中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 475-495 DOI: 10.7536/PC220810 Previous Articles   Next Articles

• Review •

The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation

Zhang Huidi1,2, Li Zijie1(), Shi Weiqun1()   

  1. 1. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049,China
    2. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University,Nanning 530004, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: lizijie@ihep.ac.cn(Zijie Li);shiwq@ihep.ac.cn(Weiqun Shi)
  • Supported by:
    National Science Fund for Distinguished Young Scholars(21925603); National Science Foundation of China(11975016)
Richhtml ( 51 ) PDF ( 782 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks (COFs) are a class of crystalline organic porous polymers with long-range ordered structures prepared by reversible reactions. Due to high radiation resistance, structural designability and functionalization, COFs are expected to play a role in the efficient adsorption of radionuclides and the exploration of interaction mechanism. However, the reversibility of typical linkage bonds causes the limited chemical stability of COFs. This paper reviews the improvement strategies towards chemical stability of COFs (including the decrease of reversibility of linkage bonds, the post synthetic transformation from reversible bonds to irreversible ones, and the construction of hydrophobic environment around linkage bonds), crystalline control (including the influence of synthesis conditions, in layer coplanar and interlayer interaction for two-dimensional COFs and the crystallization of amorphous polymers), functionalization methods and the applications of COFs in the separation and enrichment of radionuclides. The interaction between radionuclides and COFs could be optimized by enhancing the strength of COFs skeleton, introducing special functional groups or changing the size of monomers. The application prospect and research focus of COFs in radionuclide separation are prospected.

Contents

1 Introduction

2 Typical reversible reactions of COFs

2.1 B—O bond formation

2.2 C=N bond formation

2.3 C—N bond formation

2.4 C—O bond formation

2.5 C=C bond formation

2.6 Others

3 Improvement of COFs linkage stability

3.1 COFs linkage cyclization reaction

3.2 Oxidation or reduction of imine linkage

3.3 COF to COF transformation via monomer exchange

3.4 Others

4 Regulation of crystallinity

4.1 Effect of synthesis conditions on crystallinity

4.2 Intralayer coplanarity of 2D COFs

4.3 Interlayer stacking force of 2D COFs

4.4 Crystallization of amorphous polymer

5 Functionalized syntheses of COFs

6 Applications of COFs in separation and enrichment of radionuclides

6.1 UO 2 2 +

6.2 I2 vapor

6.3 TcO 4 -/ ReO 4 -

7 Conclusion and outlook

Scheme 1 Reversible reactions used in COFs synthesis
Scheme 2 Several stabilization strategies towards COFs linkage
Fig. 1 “COF to COF” transformation via monomer exchange[54]. Copyright 2017, American Chemical Science
Fig.2 The enhanced interlayer interaction of TPB-DMeTP-COF by hyperconjugation and induced effects[60]. Copyright 2020, Springer Nature
Fig. 3 Synthesis and structure of alkyl modified CCOF-3/4[62]. Copyright 2017, American Chemical Science
Scheme 3 Reversible molecular structure rearrangement for the improvement of crystallinity[67]
Fig. 4 Effect of reaction solvent on the topological structure of COF[70]. Copyright 2010, Chinese Chemical Society
Fig. 5 The coplanarity of COF layers enhanced by intralayer hydrogen bond[73]
Fig. 6 Structure and synthesis route of TPE-COF-OH and TPE-COF-OMe[76]. Copyright 2020, American Chemical Science
Fig. 7 Interlayer hydrogen bond enhances the stacking force of PDC-MA-COF layers[79]. Copyright 2019, American Chemical Science
Fig. 8 Structure and synthesis route of COF-IHEP1 and COF-IHEP2[16]. Copyright 2019, Chinese Chemical Society
Fig. 9 (a) Adsorption of U(Ⅵ) by COF-IHEP1 under different acidic conditions. (b) Adsorption of Pu(Ⅳ) by COF-IHEP1/2 under different acidic conditions[16]. Copyright 2019, Chinese Chemical Society
Table 1 The application of COFs in the separation and enrichment of various radionuclides and involved adsorption mechanism
Fig. 10 Structures of COFs with four different pore sizes and their adsorption for I2 vapor[108]. Copyright 2019, American Chemical Science
[1]
Baldwin L A, Crowe J W, Pyles D A, McGrier P L. J. Am. Chem. Soc., 2016, 138(46): 15134.

pmid: 27809513
[2]
Zhuang S T, Liu Y, Wang J L. J. Hazard. Mater., 2020, 383: 121126.

