中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 481-496 DOI: 10.7536/PC190627 Previous Articles   Next Articles

All Solid Polymer Electrolytes for Lithium Batteries

Jiamiao Chen1,3, Jingwen Xiong1, Shaomin Ji1,2, Yanping Huo1,2,**(), Jingwei Zhao2,3,**(), Liang Liang1,2,**()   

  1. 1. College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
    2. Key Laboratory of Organofluorine Chemistry, CAS, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    3. Guangzhou Tinci Materials Technology Co., Ltd, Guangzhou 510700, China
  • Received: Revised: Online: Published:
  • Contact: Yanping Huo, Jingwei Zhao, Liang Liang
  • Supported by:
    the National Natural Science Foundation of China(61671162, 21975055, 21975053); the Key Project of Educational Commission of Guangdong Province, China(2017KZDXM025)
Richhtml ( 94 ) PDF ( 2192 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of energy storage power supply, electronic products and electric vehicles, the development of high energy density lithium ion battery has become one of the key research directions. At present, more widely used liquid lithium ion battery, due to the organic liquid electrolyte leakage, combustion, explosion, short circuit and other problems, poses a very big potential safety hazard. Therefore, there is an urgent need to develop lithium ion batteries with higher energy density and better safety. Compared with the existing organic liquid electrolyte, the all-solid-state polymer electrolyte (ASPE) have the advantages of higher theoretical specific capacity, stronger structural design, easier large-scale production and manufacture, and better system safety performance, which is a kind of electrolyte with wide application prospects. ASPE has played a leading role in lithium ion batteries, and researchers have done a lot of research work. This paper combines the latest scientific research progress of typical ASPE (polyether, polyester, polyurethane, polysiloxane) and the work of our group, and reviews the development of these solid polymers to develop high-performance lithium batteries. The preparation of solid electrolyte, new lithium battery, interface regulation, preparation process and other aspects have been expounded, and its future research is prospected.

Contents

1 Introduction

2 All solid polymer electrolyte theory

3 All solid polymer electrolyte

3.1 Polyether

3.2 Polyester

3.3 Polyurethane

3.4 Polysiloxane

4 Conclusion and outlook

Table 1 Solid state battery advantage
Table 2 Research status of commercialized all-solid electrolytes
Table 3 Summary of all solid electrolytes
Fig. 1 Ionic motion of Li ions in PEO polymer matrix[46] .Copyright 2005, Elsevier
Fig. 2 Design concept of rigid-flexible coupling CCPL ASPE[47]. Copyright 2014, Springer Nature
Fig. 3 Schematic illustration for PEO-LLZTO CSE[50]. Copyright 2017, Elsevier
Fig. 4 Synthesis of freestanding cross-linked HPE membrane[52].Copyright 2018, Frontiers
Fig. 5 (a) Photograph of polysiloxane network SPE film; (b) Specific discharge capacity of the LiNi0.8Co0.2O2/SPEs/Li cell with the voltage range of 3.0~4.1 V according to cycles[53]. Copyright 2003, Elsevier
Fig. 6 Chemical structure of the single-ion conductor triblock copolymer P(STFSILi)-b-PEO-b-P(STFSILi) proposed as an electrolyte for lithium-metal-based batteries[54]
Fig. 7 Schematic diagram of PEO-based composite electrolyte[58]. Copyright 2018, American Chemical Society
Fig. 8 Elastic modulus versus ionic conductivity for the [EMI][TFSI]-based PECs with various host polymer networks[64]. Copyright 2019, Elsevier
Fig. 9 The cationic polymerization mechanism initiated by B F 3 [ 66 ] . Copyright 2017, Elsevier
Fig. 10 Schematic diagram of the HMSE[67].Copyright 2019, Wiley
Fig. 11 Illustration of solid-state soft-package lithium cells(a) On the well-running and (b) Being cut away for powering a red LED lamp; (c) Voltage monitoring of obtained incomplete battery; (d) The obtained corner of the cell for lighting a LED lamp[71]. Copyright 2015, Wiley
Fig. 12 (a) Synthesis of WPU dispersion, (b) process of PEO and WPU blend polymer electrolyte membranes[75].Copyright 2018, Elsevier
Fig. 13 Schematic of apparatus side-by-side electro-spinning[76]. Copyright 2019, Wiley
Fig. 14 (a) Cycling stabilities of Li/LiFePO4 cells using Celgard, PEI-PU and SiO2/PEI PU composite membranes at 0.2 C rate. (b) Coulombic efficiency as a function of cycle number at 0.2 C rate[78]. Copyright 2015, Elsevier
Fig. 15 Reaction of jatropha oil-based polymer electrolyte with LiClO4 in details[79]. Copyright 2016, Elsevier
Fig. 16 Synthesis of bifunctional polysiloxane[86]. Copyright 2014, Elsevier
Fig. 17 Schematic of the structure of a synthetic electrolyte[87]. Copyright 2019, Elsevier
[1]
Li W , Song B , Manthiram A. Chem. Soc. Rev., 2017,46, 3006.
[2]
Goodenough J B , Kim Y , Chemistry of Materials, 2010,22(3):587.
[3]
Feng X , Ouyang M , Xiang L , Lu L , Yong X , He X. Energy Storage Materials., 2017,10:246. https://linkinghub.elsevier.com/retrieve/pii/S2405829716303464

