中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1960-1974 DOI: 10.7536/PC180344 Previous Articles   Next Articles

• Review •

Concentrated Electrolyte for Lithium/Li-Ion Batteries

Zenghua Chang1,2, Jiantao Wang1,2, Zhaohui Wu2, Jinling Zhao2, Shigang Lu1,2*   

  1. 1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
    2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51404030, 51604032), the Beijing Nova Program(No. Z161100004916096).
PDF ( 1188 ) Cited
Export

EndNote

Ris

BibTeX

The conventional non-aqueous electrolyte based on 1 mol·dm-3 LiPF6/EC has been used for two decades in Li-ion batteries. With the rapid development of higher energy and power densities Li-ion batteries and Lithium batteries (such as Li-O2, Li-S,etc.), the electrolyte, as an indispensable component in rechargeable batteries, comes to the stage of innovation. Considerable efforts have been made on the research of several new types of electrolytes such as ionic liquid, polymer electrolytes and inorganic solid electrolytes. However, their commercial applications are hampered due to their intrinsic problems. Therefore, researchers begin to revisit the non-aqueous solution, and pay more attention on the concentrated electrolyte. This review summarizes the research on concentrated electrolytes including the development history, the solution structure, the classification criteria, the physicochemical property and the compatibility with electrode, the specific transport properties of lithium ions in the bulk solutions and the interface of electrolyte/electrode, as well as the compatibility of electrolyte and electrode. Besides, the main problems of concentrated electrolyte such as high viscosity and low ionic conductivity are briefly summarized, and the corresponding improvement measures are proposed. Finally, we highlight the research direction of concentrated electrolyte in the future, and provide an idea for the design of new type electrolyte.
Contents
1 Introduction
2 The development of concentrated electrolyte
3 Structural characteristics of concentrated electrolyte
3.1 The effect of lithium salt concentration on the structure of concentrated electrolyte
3.2 The effect of solvent on the structure of concentrated electrolyte
3.3 The effect of anions on the structure of concentrated electrolyte
4 The classification of concentrated electrolyte
5 Physical chemistry and interface properties of concentrated electrolyte
5.1 Thermal stability
5.2 Electrochemical stability
5.3 Ionic transfer property
5.4 Compatibility with electrode materials
6 The disadvantage of concentrated electrolyte
7 Conclusion

CLC Number: 