doi: 10.1016/j.jhazmat.2019.121126
[3]
Zhang B, Mao H Y, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(29): 11420.

doi: 10.1021/jacs.9b05626 pmid: 31276387
[4]
El-Kaderi H M, Hunt J R, Mendoza-CortÉs J L, CôtÉ A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[5]
Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L. Nat. Commun., 2013, 4: 2736.

doi: 10.1038/ncomms3736 pmid: 24220603
[6]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2: 536.

doi: 10.1038/ncomms1542
[7]
Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Commun., 2014, 50(11): 1292.

doi: 10.1039/C3CC48813F
[8]
Zhou T, Gong Y, and Guo J, J. Funct Polym, 2018, 31: 189.
[9]
Zhang M, Guo X, Li X, Li X, Li Y, Li S and Ma L. J. Radioanal. Nucl. Chem, 2019, 41: 60.
[10]
Zhang A, and Ai Y. Prog. Chem., 2020, 32: 1564.
[11]
CôtÉ A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411
[12]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.

doi: 10.1021/ja8096256 pmid: 19281246
[13]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p
[14]
Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7(11): 905.

doi: 10.1038/nchem.2352
[15]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y pmid: 21721558
[16]
Yu J, Yuan L, Wang S, Lan J, Zheng L, Xu C, Chen J, Wang L, Huang Z, Tao W, Cai Z, Gibson J, Shi W. CCS Chemistry, 2019, 1: 286.
[17]
Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(46): 17310.

doi: 10.1021/ja4103293 pmid: 24182194
[18]
Li Z P, Zhi Y F, Feng X, Ding X S, Zou Y C, Liu X M, Mu Y. Chem. Eur. J., 2015, 21(34): 12079.

doi: 10.1002/chem.v21.34
[19]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57(28): 8438.

doi: 10.1002/anie.v57.28
[20]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134(48): 19524.

doi: 10.1021/ja308278w pmid: 23153356
[21]
Das G, Balaji Shinde D, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50(84): 12615.

doi: 10.1039/C4CC03389B
[22]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.

doi: 10.1038/ncomms5503
[23]
Jiang L C, Tian Y Y, Sun T, Zhu Y L, Ren H, Zou X Q, Ma Y H, Meihaus K R, Long J R, Zhu G S. J. Am. Chem. Soc., 2018, 140(46): 15724.

doi: 10.1021/jacs.8b08174
[24]
Nagai A, Chen X, Feng X, Ding X S, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2013, 52(13): 3770.

doi: 10.1002/anie.201300256
[25]
Yang Z F, Liu J J, Li Y S, Zhang G, Xing G L, Chen L. Angewandte Chemie Int. Ed., 2021, 60(38): 20754.

doi: 10.1002/anie.v60.38
[26]
Zhang B, Wei M F, Mao H Y, Pei X K, Alshmimri S A, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2018, 140(40): 12715.

doi: 10.1021/jacs.8b08374 pmid: 30247881
[27]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.

doi: 10.1038/s41557-019-0238-5
[28]
Yue Y, Cai P Y, Xu K, Li H Y, Chen H Z, Zhou H C, Huang N. J. Am. Chem. Soc., 2021, 143(43): 18052.

doi: 10.1021/jacs.1c06238
[29]
Zhao C F, Lyu H, Ji Z, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2020, 142(34): 14450.

doi: 10.1021/jacs.0c07015
[30]
Zhuang X D, Zhao W X, Zhang F, Cao Y, Liu F, Bi S, Feng X L. Polym. Chem., 2016, 7(25): 4176.

doi: 10.1039/C6PY00561F
[31]
Wei S C, Zhang F, Zhang W B, Qiang P R, Yu K J, Fu X B, Wu D Q, Bi S, Zhang F,. J. Am. Chem. Soc., 2019, 141(36): 14272.

doi: 10.1021/jacs.9b06219
[32]
Jin E Q, Li J, Geng K Y, Jiang Q H, Xu H, Xu Q, Jiang D L. Nat. Commun., 2018, 9: 4143.

doi: 10.1038/s41467-018-06719-8
[33]
Acharjya A, Pachfule P, Roeser J, Schmitt F J, Thomas A. Angew. Chem. Int. Ed., 2019, 58(42): 14865.

doi: 10.1002/anie.201905886 pmid: 31340082
[34]
Lyu H, Diercks C S, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2019, 141(17): 6848.

