中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 124-135 DOI: 10.7536/PC200684 Previous Articles   Next Articles

• Review •

Composite Solid Electrolytes with High Contents of Ceramics

Qiuyan Liu1,2, Xuefeng Wang1,*(), Zhaoxiang Wang1,2,*(), Liquan Chen1   

  1. 1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Xuefeng Wang, Zhaoxiang Wang
Richhtml ( 36 ) PDF ( 1357 ) Cited
Export

EndNote

Ris

BibTeX

The all-solid secondary lithium batteries are characteristic of high energy density and high safety. Combining the high flexibility of the polymer electrolytes and the high mechanical strength and high Li-ion transference number of the ceramic electrolytes, the ceramic-polymer composite solid electrolytes with high ceramic contents(HCC) are expected to find applications prior to the other solid electrolytes in the all-solid secondary lithium batteries. Following a brief introduction on the composite solid electrolytes, the recent advances of the HCC ceramic-polymer composite electrolyte are reviewed in the general performances of the composite electrolytes, the fabrications of their membranes, the ceramic-polymer interfacial interactions and the resultant new ionic transport mechanisms. At the end of this review, we prospect the fundamental and applicable issues that the HCC composite electrolytes have to meet and propose the future research directions and possible solutions to these questions. We wish that this review could be of help for the R&D of the composite solid electrolytes of other ions as well.

Contents

1 Introduction

2 Composite solid electrolytes with high ceramic contents

2.1 Characteristics of high ceramic-contents composite electrolytes

2.2 Fabrication of high ceramic-content composite membranes

3 Ceramic-polymer interactions and extra Li-ion transport passage

3.1 Ceramic-polymer interfacial interactions

3.2 Optimization of ceramic-polymer composite electrolytes

4 Conclusion and perspectives

Table 1 Some composite solid electrolytes with high contents of ceramics[30,32,33,38,40,43,44,54,58 ?~60,103,106 ? ?~109]
[1]
Li L S, Deng Y F, Chen G H. Journal of Energy Chemistry , 2020, 50: 154.
[2]
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Advanced Science , 2020, 7( 5): 1903088.
[3]
Lv F, Wang Z Y, Shi L Y, Zhu J F, Edstrom K, Mindemark J, Yuan S. Journal of Power Sources , 2019, 441: 227175.
[4]
Cheng X B , Zhang Q . Progress in Chemistry , 2018, 30( 1): 51.
程新兵, 张强. 化学进展, 2018, 30( 1): 51.
[5]
Hou Z, Zhang J L, Wang W H, Chen Q W, Li B H, Li C L. Journal of Energy Chemistry , 2020, 45: 7.

doi: 10.1016/j.jechem.2019.09.028
[6]
Lv X J , Meng F L , Wu Y N . China's Ceramics , 2019, 55(4): 1.
吕晓娟, 孟繁丽, 吴亚楠. 中国瓷器, 2019, 55(4): 1.
[7]
Wu M S, Xu B, Luo W W, Sun B Z, Shi J, Ouyang C Y. Applied Surface Science , 2020, 510: 145394.

doi: 10.1016/j.apsusc.2020.145394
[8]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology , 2019, 31( 13): 132003.

doi: 10.1088/1361-6528/ab5be7
[9]
Samson A J , Hofstetter K , Bag S , Thangadurai V . Energy & Environment Science , 2019, 12( 10): 2957.
[10]
Garcia-Mendez R, Smith J G, Neuefeind J C, Siegel D J, Sakamoto J. Advanced Energy Materials , 2020, 2000335.
[11]
Zhao F , Qian X M , Wang E K , Dong S J . Progress in Chemistry , 2002, 14( 5): 374.
赵峰, 钱新明, 汪尔康, 董绍俊. 化学进展, 2002, 14( 5): 374.
[12]
Croce F , Appetecchi G B , Persi L , Scrosati B . Nature , 1998, 394( 6692): 456.

doi: 10.1038/28818
[13]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Applied Materials & Interfaces , 2017, 9( 26): 21773.

doi: 10.1021/acsami.7b03806
[14]
Wu N, Chien P H, Li Y T, Dolocan A, Xu H H, Xu B Y, Grundish N S, Jin H B, Hu Y Y, Goodenough J B. Journal of the American Chemical Society , 2020, 142( 5): 2497.