doi: 10.1016/j.ensm.2017.05.013
[4]
Liu K , Liu Y Y , Lin D C , Pei A , Cui Y . Science Advances, 2018, 4: eaas9820. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aas9820

doi: 10.1126/sciadv.aas9820
[5]
张恒(Zhang H), 郑丽萍(Zheng L P), 聂进(Nie J), 黄学杰(Huang X J), 周志彬(Zhou Z B) 化学进展(Progress in Chemistry), 2014,26(6):1005. 560a20c2-0230-4ae8-8fad-24a42b498391 http://www.progchem.ac.cn//CN/abstract/abstract11369.shtml

doi: 10.7536/PC131233
[6]
Schmuch R , Wagner R , Hörpel G, Placke T, Winter M Nature Energy, 2018,3(4):267.
[7]
Gallagher K G , Trask S E , Bauer C , Woehrle T , Lux S F , Tschech M . Journal of the Electrochemical Society, 2016,163, A138. https://iopscience.iop.org/article/10.1149/2.0321602jes

doi: 10.1149/2.0321602jes
[8]
Fu G , Soucek M D , Kyu T . Solid State Ionics, 2018,320:310.
[9]
Sun C , Liu J , Gong Y , Wilkinson D P , Zhang J . Nano Energy, 2017,33:363.
[10]
杜奥冰(Du AB), 柴敬超(Chai J C), 张建军(Zhang J J), 刘志宏(Liu Z H), 崔光磊(Cui G L) 储能科学与技术(Energy Storage Science and Technology), 2016,5(5):627.
[11]
张建军(Zhang J J), 董甜甜(Dong T T), 杨金凤(Yang J F) . 储能科学与技术(Energy Storage Science and Technology) 2018(5):861.
[12]
程琥(Cheng H), 李涛(Li T), 杨勇(Yang Y) 化学进展(Progress in Chemistry), 2006,18(5):542.
[13]
Cao Y L , Matthew Li , Lu J , Liu J , Khalil A . Nature Nanotechnology, 2019,14(3):200.
[14]
Xu X J , Liu Z B , Ji S M , Wang Z S , Ni Z Y , Lv Y Q , Liu J W , Liu J . Chemical Engineering Journal, 2019,359:765.
[15]
Jankowski P , Dranka M , Zukowska G Z . The Journal of Physical Chemistry C, 2015,119(19):10247.
[16]
Nair J R , Imholt L , Brunklaus G , Winter M . The Electrochemical Society Interface, 2019,28(2):55.
[17]
Fenton D E , Parker J M , Wright P V . Polymer, 1973,14(11):589.
[18]
Armand M. Diffusion & Reactions. 1994,69(3/4):309.
[19]
凌志军(Ling Z J), 何向明(He X M), 李建军(Li J J), 姜长印(Jiang C Y), 万春荣(Wan C R) . 化学进展(Progress in Chemistry), 2006, (4):459.
[20]
Wu Z , Xie Z , Yoshida A , Wang Z , Hao X , Abudula A , Guan G . Renewable and Sustainable Energy Reviews, 2019,109:367.
[21]
Wilberforce T , Khatib F N , Ijaodola O S , Ogungbemi E , El-Hassan Z , Durrant A , Olabi A G . Science of The Total Environment, 2019,678:728.
[22]
Pritam A A , Sharma A L . Journal of Materials Science, 2019,54:7131. https://doi.org/10.1007/s10853-019-03381-3