doi: 10.1021/jacs.9b02848
[35]
Meng F C, Bi S, Sun Z B, Jiang B, Wu D Q, Chen J S, Zhang F. Angewandte Chemie Int. Ed., 2021, 60(24): 13614.

doi: 10.1002/anie.v60.24
[36]
Nandi S, Singh S K, Mullangi D, Illathvalappil R, George L, Vinod C P, Kurungot S, Vaidhyanathan R. Adv. Energy Mater., 2016, 6(24): 1601189.
[37]
Bai C, Zhang M, Bo L, Yin T and Li S. J. Hazard. Mater., 2015, 300: 368.

doi: 10.1016/j.jhazmat.2015.07.020
[38]
Zhang S, Zhao X S, Li B, Bai C Y, Li Y, Wang L, Wen R, Zhang M C, Ma L J, Li S J. J. Hazard. Mater., 2016, 314: 95.

doi: 10.1016/j.jhazmat.2016.04.031
[39]
Haase F, Troschke E, Savasci G, Banerjee T, Duppel V, Dörfler S, Grundei M M J, Burow A M, Ochsenfeld C, Kaskel S, Lotsch B V. Nat. Commun., 2018, 9: 2600.

doi: 10.1038/s41467-018-04979-y
[40]
Wang K W, Jia Z F, Bai Y, Wang X, Hodgkiss S E, Chen L J, Chong S Y, Wang X Y, Yang H F, Xu Y J, Feng F, Ward J W, Cooper A I. J. Am. Chem. Soc., 2020, 142(25): 11131.

doi: 10.1021/jacs.0c03418
[41]
Seo J M, Noh H J, Jeong H Y, Baek J B. J. Am. Chem. Soc., 2019, 141(30): 11786.

doi: 10.1021/jacs.9b05244 pmid: 31318202
[42]
Wei P F, Qi M Z, Wang Z P, Ding S Y, Yu W, Liu Q, Wang L K, Wang H Z, An W K, Wang W. J. Am. Chem. Soc., 2018, 140(13): 4623.

doi: 10.1021/jacs.8b00571
[43]
Wang Y C, Liu H, Pan Q Y, Wu C Y, Hao W B, Xu J, Chen R Z, Liu J, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2020, 142(13): 5958.

doi: 10.1021/jacs.0c00923
[44]
Li X L, Zhang C L, Cai S L, Lei X H, Altoe V, Hong F, Urban J J, Ciston J, Chan E M, Liu Y. Nat. Commun., 2018, 9: 2998.

doi: 10.1038/s41467-018-05462-4
[45]
Li X T, Zou J, Wang T H, Ma H C, Chen G J, Dong Y B. J. Am. Chem. Soc., 2020, 142(14): 6521.

doi: 10.1021/jacs.0c00969
[46]
Yang S L, Lv H W, Zhong H, Yuan D Q, Wang X C, Wang R H. Angewandte Chemie Int. Ed., 2022, 61(10): e202115655.
[47]
Su Y, Wan Y J, Xu H, Otake K I, Tang X H, Huang L B, Kitagawa S, Gu C. J. Am. Chem. Soc., 2020, 142(31): 13316.

doi: 10.1021/jacs.0c05970
[48]
Waller P J, Lyle S J, Osborn Popp T M, Diercks C S, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2016, 138(48): 15519.

pmid: 27934009
[49]
Zhou Z B, Han X H, Qi Q Y, Gan S X, Ma D L, Zhao X. J. Am. Chem. Soc., 2022, 144(3): 1138.

doi: 10.1021/jacs.1c12392
[50]
Liu H Y, Chu J, Yin Z L, Cai X, Zhuang L, Deng H X. Chem, 2018, 4(7): 1696.

doi: 10.1016/j.chempr.2018.05.003
[51]
Grunenberg L, Savasci G, Terban M W, Duppel V, Moudrakovski I, Etter M, Dinnebier R E, Ochsenfeld C, Lotsch B V. J. Am. Chem. Soc., 2021, 143(9): 3430.

doi: 10.1021/jacs.0c12249 pmid: 33626275
[52]
Zhang M C, Li Y, Yuan W L, Guo X H, Bai C Y, Zou Y D, Long H H, Qi Y, Li S J, Tao G H, Xia C Q, Ma L J. Angew. Chem. Int. Ed., 2021, 60(22): 12396.

