performance in the future.

Contents

1 Introduction

2 Preparation methods of GPEs

2.1 Solution casting method

2.2 Phase inversion method

2.3 In-situ polymerization technology

2.4 UV curing technology

2.5 Electrospining method

3 GPEs in lithium ion batteries

3.1 GPEs based on PVDF

3.2 GPEs based on PVDF-HFP

3.3 GPEs based on PMMA

3.4 GPEs based on PAN

3.5 GPEs based on PMIA

3.6 Others

4 Conclusion and outlook

Fig.1 The Schematic diagram of charging and discharging of lithium ion battery[1]
Fig.2 Preparation of POSS-(C3H6Cl)8/PVDF GPE membrane supported by PP[36]
Fig.3 SEM images of pristine PVDF and PVDF/graphene polymer electrolyte: (a~c) pristine PVDF, (d~f) PVDF/graphene, (a, d) top view, (b, e) cross-section view, (c, f) bottom view[39]
Fig.4 (a) Schematic representations of the formation of microspheres; (b) the effects of microspheres on the GPE properties[41]
Fig.5 The schematic kinetic presentation to demonstrate the charging state of hybrid batteries with (a) 0%, (b) 30%, and (c) 50% LiSnOS in the gel electrolyte[65]
Fig.6 The proposed microstructure of the PVDF-HFP/LLZO composite separator[53]
Fig.7 TEM diagram of PHP@PHL fiber[34]
Fig.8 Preparation procedure for gel polymer electrolytes: (a) in situ polymerized on cell components for use in lithium-ion cells;(b) in situ polymerized on separator for use in LSV measurements; (c) self-standing membrane for use in conductivity and LSV measurements[67]
Fig.9 SEM images of pristine PAN membrane (a, b, c) and PAN/OMMT membrane (d, e, f): upper view (a, d), bottom view (b, e), cross section (c, f)[16]
Fig.10 The related illustrations of phase inversion method[26]
Fig.11 The schematic of lithium-ion transporting mechanism of cellulose/PEG GPE[27]
Fig.12 (a) Schematic illustration for the preparation route of GPE@LFP cathode and GPE@LFP//CGPE//Li cell; microscopic model of (b) GPE@LFP cathode and (c) GPE@LFP//CGPE//Li cell; SEM images of (d) LFP cathode; (e) GPE@LFP cathode; f) TEM images of GPE@LFP cathode[88]
[1]
Wang Q S, Mao B B, Stoliarov S I, Sun J H. Prog. Energy Combust. Sci., 2019, 73: 95.
[2]
Fan L Z, Wang X L, Long F, Wang X. Solid State Ion., 2008, 179(27/32): 1772.
[3]
Shao D S, Yang L, Luo K L, Chen M F, Zeng P, Liu H, Liu L, Chang B B, Luo Z G, Wang X Y. Chem. Eng. J., 2020, 389: 124300.
[4]
Hu Z Y, Chen J J, Guo Y, Zhu J J, Qu X X, Niu W W, Liu X K. J. Membr. Sci., 2020, 599: 117827.
[5]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.
[6]
Verdier N, Lepage D, Zidani R, PrÉbÉ A, AymÉ-Perrot D, Pellerin C, DollÉ M, Rochefort D. ACS Appl. Energy Mater., 2020, 3(1): 1099.
[7]
Li W Y, Pang Y, Zhu T C, Wang Y G, Xia Y Y. Solid State Ion., 2018, 318: 82.
[8]
Nagajothi A J, Kannan R, Rajashabala S. Polym. Bull., 2017, 74(12): 4887.
[9]
Wang Q S, Wen Z Y, Jin J, Guo J, Huang X, Yang J H, Chen C H. Chem. Commun., 2016, 52(8): 1637.
[10]
Han D D, Wang Z Y, Pan G L, Gao X P. ACS Appl. Mater. Interfaces, 2019, 11(20): 18427.