doi: 10.1021/jacs.9b12233
[15]
Song S F , Wu Y M , Tang W P , Deng F , Yao J Y , Liu Z W , Hu R J , Alamusi, Wen Z Y, Lu L, Hu N. ACS Sustainable Chemistry & Engineering , 2019, 7( 7): 7163.
[16]
Chen L, Li W X, Fan L Z, Nan C W, Zhang Q. Advanced Functional Materials , 2019, 29: 1901047.

doi: 10.1002/adfm.v29.28
[17]
Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 26): 7094.
[18]
Wang S, Zhang L, Li J Y, Zeng Q H, Liu X, Chen P P , Lai W Y, Zhao T, Zhang L Y. Electrochimica Acta , 2019, 320: 134560.

doi: 10.1016/j.electacta.2019.134560
[19]
Pila C R M, Cappe E P, Mohallem N D, Alves O L, Frutis M A A, Sanchez-Ramirez N, Torresi R M, Ramirez H L, Laffita Y M. Solid State Sciences , 2018, 88: 41.

doi: 10.1016/j.solidstatesciences.2018.10.014
[20]
Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Nano Letters , 2015, 15: 2740.

doi: 10.1021/acs.nanolett.5b00600
[21]
Liu W, Lin D C, Sun J, Zhou G M, Cui Y. ACS Nano , 2016, 10: 11407.

doi: 10.1021/acsnano.6b06797
[22]
Wan J, Xie J, Mackanic D G, Burke W, Bao Z, Cui Y. Materials Today Nano , 2018, 4: 1.

doi: 10.1016/j.mtnano.2018.12.003
[23]
Zhu L, Zhu P H, Yao S S, Shen X Q, Tu F Y. International Journal of Energy Research , 2019, 43( 9): 4854.

doi: 10.1002/er.v43.9
[24]
Manuel Stephan A, Nahm K S. Polymer , 2006, 47( 16): 5952.

doi: 10.1016/j.polymer.2006.05.069
[25]
Chen J M , Xiong J W , Ji S M , Huo Y P , Zhao J W , Liang L . Progress in Chemistry , 2020, 32( 4): 482.
陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁量. 化学进展, 2020, 32( 4): 482.
[26]
Skaarup S, West K, Christiansen B Z. Solid State Ionics , 1988, 28/30: 975.

doi: 10.1016/0167-2738(88)90314-1
[27]
Inda Y , Katoh T , Baba M . Journal of Power Sources , 2007, 174( 2): 741.

doi: 10.1016/j.jpowsour.2007.06.234
[28]
Syzdek J , Armand M , Gizowska M , Marcinek M , Sasim E , Szafran M , Wieczorek W . Journal of Power Sources , 2009, 194( 1): 66.

doi: 10.1016/j.jpowsour.2009.01.070
[29]
Xu X L, Hui K S, Hui K N, Wang H, Liu J B. Materials Horizons , 2020, 7: 1246.

doi: 10.1039/C9MH01701A
[30]
He Z J, Chen L, Zhang B C, Liu Y C, Fan L Z. Journal of Power Sources , 2018, 392: 232.

doi: 10.1016/j.jpowsour.2018.05.006
[31]
Keller M, Appetecchi G B, Kim G T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S. Journal of Power Sources , 2017, 353: 287.

doi: 10.1016/j.jpowsour.2017.04.014
[32]
Yang L Y , Wang Z J , Feng Y C , Tan R , Zuo Y X , Gao R T , Zhao Y , Han L , Wang Z Q , Pan F . Advanced Energy Materials , 2017, 7( 22): 1701437.

doi: 10.1002/aenm.201701437
[33]
Bae J, Li Y T, Zhao F, Zhou X Y, Ding Y, Yu G H. Energy Storage Materials , 2018, 15: 46.

doi: 10.1016/j.ensm.2018.03.016
[34]
Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C. Journal of Energy Storage , 2019, 26: 100947.

doi: 10.1016/j.est.2019.100947
[35]
Ramakrishnan P, Kwak H, Cho Y H, Kim J H. ChemElectroChem , 2018, 5( 9), 1265.

doi: 10.1002/celc.v5.9
[36]
He Z J, Fan L Z. Rare Metal , 2018, 37( 6): 488.

doi: 10.1007/s12598-018-1017-y
[37]
Peng X , Huang K , Song S P , Wu F , Xiang Y , Zhang X K . ChemElectroChem , 2020, 7( 11): 2389.