doi: 10.1007/s10853-019-03381-3
[23]
Wang S , Min K . Polymer, 2010,51(12):2621. 9bd4cd6e-ac13-4614-844c-de022022dcb3 http://www.sciencedirect.com/science/article/pii/S0032386110003538

doi: 10.1016/j.polymer.2010.04.038
[24]
Zhang Q , Liu K , Ding F , Liu X . Nano Research, 2017,10:4139. http://link.springer.com/10.1007/s12274-017-1763-4

doi: 10.1007/s12274-017-1763-4
[25]
Fan L , Wei S , Li S , Li Q , Lu Y . Advanced Energy Materials, 2018,8(11):1702657. http://doi.wiley.com/10.1002/aenm.201702657

doi: 10.1002/aenm.201702657
[26]
Ishizaki M , Ando H , Yamada N , Tsumoto K , Ono K , Sutoh H . Journal of Materials Chemistry A, 2019,7:4777. http://xlink.rsc.org/?DOI=C8TA11776D

doi: 10.1039/C8TA11776D
[27]
Hood Z D , Chi M . Journal of Materials Science, 2019,54:10571. https://doi.org/10.1007/s10853-019-03633-2

doi: 10.1007/s10853-019-03633-2
[28]
Ji S M , Yu L T , Xu X J , Zhang L G , Liu J . Materials Research Bulletin, 2017,96:28. https://linkinghub.elsevier.com/retrieve/pii/S0025540816319213

doi: 10.1016/j.materresbull.2016.11.002
[29]
Zhang X D , Shi J L , Liang J Y , Wang L P , Yin Y X , Jiang K C , Guo Y G . Journal of Power Sources, 2019,426:242. https://linkinghub.elsevier.com/retrieve/pii/S0378775319304094

doi: 10.1016/j.jpowsour.2019.04.017
[30]
Zheng S , Fu Z , Dai D , Zhao W . Ceramics International, 2019.
[31]
Liu Z B , Ji S M , Xu X J , Hu R Z , Liu J W , Liu J . Chemistry- A European Journal, 2018,24:1.
[32]
朱春柳(Zhu C L), 陶灿(Tao C), 鲍俊杰(Bao J J), 黄毅萍(Huang Y P), 许戈文(Xu G W) . 塑料工业(Plastic industry), 2015,43(12):132.
[33]
鲍俊杰(Bao J J) . 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2018.
[34]
Xu X J , Ji S M , Gu M Z , Liu J . ACS Applied Materials &Interfaces. 2015,7(37):20957. https://pubs.acs.org/doi/10.1021/acsami.5b06590

doi: 10.1021/acsami.5b06590
[35]
Jonas M , Sun B , Erik T , Daniel B . Journal of Power Sources, 2015,298:166. https://linkinghub.elsevier.com/retrieve/pii/S0378775315301907