[11]
Hao X J, Wenren H Y, Wang X L, Xia X H, Tu J P. J. Colloid Interface Sci., 2020, 558: 145.
[12]
Natarajan A, Stephan A M, Chan C H, Kalarikkal N, Thomas S. J. Appl. Polym. Sci., 2017, 134(11): 44594.
[13]
Xia Y, Liang Y F, Xie D, Wang X L, Zhang S Z, Xia X H, Gu C D, Tu J P. Chem. Eng. J., 2019, 358: 1047.
[14]
Wang X L, Hao X J, Cai D, Zhang S Z, Xia X H, Tu J P. Chem. Eng. J., 2020, 382: 122714.
[15]
Liang Y F, Xia Y, Zhang S Z, Wang X L, Xia X H, Gu C D, Wu J B, Tu J P. Electrochimica Acta, 2019, 296: 1064.
[16]
He C F, Liu J Q, Cui J Q, Li J, Wu X F. Solid State Ion., 2018, 315: 102.
[17]
He C F, Liu J Q, Li J, Zhu F F, Zhao H J. J. Membr. Sci., 2018, 560: 30.
[18]
Tan L, Deng Y Y, Cao Q, Jing B, Wang X Y, Liu Y W. Ionics, 2019, 25(8): 3673.
[19]
Liu B, Huang Y, Huang Y X, Deng X H, Song A, Lin Y H, Wang M S, Li X, Wu Y P, Cao H J. J. Appl. Electrochem., 2019, 49(12): 1167.
[20]
Marzantowicz M, Dygas J R, Krok F, Tomaszewska A, Z·ukowska G Z, Florjańczyk Z, Zygadło-Monikowska E. Electrochimica Acta, 2010, 55(19): 5446.
[21]
Huang B Y, Wang Z X, Chen L Q, Xue R J, Wang F S. Solid State Ion., 1996, 91(3/4): 279.
[22]
Ding C F, Huang L B, Guo Y R, Lan J L, Yu Y H, Fu X W, Zhong W H, Yang X P. Energy Storage Mater., 2020, 27: 25.
[23]
Das R, Pattanayak A J, Swain S K. 2018, 205.
[24]
Chen H Y, Xu P, Chen L, Li X L, Ding Y S. Mater. Lett., 2020, 277: 128391.
[25]
Shen Y Q, Zeng F L, Zhou X Y, Wang A B, Wang W K, Yuan N Y, Ding J N. J. Energy Chem., 2020, 48: 267.
[26]
Liu B, Huang Y, Cao H J, Zhao L, Huang Y X, Song A M, Lin Y H, Li X, Wang M S. J. Membr. Sci., 2018, 545: 140.
[27]
Zhao L Z, Fu J C, Du Z, Jia X B, Qu Y Y, Yu F, Du J, Chen Y. J. Membr. Sci., 2020, 593: 117428.
[28]
Nirmale T C, Karbhal I, Kalubarme R S, Shelke M V, Varma A J, Kale B B. ACS Appl. Mater. Interfaces, 2017, 9(40): 34773.
[29]
Lei B, Yang J, Xu Z X, Su S S, Wang D, Jiang J H, Feng J. Chem. Commun., 2018, 54(96): 13567.
[30]
Shao D S, Wang X Y, Li X L, Luo K L, Yang L, Liu L, Liu H. J. Solid State Electrochem., 2019, 23(10): 2785.
[31]
Paran SMR, Karimi M, Saeb MR. F. 2019,355.
[32]
Li Hongqiang, Ge Huiqin, Zhao Jianshe, Wang Jingwu, Zeng Xingrong. Paint. Coat. Ind., 2007, 37(7): 1.
( 李红强, 葛会勤, 赵建设, 王经武, 曾幸荣. 涂料工业, 2007, 37(7): 1.)
[33]
Liu R P, Wu Z R, He P, Fan H Y, Huang Z Y, Zhang L, Chang X S, Liu H, Wang C G, Li Y T. J. Materiomics, 2019, 5(2): 185.
[34]
Liu X X, Ren Y F, Zhang L, Zhang S J. Front. Chem., 2019, 7:421.
[35]
Jamalpour S, Ghahramani M, Ghaffarian S R, Javanbakht M. Polymer, 2020, 195: 122427.
[36]
Zhang Q, Liu Y, Ma J Y, Zhang M, Ma X Y, Chen F. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 580: 123750.
[37]
David B. Cordes PDL, and Franck Rataboul. Chem. Rev., 2010, 110:2081.
[38]
Zhang M, Ma X Y, Liu Y, Ma J Y, Chen F, Zhang Q. Ionics, 2019, 25(6): 2595.
[39]
Liu J Q, Wu X F, He J Y, Li J, Lai Y Q. Electrochimica Acta, 2017, 235: 500.
[40]