[1] Thackeray M M, Wolverton C, Isaacs E D. Energy & Environmental Science, 2012, 5(7):7854.
[2] Manthiram A, Chemelewski K, Lee E S. Energy & Environmental Science, 2014, 7(4):1339.
[3] Rui X, Zhao X, Lu Z, Tan H, Sim D, Hng H H, Yazami R, Lim T M, Yan Q. ACS Nano, 2013, 7(6):5637.
[4] Wolfenstine J, Allen J. Journal of Power Sources, 2005, 142(1/2):389.
[5] Cheruku R, Kruthika G, Govindaraj G, Vijayan L. Journal of Physics & Chemistry of Solids, 2015, 8627.
[6] Xu B, Fell C R, Chi M, Meng Y S. Energy & Environmental Science, 2011, 4(6):2223.
[7] Lu Z, Macneil D D, Dahn J R. Electrochemical, Solid-State Letters, 2004, 7(12):A503.
[8] Park Y J, Hong Y S, Wu X L, Kim M G, Ryu K S, Chang S H. Journal of the Electrochemical Society, 2004, 151(151):A720.
[9] Lu Z, Dahn J R. Journal of the Electrochemical Society, 2002, 149(11):A1454.
[10] Su X, Wu Q L, Li J C, Xiao X C, Lott A, Lu W Q, Sheldon B W, Wu J. Advanced Energy Materials, 2014, 4(1):23.
[11] Armand M, Tarascon J M. Nature, 2008, 451(7179):652.
[12] Li Y, Ravdel B, Lucht B L. Electrochemical, Solid-State Letters, 2010, 13(8):A95.
[13] Gao X W, Chen Y H, Johnson L, Bruce P G. Nature Materials, 2016, 15(8):882.
[14] Yim T, Park M S, Yu J S, Kim K J, Im K Y, Kim J H, Jeong G, Yong N J, Woo S G, Kang K S. Electrochimica Acta, 2013, 107(3):454.
[15] Goodenough J B, Kim Y. Chemistry of Materials, 2010, 22(3):587.
[16] Suo L, Hu Y S, Li H, Armand M, Chen L. Nature Communications, 2013, 41481.
[17] Kido R, Ueno K, Iwata K, Kitazawa Y, Imaizumi S, Mandai T, Dokko K, Watanabe M. Electrochimica Acta, 2015, 1755.
[18] Suo L M, Fang Z, Hu Y S, Chen L Q. Chinese Physics B, 2016, 25(1):1.
[19] Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nature Communications, 2016, 71.
[20] Masuhara R, Hashinokuchi M, Doi T, Inaba M, Inoue H, Nakagawa H, Inamasu T, Yoshida H. Indagationes Mathematicae, 2015, 78(4):351.
[21] Petibon R, Madec L, Abarbanel D W, Dahn J R. Journal of Power Sources, 2015, 300419.
[22] Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Dokko K, Watanabe M. Journal of the American Chemical Society, 2011, 133(33):13121.
[23] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Journal of the American Chemical Society, 2014, 136(13):5039.
[24] Yamada Y, Yaegashi M, Abe T, Yamada A. Chemical Communications, 2013, 49(95):11194.
[25] Yamada Y, Chiang C H, Sodeyama K, Wang J, Tateyama Y, Yamada A. ChemElectroChem, 2015, 2(11):1687.
[26] Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Journal of Physical Chemistry C, 2015, 119(8):3957.
[27] McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Energy & Environmental Science, 2014, 7(1):416.
[28] Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K. Journal of Power Sources, 2013, 231234.
[29] Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. Electrochimica Acta, 2015, 154(0):287.
[30] Jeong S K, Seo H Y, Kim D H, Han H K, Kim J G, Lee Y B, Iriyama Y, Abe T, Ogumi Z. Electrochemistry Communications, 2008, 10(4):635.
[31] Zheng F, Qiang M, Liu P, Jie M, Hu Y S, Zhou Z, Hong L, Huang X, Chen L. ACS Applied Materials & Interfaces, 2017, 9(5):4282.
[32] Ma Q, Fang Z, Liu P, Ma J, Qi X, Feng W, Nie J, Hu Y S, Li H, Huang X, Chen L, Zhou Z. ChemElectroChem, 2016, 3(4):531.
[33] Qian J F, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. Nature Communications, 2015, 61.
[34] Ueno K, Park J W, Yamazaki A, Mandai T, Tachikawa N, Dokko K, Watanabe M. Journal of Physical Chemistry C, 2013, 117(40):20509.
[35] Shin E S, Kim K, Oh S H, Il Cho W. Chemical Communications, 2013, 49(20):2004.
[36] Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park J W, Ueno K, Seki S, Serizawa N, Watanabe M. Journal of the Electrochemical Society, 2013, 160(8):A1304.