doi: 10.1016/j.jpowsour.2015.08.035
[36]
Zhao Y , Huang Z , Chen S , Chen B , Yang J , Zhang Q . Solid State Ionics, 2016,295:65. https://linkinghub.elsevier.com/retrieve/pii/S0167273816303289

doi: 10.1016/j.ssi.2016.07.013
[37]
马强(Ma Q), 胡勇胜(Hu Y S), 李泓(Li H), 陈立(Chen L), 黄学杰(Huang X J), 周志彬(Zhou Z B) . 物理化学学报(Acta Physico-Chimica Sinica), 2018,34(2):213.
[38]
Jung Y C , Park M S , Kim D H , Ue M , Eftekhari A , Kim D W . Scientific Reports, 2017,7(1):17482. http://www.nature.com/articles/s41598-017-17697-0

doi: 10.1038/s41598-017-17697-0
[39]
He W , Cui Z , Liu X , Cui Y , Chai J , Zhou X . Electrochimica Acta, 2017,225:151. https://linkinghub.elsevier.com/retrieve/pii/S001346861632672X

doi: 10.1016/j.electacta.2016.12.113
[40]
Bao J , Tao C , Yu R , Gao M , Huang Y , Chen C . Journal of Applied Polymer Science, 2017,134(48):45554. http://doi.wiley.com/10.1002/app.45554

doi: 10.1002/app.45554
[41]
Shim J , Kim L , Kim H J , Jeong D , Lee J H , Lee J C . Polymer, 2017,122:222. https://linkinghub.elsevier.com/retrieve/pii/S0032386117306523

doi: 10.1016/j.polymer.2017.06.074
[42]
Sun Z , Li Y , Zhang S , Shi L , Wu H , Bu H T , Ding S . Journal of Materials Chemistry A, 2019,7(18):11069. http://xlink.rsc.org/?DOI=C9TA00634F

doi: 10.1039/C9TA00634F
[43]
Hisashi K , Eiji N , Masayoshi W . Polymers for Advanced Technologies, 2018,30(3):736.
[44]
Kallitsis K J , Nannou R , Andreopoulou A K , Daletou M K , Papaioannou D , Neophytides S G , Kallitsis J K . Journal of Power Sources, 2018,379:144. https://linkinghub.elsevier.com/retrieve/pii/S037877531830034X

doi: 10.1016/j.jpowsour.2018.01.034
[45]
Zheng X Y , Shi Q , Wang Y , Battaglia V S , Huang Y H , Zheng H H . Carbon, 2019,148:105. https://linkinghub.elsevier.com/retrieve/pii/S0008622319302611

doi: 10.1016/j.carbon.2019.03.038
[46]
Stephan A M . European Polymer Journal, 2006,42(1):21. https://linkinghub.elsevier.com/retrieve/pii/S0014305705003733

doi: 10.1016/j.eurpolymj.2005.09.017
[47]
Zhang J , Yue L , Hu P , Liu Z , Qin B , Zhang B , Wang Q , Ding G , Zhang C , Zhou X , Yao J , Cui G , Chen L . Scientific Reports, 2014,4(1):6272. https://doi.org/10.1038/srep06272

doi: 10.1038/srep06272
[48]
Tanaka R , Sakurai M , Sekiguchi H . Electrochimica Acta, 2001,46(10):1709. https://linkinghub.elsevier.com/retrieve/pii/S0013468600007751

doi: 10.1016/S0013-4686(00)00775-1
[49]
Zhang H , Liu C , Zheng L . Electrochimica Acta, 2014,133:529. d0658ad6-e323-42f7-acee-4a9052341965 http://dx.doi.org/10.1016/j.electacta.2014.04.099

doi: 10.1016/j.electacta.2014.04.099
[50]
Chen L , Li Y T , Li S P , Fan L Z . Nano Energy, 2018,46:176. https://linkinghub.elsevier.com/retrieve/pii/S2211285517308133