Xiao Q, Deng C, Wang Q, Zhang Q J, Yue Y, Ren S J. ACS Omega, 2019, 4(1): 95.
[41]
Zuo X X, Ma X D, Wu J H, Deng X, Xiao X, Liu J S, Nan J M. Electrochimica Acta, 2018, 271: 582.
[42]
Wei H R, Rodriguez K, Renneckar S, Vikesland P J. Environ. Sci.: Nano, 2014, 1(4): 302.
[43]
Pan R J, Cheung O, Wang Z H, Tammela P, Huo J X, Lindh J, Edström K, Str􀱼mme M, Nyholm L. J. Power Sources, 2016, 321: 185.
[44]
Xu J L, Liu Y W, Cao Q, Jing B, Wang X Y, Tan L. J. Chem. Sci., 2019, 131(6): 1.
[45]
Wu N, Jing B, Cao Q, Wang X Y, Kuang H, Wang Q. J. Appl. Polym. Sci., 2012, 125(4): 2556.
[46]
Lee Y Y, Liu Y Y. Electrochimica Acta (2017).
[47]
Wu X M, Liu Y, Yang Q L, Wang S, Hu G H, Xiong C X. Ionics, 2017, 23(9): 2319.
[48]
Zeng Z, Yu J, Guo Z X, Li Y. Front. Chem. China, 2006, 1(4): 459.
[49]
Mani S, Khabaz F, Godbole R V, Hedden R C, Khare R. J. Phys. Chem. B, 2015, 119(49): 15381.
[50]
Wang Q J, Song W L, Fan L Z, Shi Q. J. Power Sources, 2015, 279: 405.
[51]
Rocco A. Solid State Ion., 2004, 166(1/2): 115.
[52]
Li Y, Wong K W, Ng K M. Chem. Commun., 2016, 52(23): 4369.
[53]
Shi X Y, Sun Q W, Boateng B, Niu Y H, Han Y D, Lv W, He W D. J. Power Sources, 2019, 414: 225.
[54]
Borzutzki K, Thienenkamp J, Diehl M, Winter M, Brunklaus G. J. Mater. Chem. A, 2019, 7(1): 188.
[55]
Li Y H, Sun Z J, Shi L, Lu S Y, Sun Z H, Shi Y C, Wu H, Zhang Y F, Ding S J. Chem. Eng. J., 2019, 375: 121925.
[56]
Guo P L, Su A Y, Wei Y J, Liu X K, Li Y, Guo F F, Li J, Hu Z Y, Sun J Q. ACS Appl. Mater. Interfaces, 2019, 11(21): 19413.
[57]
Zhang P F, Li M T, Yang B L, Fang Y X, Jiang X G, Veith G M, Sun X G, Dai S. Adv. Mater., 2015, 27(48): 8088.
[58]
Zhou D, Liu R L, Zhang J, Qi X G, He Y B, Li B H, Yang Q H, Hu Y S, Kang F Y. Nano Energy, 2017, 33: 45.
[59]
Kuo P L, Tsao C H, Hsu C H, Chen S T, Hsu H M. J. Membr. Sci., 2016, 499: 462.
[60]
Shen X, Hua H M, Li H, Li R Y, Hu T X, Wu D Z, Zhang P, Zhao J B. Polymer, 2020, 201: 122568.
[61]
Kou Z Y, Liu C J, Miao C, Mei P, Yan X M, Xiao W. Ionics, 2020, 26(4): 1729.
[62]
Antunes R A, de Oliveira M C L, Ett G, Ett V. J. Power Sources, 2011, 196(6): 2945.
[63]
Yi T F, Qiu L Y, Mei J, Qi S Y, Cui P, Luo S H, Zhu Y R, Xie Y, He Y B. Sci. Bull., 2020, 65(7): 546.
[64]
Kou Z Y, Miao C, Wang Z Y, Xiao W. Solid State Ion., 2019, 343: 115090.
[65]
Kuo D H, Lo R, Hsueh T H, Jan D J, Su C H. J. Power Sources, 2019, 429: 89.
[66]
Zhang J Q, Sun B, Xie X Q, Kretschmer K, Wang G X. Electrochimica Acta, 2015, 183: 56.
[67]
Hosseinioun A, Paillard E. J. Membr. Sci., 2020, 594: 117456.
[68]
Hosseinioun A, Nürnberg P, Schönhoff M, Diddens D, Paillard E. RSC Adv., 2019, 9(47): 27574.
[69]
Wang Y F, Sun M, Liu W L, Ren M M, Kong F G, Wang S J, Wang X Q, Peng D, Sun J L. Ionics, 2019, 25(8): 3695.
[70]
Zhang Z P, Gu A J, Liang G Z, Ren P G, Xie J Q, Wang X L. Polym. Degrad. Stab., 2007, 92(11): 1986.
[71]
Huang Y X, Huang Y, Liu B, Cao H J, Zhao L, Song A, Lin Y H, Wang M S, Li X, Zhang Z P. Electrochimica Acta, 2018, 286: 242.