[37] Seo D M, Reininger S, Kutcher M, Redmond K, Euler W B, Lucht B L. Journal of Physical Chemistry C, 2015, 119(25):14038.
[38] Borodin O, Han S D, Daubert J S, Seo D M, Yun S H, Henderson W A. Journal of the Electrochemical Society, 2015, 162(4):A501.
[39] Aguilera L, Xiong S, Scheers J, Matic A. Journal of Molecular Liquids, 2015, 210, Part B238.
[40] Seo D M, Boyle P D, Sommer R D, Daubert J S, Borodin O, Henderson W A. Journal of Physical Chemistry B, 2014, 118(47):13601.
[41] Alia J M, Edwards H G M, Moore J. Journal of Raman Spectroscopy, 1995, 26(8/9):715.
[42] Alía J M, Díaz, de Mera Y, Edwards H G M, García F J, Lawson E E. Journal of Molecular Structure, 1997, 408.
[43] Alía J M, Edwards H G M. Vibrational Spectroscopy, 2000, 24(2):185.
[44] Alia J M, deMera Y D, Edwards H G M, Garcia F J, Lawson E E. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 1996, 196209.
[45] Cazzanelli E, Mustarelli P, Benevelli F, Appetecchi G B, Croce F. Solid State Ionics, 1996, 86/88:379.
[46] Cazzanelli E, Croce F, Appetecchi G B, Benevelli F, Mustarelli P. The Journal of Chemical Physics, 1997, 107(15):5740.
[47] Croce F, Appetecchi G B, Mustarelli P, Quartarone E, Tomasi C, Cazzanelli E. Electrochimica Acta, 1998, 43(10/11):1441.
[48] Castriota M, Cazzanelli E, Nicotera I, Coppola L, Oliviero C, Ranieri G A. Journal of Chemical Physics, 2003, 118(12):5537.
[49] Wang Z X, Huang B Y, Xue R J, Chen L Q, Huang X J. Journal of the Electrochemical Society, 1998, 145(10):3346.
[50] Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Electrochemical, Solid-State Letters, 2003, 6(1):A13.
[51] Takeuchi S, Miyazaki K, Sagane F, Fukutsuka T, Jeong S K, Abe T. Electrochimica Acta, 2011, 56(28):10450.
[52] Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Journal of Power Sources, 2008, 175(1):540.
[53] Henderson W A, Brooks N R, Brennessel W W, Young V G. Chemistry of Materials, 2003, 15(24):4679.
[54] Henderson W A, Brooks N R, Young V G. Chemistry of Materials, 2003, 15(24):4685.
[55] Henderson W A, McKenna F, Khan M A, Brooks N R, Young V G, Frech R. Chemistry of Materials, 2005, 17(9):2284.
[56] Henderson W A. Journal of Physical Chemistry B, 2006, 110(26):13177.
[57] Seo D M, Borodin O, Han S D, Ly Q, Boyle P D, Henderson W A. Journal of the Electrochemical Society, 2012, 159(5):A553.
[58] Seo D M, Borodin O, Han S D, Boyle P D, Henderson W A. Journal of the Electrochemical Society, 2012, 159(9):A1489.
[59] Seo D M, Borodin O, Balogh D, O'Connell M, Ly Q, Han S D, Passerini S, Henderson W A. Journal of the Electrochemical Society, 2013, 160(8):A1061.
[60] Han S D, Borodin O, Allen J L, Seo D M, McOwen D W, Yun S H, Henderson W A. Journal of the Electrochemical Society, 2013, 160(11):A2100.
[61] Han S D, Borodin O, Seo D M, Zhou Z B, Henderson W A. Journal of the Electrochemical Society, 2014, 161(14):A2042.
[62] Pappenfus T M, Henderson W A, Owens B B, Mann K R, Smyrl W H. Journal of the Electrochemical Society, 2004, 151(2):A209.
[63] Seo D M, Afroz T, Allen J L, Boyle P D, Trulove P C, De Long H C, Henderson W A. The Journal of Physical Chemistry C, 2014, 118(45):25884.
[64] Han S D, Yun S H, Borodin O, Seo D M, Sommer R D, Young V G, Henderson W A. The Journal of Physical Chemistry C, 2015, 119(16):8492.
[65] Han S D, Allen J L, Jónsson E, Johansson P, Mcowen D W, Boyle P D, Henderson W A. Journal of Physical Chemistry C, 2013, 117(11):5521.
[66] Afroz T, Seo D M, Han S D, Boyle P D, Henderson W A. Journal of Physical Chemistry C, 2015, 119(13):7022.