doi: 10.1002/celc.v7.11
[38]
Zhang Y B, Chen R J, Wang S, Liu T, Xu B Q, Zhang X, Wang X Z, Shen Y, Lin Y H, Li M, Fan L Z, Li L L, Nan C W. Energy Storage Materials , 2020, 25: 145.

doi: 10.1016/j.ensm.2019.10.020
[39]
Huo H Y , Chen Y , Luo J , Yang X F , Guo X X , Sun X L . Advanced Energy Materials , 2019, 9( 17): 1804004.

doi: 10.1002/aenm.v9.17
[40]
Li R G, Guo S T, Yu L, Wang L B, Wu D B, Li Y Q, Hu X L. Advanced Materials Interfaces , 2019, 6: 1900200.

doi: 10.1002/admi.v6.10
[41]
Huang Z Y, Tong R A, Zhang J, Chen L H, Wang C A. Journal of Power Sources , 2020, 451: 227797.

doi: 10.1016/j.jpowsour.2020.227797
[42]
Zhang J, Zheng C, Lou J T, Xia Y, Liang C, Huang H, Gan Y P, Tao X Y, Zhang W K. Journal of Power Source , 2019, 412: 78.

doi: 10.1016/j.jpowsour.2018.11.036
[43]
Cha J H, Didwal P N, Kim J M, Chang D R, Park C J. Journal of Membrane Science , 2019, 575: 200.

doi: 10.1016/j.memsci.2019.01.025
[44]
Kim D H, Kim M Y, Yang S H, Ryu H M, Jung H Y, Ban H J, Park S J, Lim J S, Kim H S. Journal of Industrial and Engineering Chemistry , 2019, 71: 445.

doi: 10.1016/j.jiec.2018.12.001
[45]
Jiang T L , He P G , Wang G X , Shen Y , Nan C W , Fan L Z . Advanced Energy Materials , 2020, 10( 12): 1903376.

doi: 10.1002/aenm.v10.12
[46]
Zha W P, Chen F, Yang D J, Shen Q, Zhang L M. Journal of Power Sources , 2018, 397: 87.

doi: 10.1016/j.jpowsour.2018.07.005
[47]
Duan H , Fan M , Chen W P , Li J Y , Wang P F , Wang W P , Shi J L , Yin Y X , Wan L J , Guo Y G . Advanced Materials, 2019, 31( 12): 1807789.

doi: 10.1002/adma.v31.12
[48]
Liu M, Cheng Z, Ganapathy S, Wang C, Haverkate L A, Tulodziecki M, Unnikrishnan S, Wagemaker M. ACS Energy Letters , 2019, 4( 9): 2336.

doi: 10.1021/acsenergylett.9b01371
[49]
Chen R J, Qu W J, Guo X, Li L, Wu F. Materials Horizons , 2016, 3( 6): 487.

doi: 10.1039/C6MH00218H
[50]
Langer F, Bardenhagen I, Glenneberg J, Kun R. Solid State Ionics , 2016, 291: 8.

doi: 10.1016/j.ssi.2016.04.014
[51]
Liang B, Tang S Q, Jiang Q B, Chen C S, Chen X, Li S L, Yan X H. Electrochimica Acta , 2015, 169: 334.

doi: 10.1016/j.electacta.2015.04.039
[52]
Choi J H, Lee C H, Yu J H, Doh C H, Lee S M. Journal of Power Sources , 2015, 274: 458.

doi: 10.1016/j.jpowsour.2014.10.078
[53]
Xie H , Bao Y H , Cheng J , Wang C W , Hitz E M , Yang C P , Liang Z A , Zhou Y B , He S M , Li T , Hu L B . ACS Energy Letters , 2019, 4( 11): 2668.

doi: 10.1021/acsenergylett.9b01847
[54]
Yan C Y, Zhu P, Jia H, Du Z, Zhu J D, Orenstein R, Cheng H, Wu N Q, Dirican M, Zhang X W. Energy Storage Materials , 2020, 26: 228.
[55]
Lin Z Y, Guo X W, Wang Z C, Wang B Y, He S M, O’Dell L A, Huang J, Li H, Yu H J, Chen L Q. Nano Energy , 2020, 73: 104786.

doi: 10.1016/j.nanoen.2020.104786
[56]
Zaman W, Hortance N, Dixit M B, De Andrade V, Hatzell K B. Journal of the American Chemical Society , 2019, 7: 23914.
[57]
Zha W P, Xu Y H, Chen F, Shen Q, Zhang L M. Solid State Ionics , 2019, 330: 54.