[72]
Lan Z, Wu J H, Wang D B, Hao S C, Lin J M, Huang Y F. Sol. Energy, 2006, 80(11): 1483.
[73]
Wu J H, Lan Z, Wang D B, Hao S C, Lin J M, Huang Y F, Yin S, Sato T. Electrochimica Acta, 2006, 51(20): 4243.
[74]
Cao J, Wang L, Fang M, Shang Y M, Deng L F, Yang J P, Li J J, Chen H, He X M. Electrochimica Acta, 2013, 114: 527.
[75]
Liao Y H, Sun C J, Hu S J, Li W S. Electrochimica Acta, 2013, 89: 461.
[76]
Tseng Y H, Lin Y H, Subramani R, Su Y H, Lee Y L, Jan J S, Chiu C C, Hou S S, Teng H. J. Power Sources, 2020, 480: 228802.
[77]
Zhai Y Y, Wang N, Mao X, Si Y, Yu J Y, Al-Deyab S S, El-Newehy M, Ding B. J. Mater. Chem. A, 2014, 2(35): 14511.
[78]
Kang W M, Deng N P, Ma X M, Ju J G, Li L, Liu X H, Cheng B W. Electrochimica Acta, 2016, 216: 276.
[79]
Zhao H J, Deng N P, Ju J G, Li Z J, Kang W M, Cheng B W. Mater. Lett., 2019, 236: 101.
[80]
Zhao H J, Deng N P, Kang W M, Li Z J, Wang G, Cheng B W. Energy Storage Mater., 2020, 26: 334.
[81]
Zhao H J, Deng N P, Kang W M, Cheng B W. Chem. Eng. J., 2020, 390: 124571.
[82]
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40(7): 3941.
[83]
Du Z, Su Y Z, Qu Y Y, Zhao L Z, Jia X B, Mo Y, Yu F, Du J, Chen Y. Electrochimica Acta, 2019, 299: 19.
[84]
Yu F, Zhang H B, Zhao L Z, Sun Z P, Li Y L, Mo Y, Chen Y. Carbohydr. Polym., 2020, 246: 116622.
[85]
Gou J R, Liu W Y, Tang A M. Polymer, 2020, 208: 122943.
[86]
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater., 2018, 10: 85.
[87]
Long L Z, Wang S J, Xiao M, Meng Y Z. J. Mater. Chem. A, 2016, 4(26): 10038.
[88]
Zhang S Z, Xia X H, Xie D, Xu R C, Xu Y J, Xia Y, Wu J B, Yao Z J, Wang X L, Tu J P. J. Power Sources, 2019, 409: 31.
[89]
Zheng J Y, Yang Y W, Feng X M, Li X, Zhen X M, Chen W H, Zhao Y F. React. Funct. Polym., 2020, 149: 104535.
[90]
Ai G, Dai Y L, Ye Y F, Mao W F, Wang Z H, Zhao H, Chen Y L, Zhu J F, Fu Y B. Nano Energy 2015, 16: 28.
[91]
Xu Z Q, Li W L, Chen Z, Wang D X, Feng T T, Potapenko H, Wu M Q. Macromol. Mater. Eng., 2019, 304(1): 1800477.
[92]
Filippin A N, Sanchez-Valencia J R, Idígoras J, Macias-Montero M, Alcaire M, Aparicio F J. Advanced Materials Interfaces, 2017, 4:1601233.
[93]
Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38): 19218.
[94]
Jin L, Ahmed F, Ryu T, Yoon S, Zhang W, Lee Y, Kim D, Jang H, Kim W. Membranes, 2019, 9(11): 139.
[95]
Liu M, Wang Y, Li M, Li G Q, Li B, Zhang S T, Ming H, Qiu J Y, Chen J H, Zhao P C. Electrochimica Acta, 2020, 354: 136622.
[1] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[2] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[3] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[4] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[5] Zenghua Chang, Jiantao Wang, Zhaohui Wu, Jinling Zhao, Shigang Lu. Concentrated Electrolyte for Lithium/Li-Ion Batteries [J]. Progress in Chemistry, 2018, 30(12): 1960-1974.
[6] . Ionic Conductivity in Mesoporous Materials [J]. Progress in Chemistry, 2009, 21(04): 765-770.
[7]