[67] Shimizu K, Freitas A A, Atkin R, Warr G G, FitzGerald P A, Doi H, Saito S, Ueno K, Umebayashi Y, Watanabe M, Canongia Lopes J N. Phys Chem Chem Phys, 2015, 17(34):22321.
[68] Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokkoa K, Watanabe M. Physical Chemistry Chemical Physics, 2015, 17(12):8248.
[69] Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. The Journal of Physical Chemistry C, 2011, 115(37):18384.
[70] Tamura T, Yoshida K, Hachida T, Tsuchiya M, Nakamura M, Kazue Y, Tachikawa N, Dokko K, Watanabe M. Chemistry Letters, 2010, 39(7):753.
[71] Tamura T, Hachida T, Yoshida K, Tachikawa N, Dokko K, Watanabe M. Journal of Power Sources, 2010, 195(18):6095.
[72] Shobukawa H, Tokuda H, Tabata S I, Watanabe M. Electrochimica Acta, 2004, 50(2/3):305.
[73] Seki S, Takei K, Miyashiro H, Watanabe M. Journal of the Electrochemical Society, 2011, 158(6):A769.
[74] Mandai T, Yoshida K, Tsuzuki S, Nozawa R, Masu H, Ueno K, Dokko K, Watanabe M. The Journal of Physical Chemistry B, 2015, 119(4):1523.
[75] Zhang C, Yamazaki A, Murai J, Park J W, Mandai T, Ueno K, Dokko K, Watanabe M. Journal of Physical Chemistry C, 2014, 118(31):17362.
[76] Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M. J. Phys. Chem. B, 2014, 118(19):5144.
[77] Tsuzuki S, Shinoda W, Seki S, Umebayashi Y, Yoshida K, Dokko K, Watanabe M. Chemphyschem, 2013, 14(9):1993.
[78] Ueno K, Tokuda H, Watanabe M. Physical Chemistry Chemical Physics, 2010, 12(45):15133.
[79] Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. Journal of the Electrochemical Society, 2012, 159(7):A1005.
[80] Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. The Journal of Physical Chemistry C, 2014, 118(35):20246.
[81] Orita A, Kamijima K, Yoshida M, Dokko K, Watanabe M. Journal of Power Sources, 2011, 196(8):3874.
[82] Nakazawa T, Ikoma A, Kido R, Ueno K, Dokko K, Watanabe M. Journal of Power Sources, 2016, 307746.
[83] Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, E. Takashima, Park J W, Ueno K, Seki S, Serizawa N, Watanabe M. Journal of The Electrochemical Society 2013, 160, A1304.
[84] Zhang S, Ueno K, Dokko K, Watanabe M. Advanced Energy Materials, 2015, 5(16):1500117.
[85] Tachikawa N, Yamauchi K, Takashima E, Park J W, Dokko K, Watanabe M. Chemical Communications, 2011, 47(28):8157.
[86] Tatara R, Tachikawa N, Kwon H M, Ueno K, Dokko K, Watanabe M. Chemistry Letters, 2013, 42(9):1053.
[87] Kitazawa Y, Iwata K, Imaizumi S, Ahn H, Kim S Y, Ueno K, Park M J, Watanabe M. Macromolecules, 2014, 47(17):6009.
[88] Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. J. Phys. Chem. B, 2012, 116(36):11323.
[89] Saito S, Watanabe H, Ueno K, Mandai T, Seki S, Tsuzuki S, Kameda Y, Dokko K, Watanabe M, Umebayashi Y. J. Phys. Chem. B, 2016, 120(13):3378.
[90] Ueno K, Murai J, Ikeda K, Tsuzuki S, Tsuchiya M, Tatara R, Mandai T, Umebayashi Y, Dokko K, Watanabe M. The Journal of Physical Chemistry C, 2015.
[91] Mandai T, Yoshida K, Ueno K, Dokko K, Watanabe M. Physical Chemistry Chemical Physics, 2014, 16(19):8761.
[92] Tokuda H, Tsuzuki S, Susan M A B H, Hayamizu K, Watanabe M. Journal of Physical Chemistry B, 2006, 110(39):19593.
[93] Yuki Y, Takazawa Y, Miyazaki K, Abe T. Journal of Physical Chemistry C, 2010, 114:11680.
[94] Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. ACS Appl Mater Interfaces, 2014, 6(14):10892.
[95] Sodeyama K, Yamada Y, Aikawa K, Yamada A, Tateyama Y. The Journal of Physical Chemistry C, 2014, 118(26):14091.
[96] Li F J, Zhang T, Yamada Y, Yamada A, Zhou H S. Advanced Energy Materials, 2013, 3(4):532.
[97] Hu Y S, Li H, Huang X J, Chen L Q. Electrochemistry Communications, 2004, 6(1):28.