doi: 10.1002/anie.v60.22
[53]
Hu J Y, Zanca F, McManus G J, Riha I A, Nguyen H G T, Shirley W, Borcik C G, Wylie B J, Benamara M, van Zee R D, Moghadam P Z, Beyzavi H. ACS Appl. Mater. Interfaces, 2021, 13(18): 21740.

doi: 10.1021/acsami.1c02709
[54]
Qian C, Qi Q Y, Jiang G F, Cui F Z, Tian Y, Zhao X. J. Am. Chem. Soc., 2017, 139(19): 6736.

doi: 10.1021/jacs.7b02303
[55]
Zhou Z B, Tian P J, Yao J, Lu Y, Qi Q Y, Zhao X. Nat. Commun., 2022, 13: 2180.

doi: 10.1038/s41467-022-29814-3
[56]
Qian H L, Meng F L, Yang C X, Yan X P. Angew. Chem. Int. Ed., 2020, 59(40): 17607.

doi: 10.1002/anie.v59.40
[57]
Waller P J, AlFaraj Y S, Diercks C S, Jarenwattananon N N, Yaghi O M. J. Am. Chem. Soc., 2018, 140(29): 9099.

doi: 10.1021/jacs.8b05830 pmid: 29999317
[58]
Du Y, Mao K M, Kamakoti P, Ravikovitch P, Paur C, Cundy S, Li Q C, Calabro D. Chem. Commun., 2012, 48(38): 4606.

doi: 10.1039/c2cc30781b
[59]
Du Y, Calabro D, Wooler B, Kortunov P, Li Q C, Cundy S, Mao K M. Chem. Mater., 2015, 27(5): 1445.

doi: 10.1021/cm5032317
[60]
Tao S S, Zhai L P, Dinga Wonanke A D, Addicoat M A, Jiang Q H, Jiang D L. Nat. Commun., 2020, 11: 1981.

doi: 10.1038/s41467-020-15918-1
[61]
Lanni L M, Tilford R W, Bharathy M, Lavigne J J. J. Am. Chem. Soc., 2011, 133(35): 13975.

doi: 10.1021/ja203807h
[62]
Han X, Xia Q C, Huang J J, Liu Y, Tan C X, Cui Y. J. Am. Chem. Soc., 2017, 139(25): 8693.

doi: 10.1021/jacs.7b04008
[63]
Wu X W, Han X, Liu Y H, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(47): 16124.

doi: 10.1021/jacs.8b08452
[64]
Liu Y, Li W, Yuan C, Jia L, Liu Y, Huang A, and Cui Y. Angew. Chem. Int. Ed., 2022, 61.
[65]
Sun Q, Aguila B, Perman J A, Butts T, Xiao F S, Ma S Q. Chem, 2018, 4(7): 1726.

doi: 10.1016/j.chempr.2018.05.020
[66]
Wu X W, Hong you-lee, Xu B Q, Nishiyama Y, Jiang W, Zhu J W, Zhang G, Kitagawa S, Horike S. J. Am. Chem. Soc., 2020, 142(33): 14357.

doi: 10.1021/jacs.0c06474
[67]
Wang R, Kong W F, Zhou T, Wang C C, Guo J. Chem. Commun., 2021, 57(3): 331.

doi: 10.1039/D0CC06519F
[68]
Zhao W, Yan P Y, Li B Y, Bahri M, Liu L J, Zhou X, Clowes R, Browning N D, Wu Y, Ward J W, Cooper A I. J. Am. Chem. Soc., 2022, 144(22): 9902.

doi: 10.1021/jacs.2c02666
[69]
Li Y S, Chen Q, Xu T T, Xie Z, Liu J J, Yu X, Ma S Q, Qin T S, Chen L. J. Am. Chem. Soc., 2019, 141(35): 13822.

doi: 10.1021/jacs.9b03463
[70]
Liang R R, Cui F Z, Ru-Han A, Qi Q Y, Zhao X. CCS Chem., 2020, 2(2): 139.

doi: 10.31635/ccschem.020.201900094
[71]
Xie Z, Wang B, Yang Z F, Yang X, Yu X, Xing G L, Zhang Y H, Chen L. Angew. Chem. Int. Ed., 2019, 58(44): 15742.

doi: 10.1002/anie.v58.44
[72]
Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013, 52(49): 13052.

doi: 10.1002/anie.201306775 pmid: 24127339
[73]
Chen X, Addicoat M, Jin E Q, Zhai L P, Xu H, Huang N, Guo Z Q, Liu L L, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137(9): 3241.