Cui Mengzhong1,2** Li Zhuyun3 Zhang Jie1 Feng Shengyu1**

. siloxane-based polymer electrolytes [J]. Progress in Chemistry, 2008, 20(12): 1987-1997.
[8]

Liang Feng** |Dai Yongnian|Yi Huihua|Xiong Xue

. Nano-Scale LiFePO4 as Lithium Ion Battery Cathode Materials [J]. Progress in Chemistry, 2008, 20(10): 1606-1611.
[9] Feng Xu|He Xiangming*|Pu Weihua|Wan Chunrong|Jiang Changyin. FeS2 Cathode Materials for Lithium Batteries [J]. Progress in Chemistry, 2008, 20(0203): 396-404.
[10] Li Wang Xiangming He Weihua Pu Changyin Jiang Chunrong Wan . Progress in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2006, 18(05): 641-647.
[11] Zhijun Ling,Xiangming He*,Jianjun Li,Changyin Jiang,Chunrong Wan. Recent Advances of All-Solid-State Polymer Electrolyte for Li-Ion Batteries [J]. Progress in Chemistry, 2006, 18(04): 459-466.
[12] Xiangming He,Weihua Pu,Li Wang,Changyin Jiang,Chunrong Wan. Plastic Crystals: An Effective Ambient Temperature All-Solid-State Electrolyte for Lithium Batteries [J]. Progress in Chemistry, 2006, 18(01): 24-29.
[13] Xie Yahong1,Liu Ruiquan1,Wang Jide1*,Li Zhijie1,Lu Yi2. Structure and Ionic Conductivities of Oxides with a Pyrochlore-Type Structure [J]. Progress in Chemistry, 2005, 17(04): 672-677.
[14] Zhao Feng,Qian Xinming,Wang Erkang,Dong Shaojun**. Advances in Ionic Conductive Polymer Electrolytes [J]. Progress in Chemistry, 2002, 14(05): 374-.
[15] Wang Qingwei,Xie Demin. Progress in Gel Electrolyte [J]. Progress in Chemistry, 2002, 14(03): 167-.
Viewed
Full text


Abstract