doi: 10.1016/j.nanoen.2017.12.037
[51]
Lu J , Liu Y , Yao P , Ding Z , Tang Q , Wu J , Liu X . Chemical Engineering Journal, 2019,367:230. https://linkinghub.elsevier.com/retrieve/pii/S1385894719303870

doi: 10.1016/j.cej.2019.02.148
[52]
Zhang J F , Li X F , Li Y , Wang H Q , Ma C , Wang Y Z , Hu S L , Wei W F . Frontiers in Chemistry, 2018,6:186. https://www.frontiersin.org/article/10.3389/fchem.2018.00186/full

doi: 10.3389/fchem.2018.00186
[53]
Oh B , Vissers D , Zhang Z . Journal of Power Sources, 2003,119:442.
[54]
Bouchet R , Maria S , Meziane R . Nature Materials, 2013,12(5):452. https://doi.org/10.1038/nmat3602

doi: 10.1038/nmat3602
[55]
Ma Q , Zhang H , Zhou C W , Zheng L P , Cheng P F , Nie J , Feng W F , Hu Y S , Li H , Huang X J , Chen L Q , Michel Armand , Zhou Z B . Angewandte Chemie International Edition, 2016,55(7):2521. http://doi.wiley.com/10.1002/anie.201509299

doi: 10.1002/anie.201509299
[56]
Liu Q , Liu Y , Jiao X , Song Z , Sadd M , Xu X , Song J . Energy Storage Materials, 2019,23:105. https://linkinghub.elsevier.com/retrieve/pii/S2405829719303502

doi: 10.1016/j.ensm.2019.05.023
[57]
Nguyen H D , Kim G T , Shi J , Paillard E , Judeinstein P , Lyonnard S , Bresser D , Iojoiu C . Energy & Environmental Science, 2018,11(11):3298.
[58]
Li D , Chen L , Wang T . ACS Applied Materials and Interfaces, 2018,10(8):7069. https://pubs.acs.org/doi/10.1021/acsami.7b18123

doi: 10.1021/acsami.7b18123
[59]
Yang T , Zheng J , Cheng Q , Hu Y , Chan C K . ACS Applied Materials & Interfaces, 2017,9(26):21773. https://pubs.acs.org/doi/10.1021/acsami.7b03806

doi: 10.1021/acsami.7b03806
[60]
Li J D , Dong S M , Chen W , Hu Z L , Zhang Z Y , Zhang H , Cui G L . Journal of Materials Chemistry A, 2018,6(25):11846. http://xlink.rsc.org/?DOI=C8TA02975J

doi: 10.1039/C8TA02975J
[61]
Naji A , Krause B , Potschke P , Ameli A . Smart Materials and Structures, 2019,28(6):1.
[62]
Motokucho S , Yamada H , Suga Y , Morikawa H , Nakatani H , Urita K . Polymer, 2018,145:194. https://linkinghub.elsevier.com/retrieve/pii/S003238611830404X

doi: 10.1016/j.polymer.2018.05.010
[63]
Darensbourg D J . Chemical Reviews, 2007,107:2388. https://pubs.acs.org/doi/10.1021/cr068363q

doi: 10.1021/cr068363q
[64]
Lee S J , Yang H M , Cho K G . Organic Electronics, 2019,65:426. https://linkinghub.elsevier.com/retrieve/pii/S156611991830630X

doi: 10.1016/j.orgel.2018.11.044
[65]
Zhang X , Wang S , Xue C J . Advanced Materials, 2019,31(11):1806082. https://onlinelibrary.wiley.com/toc/15214095/31/11

doi: 10.1002/adma.v31.11
[66]
Cui Y , Liang X , Chai J . Advanced Science, 2017,4:1700174. http://doi.wiley.com/10.1002/advs.201700174