doi: 10.1016/j.ssi.2018.12.008
[58]
Cheng J, Hou G M, Sun Q, Liang Z, Xu X Y, Guo J G, Dai L N, Li D P, Nie X K, Zeng Z, Si P C, Ci L J. Solid State Ionics , 2020, 345: 115156.

doi: 10.1016/j.ssi.2019.115156
[59]
Li Y, Ding, F, Xu Z B, Sang L, Ren L B, Ni W, Liu X J. Journal of Power Sources , 2018, 397: 95.

doi: 10.1016/j.jpowsour.2018.05.050
[60]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy , 2018, 46: 176.

doi: 10.1016/j.nanoen.2017.12.037
[61]
Gupta A , Sakamoto J . Electrochemical Society Interface , 2019, 28( 2): 63.

doi: 10.1149/2.F06192if
[62]
Borodin O, Smith G D, Bandyopadhyaya R, Redfern P, Curtiss L A. Modelling and Simulation in Materials Science and Engineering , 2004, 12( 3): S73.

doi: 10.1088/0965-0393/12/3/S02
[63]
Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. ACS Nano Letters , 2018, 18, 6: 3829.
[64]
Song S D, Qin X H, Ruan Y L, Li W J, Xu Y Q, Zhang D Q, Thokchom J. Journal of Power Sources , 2020, 461: 228146.

doi: 10.1016/j.jpowsour.2020.228146
[65]
Zewde B W, Admassie S, Zimmermann J, Isfort, C S, Scrosati B, Hassoun J. ChemSusChem , 2013, 6( 8): 1400.

doi: 10.1002/cssc.201300296
[66]
Xu Z, Yang T, Chu X, Su H, Wang Z X, Chen N J, Gu B N, Zhang H P, Deng W L, Zhang HT , Yang W Q. ACS Applied Materials & Interfaces , 2020, 12( 9): 10341.

doi: 10.1021/acsami.9b20128
[67]
Polu A R, Rhee H W. Journal of Industrial and Engineering Chemistry, 2016, 37: 347.

doi: 10.1016/j.jiec.2016.03.042
[68]
Masoud E M, El-Bellihi A A, Bayoumy W A, Mousa M A. Journal of Alloys and Compounds , 2013, 575: 223.

doi: 10.1016/j.jallcom.2013.04.054
[69]
Dissanayake M A K L, Jayathilaka P A R D, Bokalawala R S P, Albinsson I, Mellander B E. Journal of Power Sources , 2003, 119/121: 409.

doi: 10.1016/S0378-7753(03)00262-3
[70]
Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson M A. Electrochimica Acta , 2001, 46( 16): 2457.

doi: 10.1016/S0013-4686(01)00458-3
[71]
Chen-Yang Y W, Chen H C, Lin F J, Liao C W, Chen T L. Solid State Ionics , 2003, 156: 383.

doi: 10.1016/S0167-2738(02)00683-5
[72]
Jayathilaka P A R D, Dissanayake M A K L, Albinsson I , Mellander B E . Electrochimica Acta , 2002, 47( 20): 3257.

doi: 10.1016/S0013-4686(02)00243-8
[73]
van Wuellen L, Koster T K J, Wiemhofer H D, Kaskhedikar N. Chemistry of Materials , 2008, 20( 24): 7399.

doi: 10.1021/cm801841j
[74]
van Wuellen L, Koster T K J. Solid State Ionics , 2009, 108( 2/3): 141.

doi: 10.1016/S0167-2738(98)00032-0
[75]
Wang Z X, Huang X J, Chen L Q. Electrochemical and Solid-State Letters , 2003, 6: E40.

doi: 10.1149/1.1615352
[76]
Liu W , Milcarek R J , Falkenstein-Smith R L , Ahn J . Journal of Electrochemical Energy Conversion and Storage , 2016, 13( 2): UNSP 021008.
[77]
Xu H H, Chien P H, Shi J J, Li Y T, Wu N, Liu Y Y, Hu Y Y, Goodenough J B. Proceedings of the National Academy of Sciences of the United States of America , 2019, 116( 38): 18815.
[78]
Zheng J , Wang P B , Liu H Y , Hu Y Y . ACS Applied Energy Materials , 2019, 2( 2): 1452.

doi: 10.1021/acsaem.8b02008
[79]
Romero M, Faccio R, Vazquez S, Mombru A W. Materials Letters , 2016, 172: 1.