[98] Hu Y S, Wang Z X, Li H, Huang X J, Chen L Q. Journal of the Electrochemical Society, 2004, 151(9):A1424.
[99] Liu Y, Suo L, Lin H, Yang W, Fang Y, Liu X, Wang D, Hu Y S, Han W, Chen L. Journal of Materials Chemistry A, 2014, 2(24):9020.
[100] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. Science, 2015, 350(6263):350.
[101] Suo L, Borodin O, Wei S, Fan X, Yang C, Fei W, Tao G, Ma Z, Schroeder M, Von Cresce A. Angewandte Chemie International Edition, 2016, 55(25):7136.
[102] Suo L, Han F, Fan X, Liu H, Xu K, Wang C. J. Mater. Chem. A, 2016, 4(17):6639.
[103] Wildman A, Martinez-Baez E, Fulton J, Schenter G., Pearce C, Clark A E,Li X. The journal of physical chemistry letters, 2018, 2444.
[104] Maeda S, Kameda Y, Amo Y, Usuki T, Ikeda K, Otomo T, Yanagisawa M, Seki S, Arai N, Watanabe H,Umebayashi Y. Journal of Physical Chemistry B, 2017, 121(48):10979.
[105] Takenaka N, Fujie T, Bouibes A, Yamada Y, Yamada A,Nagaoka M. Journal of Physical Chemistry C, 2018, 122(5):2564.
[106] Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J,Xiao J. Nano Letters, 2017, 17(3):1602.
[107] Chang Z H, Wang J T, Wu Z H, Gao M, Wu S J,Lu S G. ChemSusChem, 2018, 11,1.
[108] Flores E, Åvall G, Jeschke S, Johansson P. Electrochimica Acta, 2017, 233, 134.
[109] Cresce A V W, Gobet M, Borodin O, Peng J, Russell S M, Wikner E, Fu A, Hu L, Lee H S, Zhang Z. Journal of Physical Chemistry C, 2015, 119(49):27255.
[110] Andreev Y G, Seneviratne V, Khan M, Henderson W A, Frech R E, Bruce P G. Chemistry of Materials, 2005, 17(4):767.
[111] Hayamizu K, Akiba E, Bando T, Aihara Y. Journal of Chemical Physics, 2002, 117(12):5929.
[112] Brouillette D, Irish D E, Taylor N J, Perron G, Odziemkowski M,Desnoyers J E. Physical Chemistry Chemical Physics, 2002, 4(24):6063.
[113] Gores H J, Barthel J, Zugmann S, Moosbauer D, Amereller M, Hartl R, Maurer A. Liquid Nonaqueous Electrolytes. 2. 2011. 525.
[114] Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Journal of Physical Chemistry C, 2013, 117(48):25381.
[115] Shi P C, Lin M, Zheng H, He X D, Xue Z M, Xiang H F, Chen C H. Electrochimica Acta, 2017, 247(Supplement C):12.
[116] Liu X R, Wang L, Wan L J, Wang D. ACS Applied Materials & Interfaces, 2015, 7(18):9573.
[117] Fukutsuka T, Kokumai R, Song H Y, Takeuchi S, Miyazaki K, Abe T. J. Electrochem. Soc., 2017, 164(2):A48.
[118] Liu B, Xu W, Yan P, Sun T K, Engelhard M H, Sun X, Mei D, Cho J, Wang C M, Zhang J G. Advanced Energy Materials, 2017, 7(14):1602605.
[119] Kwon H M, Thomas M L, Tatara R, Oda Y, Kobayashi Y, Nakanishi A, Ueno K, Dokko K, Watanabe M. ACS Appl Mater Interfaces, 2017, 9(7):6014.
[120] Doi T, Shimizu Y, Hashinokuchi M, Inaba M. Journal of The Electrochemical Society, 2017, 164(1):A6412.
[121] Doi D T, Shimizu Y, Hashinokuchi D M, Inaba P M. ChemElectroChem, 2017, 42398.
[122] Peng J, Goenaga G,Zawodzinski T. 231st ECS Meeting, 2017.
[123] Nilsson V, Younesi R, Brandell D, Edström K,Johansson P. Journal of Power Sources, 2018, 384334.
[124] Zhang H, Jeong S, Qin B, Carvalho D V, Buchholz D, Passerini S. ChemSusChem, 2018, 11(8):1382.
[125] Watkins T,Buttry D A. Journal of Physical Chemistry B, 2015, 119(23):7003.
[1] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[2] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[3] Ning Zhang, Ying Li. Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications [J]. Progress in Chemistry, 2017, 29(4): 373-387.
[4] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[5] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.
[6] gepin yin pengjian zuo. Progress on First Principle Calculations of Cathode in Li-Ion Batteries [J]. Progress in Chemistry, 2008, 20(11): 1827-1833.
[7]