doi: 10.1002/advs.201700174
[67]
Duan H , Fan M , Chen W P , Li J Y . Advanced Materials, 2019,31(12):1807789. https://onlinelibrary.wiley.com/toc/15214095/31/12

doi: 10.1002/adma.v31.12
[68]
Chai J , Zhang J , Hu P . Journal of Materials Chemistry A, 2016,4(14):5191. http://xlink.rsc.org/?DOI=C6TA00828C

doi: 10.1039/C6TA00828C
[69]
冯华君(Feng H J), 陈渊(Chen Y), 代克化(Dai K H), 宋兆爽(Song Z S), 马建伟(Ma J W), 其鲁(Qi L) . 物理化学学报(Acta Physico-Chimica Sinica), 2007,23(12):1922. 90b309b2-3ae0-4b69-beb9-0577711c9642 http://www.whxb.pku.edu.cn/CN/abstract/abstract22085.shtml

doi: 10.3866/PKU.WHXB20071217
[70]
Zhang J J , Zang X , Wen H J , Dong T T , Chai J C , Li Y , Chen B B , Zhao J W , Dong S M , Ma J , Yue L P , Liu Z H , Guo X X , Cui G L , Chen L Q . Journal of Materials Chemistry A, 2017,5(10):4940. http://xlink.rsc.org/?DOI=C6TA10066J

doi: 10.1039/C6TA10066J
[71]
Zhang J J , Zhao J H , Yue L P , Wang Q F , Chai J C , Liu Z H , Zhou X H , Li H , Guo Y G , Cui G L , Chen L Q . Advanced Energy Materials, 2015,5(24):1501082. http://doi.wiley.com/10.1002/aenm.201501082

doi: 10.1002/aenm.201501082
[72]
Huang Y , Tang Z , Liu Z , Wei J , Hu H , Zhi C . Nano -Micro Letters, 2018,10(3):38.
[73]
Cong B , Song Y , Ren N , Xie G , Tao C , Huang Y . Materials and Design, 2018,142:221. https://linkinghub.elsevier.com/retrieve/pii/S0264127518300479

doi: 10.1016/j.matdes.2018.01.039
[74]
Ibrahim S , Ahmad A , Mohamed N S . Journal of Solid State Electrochemistry, 2018,22(2):461. http://link.springer.com/10.1007/s10008-017-3775-0

doi: 10.1007/s10008-017-3775-0
[75]
Bao J J , Qu X B , Qi G . Solid State Ionics, 2018,320:55. https://linkinghub.elsevier.com/retrieve/pii/S0167273817311785

doi: 10.1016/j.ssi.2018.02.030
[76]
Cai M , Zhu J W , Yang C C . Polymer, 2019,11(1):185.
[77]
Yan C F , Huang T , Zheng X Z . Royal Society Open Science, 2018,5(8):180311. https://royalsocietypublishing.org/doi/10.1098/rsos.180311

doi: 10.1098/rsos.180311
[78]
Zhai Y , Xiao K , Yu J . Electrochimica Acta, 2015,154:219. https://linkinghub.elsevier.com/retrieve/pii/S001346861402550X

doi: 10.1016/j.electacta.2014.12.102
[79]
Mustapa S R , Aung M M , Ahmad A . Electrochimica Acta, 2016,222:293. https://linkinghub.elsevier.com/retrieve/pii/S001346861632299X

doi: 10.1016/j.electacta.2016.10.173
[80]
Miner E M , Park S S , Dinca M . Journal of the American Chemical Society, 2019,141(10):4422. https://pubs.acs.org/doi/10.1021/jacs.8b13418