doi: 10.1021/ja509602c
[74]
Li X, Gao Q, Wang J F, Chen Y F, Chen Z H, Xu H S, Tang W, Leng K, Ning G H, Wu J S, Xu Q H, Quek S Y, Lu Y X, Loh K P. Nat. Commun., 2018, 9: 2335.

doi: 10.1038/s41467-018-04769-6
[75]
Qian C, Zhou W Q, Qiao J S, Wang D D, Li X, Teo W L, Shi X Y, Wu H W, Di J, Wang H, Liu G F, Gu L, Liu J W, Feng L L, Liu Y C, Quek S Y, Loh K P, Zhao Y L. J. Am. Chem. Soc., 2020, 142(42): 18138.

doi: 10.1021/jacs.0c08436
[76]
Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 142(30): 13162.

doi: 10.1021/jacs.0c05596
[77]
Halder A, Karak S, Addicoat M, Bera S, Chakraborty A, Kunjattu S H, Pachfule P, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(20): 5797.

doi: 10.1002/anie.201802220 pmid: 29573097
[78]
Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140(35): 10941.

doi: 10.1021/jacs.8b06460 pmid: 30132332
[79]
Li L, Lu F, Xue R, Ma B L, Li Q, Wu N, Liu H, Yao W Q, Guo H, Yang W. ACS Appl. Mater. Interfaces, 2019, 11(29): 26355.

doi: 10.1021/acsami.9b06867
[80]
Zhou T, Wang L, Huang X Y, Unruangsri J, Zhang H L, Wang R, Song Q L, Yang Q Y, Li W H, Wang C C, Takahashi K, Xu H X, Guo J. Nat. Commun., 2021, 12: 3934.

doi: 10.1038/s41467-021-24179-5
[81]
Chen X, Addicoat M, Irle S, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(2): 546.

doi: 10.1021/ja3100319
[82]
Tan J, Namuangruk S, Kong W F, Kungwan N, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(45): 13979.

doi: 10.1002/anie.201606155
[83]
Stewart D, Antypov D, Dyer M S, Pitcher M J, Katsoulidis A P, Chater P A, Blanc F, Rosseinsky M J. Nat. Commun., 2017, 8: 1102.

doi: 10.1038/s41467-017-01423-5 pmid: 29066848
[84]
Zhu D Y, Li X Y, Li Y L, Barnes M, Tseng C P, Khalil S, Rahman M M, Ajayan P M, Verduzco R. Chem. Mater., 2021, 33(1): 413.

doi: 10.1021/acs.chemmater.0c04237
[85]
Zhai Y F, Liu G Y, Jin F C, Zhang Y Y, Gong X F, Miao Z, Li J H, Zhang M Y, Cui Y M, Zhang L Y, Liu Y, Zhang H X, Zhao Y L, Zeng Y F. Angew. Chem. Int. Ed., 2019, 58(49): 17679.

doi: 10.1002/anie.v58.49
[86]
Fan C Y, Wu H, Guan J Y, You X D, Yang C, Wang X Y, Cao L, Shi B B, Peng Q, Kong Y, Wu Y Z, Ali Khan N, Jiang Z Y. Angew. Chem. Int. Ed., 2021, 60(33): 18051.

doi: 10.1002/anie.v60.33
[87]
Zhang T, Zhang G, Chen L. Acc. Chem. Res., 2022, 55(6): 795.

doi: 10.1021/acs.accounts.1c00693
[88]
Yu J P, Lan J H, Wang S, Zhang P C, Liu K, Yuan L Y, Chai Z F, Shi W Q. Dalton Trans., 2021, 50(11): 3792.

doi: 10.1039/D1DT00186H
[89]
Huang N, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137(22): 7079.

doi: 10.1021/jacs.5b04300 pmid: 26028183
[90]
Royuela S, García-Garrido E, Martín Arroyo M, Mancheño M J, Ramos M M, González-Rodríguez D, Somoza Á, Zamora F, Segura J L. Chem. Commun., 2018, 54(63): 8729.

doi: 10.1039/C8CC04346A
[91]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.

doi: 10.1002/anie.201411262 pmid: 25613010
[92]
Lu Q Y, Ma Y C, Li H, Guan X Y, Yusran Y, Xue M, Fang Q R, Yan Y S, Qiu S L, Valtchev V. Angew. Chem. Int. Ed., 2018, 57(21): 6042.