doi: 10.1016/j.matlet.2016.02.128
[80]
Sun J Q, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. Chemcical Engineering Journal , 2019, 375: UNSP 121922.
[81]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy , 2016, 28: 447.

doi: 10.1016/j.nanoen.2016.09.002
[82]
Bae J, Li Y T, Zhang J, Zhou X Y, Zhao F, Shi Y, Goodenough J B, Yu G H. Angewandte Chemie International Edition , 2018, 57( 8): 2096.
[83]
Liu Q, Geng Z, Han C P, Fu Y Z, Li S, He Y B, Kang F Y, Li B H. Journal of Power Sources , 2018, 389: 120.

doi: 10.1016/j.jpowsour.2018.04.019
[84]
Li Z , Huang H M , Zhu J K , Wu J F , Yang H , Wei L , Guo X . ACS Applied Materials & Interfaces , 2019, 11( 1): 784.

doi: 10.1021/acsami.8b17279
[85]
Liang C C. Journal of the Electrochemical Society , 1973, 120( 10): 1289.

doi: 10.1149/1.2403248
[86]
Chen C, Guo X X. Acta Chimica Slovenica , 2016, 63: 489.
[87]
Bhattacharyya A J, Maier J. Advanced Materials , 2004, 16: 811.

doi: 10.1002/(ISSN)1521-4095
[88]
Li Z, Xie H X, Zhang X Y, Guo X. Journal of Materials Chemistry A , 2020, 8: 3892.

doi: 10.1039/C9TA09969G
[89]
Gao J, Shao Q J, Chen J. Journal of Energy Chemistry , 2020, 46: 237.

doi: 10.1016/j.jechem.2019.11.012
[90]
Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y. Nature Energy , 2017, 2: 17035.

doi: 10.1038/nenergy.2017.35
[91]
Zheng J , Tang M X , Hu Y Y . Angewandte Chemie International Edition , 2016, 128( 40): 12726.
[92]
Kato M S, Hiraoka O J, Seki S R O. Journal of the Electrochemical Society , 2020, 167: 070559.

doi: 10.1149/1945-7111/ab8478
[93]
Zhou Q , Ma J , Dong S M , Li X F , Cui G L . Advanced Materials , 2019, 31( 50): 1902029.

doi: 10.1002/adma.v31.50
[94]
Liang B, Tang S Q, Jiang Q B, Chen C S, Chen X, Li S L, Yan X H. Electrochimica Acta , 2015, 169: 334.

doi: 10.1016/j.electacta.2015.04.039
[95]
Li X L, Yang L, Shao D S, Luo K L, Liu L, Wu Z Y, Luo Z G, Wang X Y. Journal of Applied Polymer Science , 2020, 137( 24): 48810.

doi: 10.1002/app.v137.24
[96]
Hua S, Jing M X, Han C, Yang H, Chen H, Chen F, Chen L L, Ju B W, Tu F Y, Shen X Q, Qin S B. International Journal of Energy Research , 2019, 43( 13): 7296.
[97]
Park C H, Kim D W, Prakash J, Sun Y K. Solid State Ionics , 2003, 159: 111.

doi: 10.1016/S0167-2738(03)00025-0
[98]
Cheng S H S, He K Q, Liu Y, Zha J W, Kamruzzaman M, Ma R L W, Dang Z M, Li R K Y, Chung C Y. Electrochimica Acta , 2017, 253: 430.

doi: 10.1016/j.electacta.2017.08.162
[99]
Zhang B H, Liu Y L, Liu J, Sun L Q, Cong L N, Fu F, Mauger A, Julien C M, Xie H M, Pan X M. Journal of Chemistry , 2021, 52: 318.
[100]
Zhang X, Liu T, Zhang S F, Huang X, Xu B Q, Lin Y H, Xu B, Li L L, Nan C W, Shen Y. Journal of the American Chemical Society , 2017, 139( 39): 13779.

doi: 10.1021/jacs.7b06364
[101]
Zhao Y, Yan J H, Cai W P, Lai Y M, Song J, Yu J Y, Ding B. Energy Storage Materials , 2019, 23: 306.

doi: 10.1016/j.ensm.2019.04.043
[102]
Callegari D, Bonizzoni S, Berbenni V, Quartarone E, Mustarelli P. Advanced Materials , 2020, 32( 14): 1907375.