doi: 10.1021/jacs.8b13418
[81]
崔孟忠(Cui M Z), 李竹云(Li Z Y), 张洁(Zhang J), 冯圣玉(Feng S Y) . 化学进展(Progress in Chemistry), 2008, (12):1987. 20d24056-f7ea-4815-ad95-a4ea6e710ca0 http://www.progchem.ac.cn//CN/abstract/abstract9826.shtml
[82]
Chen L , Fan L Z . Energy Storage Materials, 2018,558S2405829718301.
[83]
Liu M , Jin B , Zhang Q , Zhan X , Chen F . Journal of Alloys and Compounds, 2018,742:619. https://linkinghub.elsevier.com/retrieve/pii/S0925838818302718

doi: 10.1016/j.jallcom.2018.01.263
[84]
Ren C , Liu M , Zhang J , Zhang Q , Zhan X , Chen F . Journal of Applied Polymer Science, 2018,135(9):45848. http://doi.wiley.com/10.1002/app.45848

doi: 10.1002/app.45848
[85]
Chen L , Fan L Z . Energy Storage Materials, 2018,15:37. https://linkinghub.elsevier.com/retrieve/pii/S2405829718301867

doi: 10.1016/j.ensm.2018.03.015
[86]
Li J , Lin Y , Yao H . Chemsuschem, 2014,7(7):1901. http://doi.wiley.com/10.1002/cssc.v7.7

doi: 10.1002/cssc.v7.7
[87]
Deka J R , Saikia D , Lou G W . Materials Research Bulletin, 2019,109:72. https://linkinghub.elsevier.com/retrieve/pii/S0025540818312819

doi: 10.1016/j.materresbull.2018.09.003
[88]
Shim J , Kim L , Kim H J . Polymer, 2017,122:222. https://linkinghub.elsevier.com/retrieve/pii/S0032386117306523

doi: 10.1016/j.polymer.2017.06.074
[89]
Boaretto N , Horn T , Popall M . Electrochimica Acta, 2017,241:477. https://linkinghub.elsevier.com/retrieve/pii/S0013468617309143

doi: 10.1016/j.electacta.2017.04.133
[90]
Yue L P , Ma J , Zhang J J . Energy Storage Materials, 2016,5:139. https://linkinghub.elsevier.com/retrieve/pii/S2405829716301349

doi: 10.1016/j.ensm.2016.07.003
[91]
Phan T N T , Issa S , Didier G . Polymer International, 2019,68(1):7. http://doi.wiley.com/10.1002/pi.2019.68.issue-1

doi: 10.1002/pi.2019.68.issue-1
[92]
Lu F Q , Pang Y P , Zhu M F , Han F D , Yang J H , Fang F , Wang C S . Advanced Functional Materials, 2019,29(15):1809219. https://onlinelibrary.wiley.com/toc/16163028/29/15

doi: 10.1002/adfm.v29.15
[1] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[2] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[3] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[4] . Ionic Conductivity in Mesoporous Materials [J]. Progress in Chemistry, 2009, 21(04): 765-770.
[5]

Cui Mengzhong1,2** Li Zhuyun3 Zhang Jie1 Feng Shengyu1**

. siloxane-based polymer electrolytes [J]. Progress in Chemistry, 2008, 20(12): 1987-1997.
[6] Zhijun Ling,Xiangming He*,Jianjun Li,Changyin Jiang,Chunrong Wan. Recent Advances of All-Solid-State Polymer Electrolyte for Li-Ion Batteries [J]. Progress in Chemistry, 2006, 18(04): 459-466.
[7] Xie Yahong1,Liu Ruiquan1,Wang Jide1*,Li Zhijie1,Lu Yi2. Structure and Ionic Conductivities of Oxides with a Pyrochlore-Type Structure [J]. Progress in Chemistry, 2005, 17(04): 672-677.
[8] Zhao Feng,Qian Xinming,Wang Erkang,Dong Shaojun**. Advances in Ionic Conductive Polymer Electrolytes [J]. Progress in Chemistry, 2002, 14(05): 374-.
[9] Wang Qingwei,Xie Demin. Progress in Gel Electrolyte [J]. Progress in Chemistry, 2002, 14(03): 167-.