doi: 10.1002/anie.v57.21
[93]
Wang Y, Xie M S, Lan J H, Yuan L Y, Yu J P, Li J Q, Peng J, Chai Z F, Gibson J K, Zhai M L, Shi W Q. Chem, 2020, 6(10): 2796.

doi: 10.1016/j.chempr.2020.08.005
[94]
Bai C Y, Zhang M C, Li B, Zhao X S, Zhang S, Wang L, Li Y, Zhang J, Ma L J, Li S J. RSC Adv., 2016, 6(45): 39150.

doi: 10.1039/C6RA02842J
[95]
Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid Interface Sci., 2015, 437: 211.

doi: 10.1016/j.jcis.2014.09.046
[96]
Li Z D, Zhang H Q, Xiong X H, Luo F. J. Solid State Chem., 2019, 277: 484.

doi: 10.1016/j.jssc.2019.06.044
[97]
Xiong X H, Yu Z W, Gong L L, Tao Y, Gao Z, Wang L, Yin W H, Yang L X, Luo F. Adv. Sci., 2019, 6(16): 1900547.
[98]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): 1705479.
[99]
Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J W, Qiu J D. Nat. Commun., 2020, 11: 436.

doi: 10.1038/s41467-020-14289-x
[100]
Li F F, Cui W R, Jiang W, Zhang C R, Liang R P, Qiu J D. J. Hazard. Mater., 2020, 392: 122333.

doi: 10.1016/j.jhazmat.2020.122333
[101]
Zhang C R, Cui W R, Jiang W, Li F F, Wu Y D, Liang R P, Qiu J D. Environ. Sci.: Nano, 2020, 7(3): 842.
[102]
Li X, Qi Y, Yue G Z, Wu Q X, Li Y, Zhang M C, Guo X H, Li X F, Ma L J, Li S J. Green Chem., 2019, 21(3): 649.

doi: 10.1039/C8GC03295E
[103]
Zhang J, Zhou L, Jia Z, Li X and Ma L. Nanoscale, 2020, 12: 24044.
[104]
Li Y, Guo X H, Li X F, Zhang M C, Jia Z M, Deng Y, Tian Y, Li S J, Ma L J. Angew. Chem., 2020, 132(10): 4197.

doi: 10.1002/ange.v132.10
[105]
Cui W R, Li F F, Xu R H, Zhang C R, Chen X R, Yan R H, Liang R P, Qiu J D. Angew. Chem. Int. Ed., 2020, 59(40): 17684.

doi: 10.1002/anie.v59.40
[106]
Hao M J, Chen Z S, Liu X L, Liu X H, Zhang J Y, Yang H, Waterhouse G I N, Wang X K, Ma S Q. CCS Chem., 2022, 4(7): 2294.

doi: 10.31635/ccschem.022.202201897
[107]
Yin Z J, Xu S Q, Zhan T G, Qi Q Y, Wu Z Q, Zhao X. Chem. Commun., 2017, 53(53): 7266.

doi: 10.1039/C7CC01045A
[108]
An S H, Zhu X, He Y Y, Yang L, Wang H, Jin S B, Hu J, Liu H L. Ind. Eng. Chem. Res., 2019, 58(24): 10495.

doi: 10.1021/acs.iecr.9b00028
[109]
Pan X W, Qin X H, Zhang Q H, Ge Y S, Ke H Z, Cheng G E. Microporous Mesoporous Mater., 2020, 296: 109990.

doi: 10.1016/j.micromeso.2019.109990
[110]
Li J H, Zhang H X, Zhang L Y, Wang K, Wang Z K, Liu G Y, Zhao Y L, Zeng Y F. J. Mater. Chem. A, 2020, 8(19): 9523.

doi: 10.1039/C9TA13980J
[111]
He L W, Liu S T, Chen L, Dai X, Li J, Zhang M X, Ma F Y, Zhang C, Yang Z X, Zhou R H, Chai Z F, Wang S A. Chem. Sci., 2019, 10(15): 4293.

doi: 10.1039/C9SC00172G
[1] Chao Chen, Guyue Wang, Ying Tian, Zhengyang Kong, Fenglong Li, Jin Zhu, Wu Bin Ying. Research Progress on Self-Healing Polyurethane and Its Applications in the Field of Flexible Sensors [J]. Progress in Chemistry, 2023, 35(9): 1275-1293.
[2] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[3] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[6] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[7] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[8] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[9] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[10] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[11] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[12] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[13] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[14] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[15] Anrui Zhang, Yuejie Ai. Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry [J]. Progress in Chemistry, 2020, 32(10): 1564-1581.