doi: 10.1002/adma.v32.14
[103]
Huo H Y, Li X N, Sun Y P, Lin X T, Doyle-Davis K, Liang J W, Gao X J, Li R Y, Huang H, Guo X X, Sun X L. ACS Energy Letters , 2020, 5: 252.

doi: 10.1021/acsenergylett.9b02401
[104]
Ruan Y D, Lu Y, Huang X, Su J M, Sun C Z, Jin J, Wen Z Y. Journal of Materials Chemistry A , 2019, 7( 24): 14565.

doi: 10.1039/C9TA01911A
[105]
Yang H, Bright J, Chen B H, Zheng P, Gao X F, Liu B T, Kasani S J, Zhang X W, Wu N Q. Journal of Materials Chemistry A , 2020, 8( 15): 7261.

doi: 10.1039/C9TA12495K
[106]
Huang Z Y , Pang W Y , Liang P , Jin Z H , Grundish N , Li Y T , Wang C A . Journal of Materials Chemistry A , 2019, 7( 27): 16425.

doi: 10.1039/C9TA03395E
[107]
Cai D, Wang D H, Chen Y J, Zhang S Z, Wang X L, Xia X H, Tu J P. Chemical Engineering Journal , 2020, 394: 124993.

doi: 10.1016/j.cej.2020.124993
[108]
Zhai H W, Xu P Y, Ning M Q, Cheng Q, Mandal J, Yang Y. ACS Nano Letters , 2017, 17( 5): 3187.
[109]
Wang X, Zhai H W, Qie B Y, Cheng Q, Li A J, Borovilas J, Xu B Q, Shi C M, Jin T W, Liao X B, Li Y B, He X D, Du S Y, Fu Y K, Dontigny M, Zaghib K, Yang Y. Nano Energy , 2019, 60: 205.

doi: 10.1016/j.nanoen.2019.03.051
[110]
Kim H W, Han J, Lim Y J, Choi Y, Lee E, Kim Y. Advanced Functional Materials , 2020, 2002008.
[111]
Al-Masri D, Yunis R, Zhu HJ, Jin L Y, Bruce P, Hollenkamp A F, Pringle J M. Journal of Materials Chemistry A , 2019, 7( 44): 25389.

doi: 10.1039/C9TA11175A
[112]
Yi C J, Liu W Y, Li L P, Dong H Y, Liu J P. Functional Materials Letters , 2019, 12( 6): 1930006.

doi: 10.1142/S1793604719300068
[113]
Zhao Y B, Bai Y, Bai Y P, An M Z, Chen G R, Li W D, Li C, Zhou Y F. Journal of Power Sources , 2018, 407: 23.

doi: 10.1016/j.jpowsour.2018.10.045
[114]
Chen L, Fan L Z. Energy Storage Materials , 2018, 15: 37.

doi: 10.1016/j.ensm.2018.03.015
[1] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[2] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[3] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[4] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[5] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[6] Gao Peng Han Jiajun Zhu Yongming Zhang Cuifen Li Ning. Surface Treatment on Lithium Electrode in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2009, 21(0708): 1678-1686.
[7] . Ionic Conductivity in Mesoporous Materials [J]. Progress in Chemistry, 2009, 21(04): 765-770.
[8]

Cui Mengzhong1,2** Li Zhuyun3 Zhang Jie1 Feng Shengyu1**

. siloxane-based polymer electrolytes [J]. Progress in Chemistry, 2008, 20(12): 1987-1997.
[9] Li Wang Xiangming He Weihua Pu Changyin Jiang Chunrong Wan . Progress in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2006, 18(05): 641-647.
[10] Zhijun Ling,Xiangming He*,Jianjun Li,Changyin Jiang,Chunrong Wan. Recent Advances of All-Solid-State Polymer Electrolyte for Li-Ion Batteries [J]. Progress in Chemistry, 2006, 18(04): 459-466.
[11] Xie Yahong1,Liu Ruiquan1,Wang Jide1*,Li Zhijie1,Lu Yi2. Structure and Ionic Conductivities of Oxides with a Pyrochlore-Type Structure [J]. Progress in Chemistry, 2005, 17(04): 672-677.
[12] Zhao Feng,Qian Xinming,Wang Erkang,Dong Shaojun**. Advances in Ionic Conductive Polymer Electrolytes [J]. Progress in Chemistry, 2002, 14(05): 374-.
[13] Wang Qingwei,Xie Demin. Progress in Gel Electrolyte [J]. Progress in Chemistry, 2002, 14(03): 167-.