Liang Feng** |Dai Yongnian|Yi Huihua|Xiong Xue

. Nano-Scale LiFePO4 as Lithium Ion Battery Cathode Materials [J]. Progress in Chemistry, 2008, 20(10): 1606-1611.
[8] Feng Xu|He Xiangming*|Pu Weihua|Wan Chunrong|Jiang Changyin. FeS2 Cathode Materials for Lithium Batteries [J]. Progress in Chemistry, 2008, 20(0203): 396-404.
[9] Ximin Wang Xianyou Wang Xufang Luo Li Liao . Progress on LiCo1/3Ni1/3Mn1/3O2 as Cathode Materials of Lithium-Ion Battery [J]. Progress in Chemistry, 2006, 18(12): 1720-1724.
[10] Li Wang Xiangming He Weihua Pu Changyin Jiang Chunrong Wan . Progress in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2006, 18(05): 641-647.
[11] Zhijun Ling,Xiangming He*,Jianjun Li,Changyin Jiang,Chunrong Wan. Recent Advances of All-Solid-State Polymer Electrolyte for Li-Ion Batteries [J]. Progress in Chemistry, 2006, 18(04): 459-466.
[12] Xiangming He,Weihua Pu,Li Wang,Changyin Jiang,Chunrong Wan. Plastic Crystals: An Effective Ambient Temperature All-Solid-State Electrolyte for Lithium Batteries [J]. Progress in Chemistry, 2006, 18(01): 24-29.
[13] Xue Zhaoming1,2**,Chen Chunhua1. Progress in Studies of Lithium Salts for Li-Ion Battery in Nonaqueous Electrolytes [J]. Progress in Chemistry, 2005, 17(03): 399-405.
[14] Zuo Xiaoxi*,Li Weishan,Liu Jiansheng. Research Progress on Compatibility of Non-aqueous Electrolytes with Electrodes in Li-ion Battery [J]. Progress in Chemistry, 2003, 15(06): 441-.
[15] Wang Qingwei,Xie Demin. Progress in Gel Electrolyte [J]. Progress in Chemistry, 2002, 14(03): 167-.