中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 740-751 DOI: 10.7536/PC200625 Previous Articles   Next Articles

• Original article •

Synthesis and Applications of Two-Dimensional V2C MXene

Song Jiang1,2, Jiapei Wang1,2, Hui Zhu2, Qin Zhang2, Ye Cong1,2,*(), Xuanke Li1,*()   

  1. 1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,Wuhan 430081, China
    2 Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology,Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Contact: Ye Cong, Xuanke Li
  • Supported by:
    National Natural Science Foundation of China(51472186); National Natural Science Foundation of China(51902232)
Richhtml ( 122 ) PDF ( 1686 ) Cited
Export

EndNote

Ris

BibTeX

MXenes are general term for two-dimensional transition metal carbides, nitrides and carbonitrides, which have been widely used in energy storage, catalysis, electromagnetics and other fields due to their unique physical and chemical properties. As an important member of MXenes, V2C MXene has high conductivity, low transport barrier and pseudocapacitve performance ascribed to the multiple oxidation states of vanadium. Consequently, it has highlighted performances in many aspects, especially in electrochemical energy storage. However, the difficulty of synthesis caused by its high formation energy and the structural instability of V2C MXene have restricted its development. This article reviews the progress of V2C MXene in synthesis, structure, properties and applications, focusing on synthesis methods and applications in electrochemical energy storage and electrocatalytic hydrogen evolution reaction. Meanwhile, the challenges and future perspective in the application of V2C MXene are outlined.

Contents

1 Introduction

2 Synthesis

2.1 Synthesis of V2AlC

2.2 Synthesis of V2C MXene

2.3 Delamination of V2C MXene

3 Structure and properties

3.1 Structure

3.2 Stability

3.3 Other properties

4 Applications

4.1 Supercapacitors

4.2 Secondary batteries

4.3 Electrocatalytic hydrogen evolution

4.4 Other applications

5 Conclusion and perspective

Table 1 Experimental parameters for preparing V2AlC by different synthesis routes
Fig. 1 Schematic diagram of V2CTx preparation
Table 2 Experimental parameters for preparing V2C MXene by HF etching
Table 3 Experimental parameters for preparing V2C MXene by other methods
Fig. 2 Atomic structure of pristine V2C and two structural models for terminated V2CT2
Table 4 The performance of V2C MXene as electrode for supercapacitor
Table 5 The performance of V2C MXene and its derived materials as secondary battery electrodes
Fig. 3 Volcano plot of the exchange current(i0) as a function of the average Gibbs free energy of hydrogen adsorption[80]
[1]
Nan J X, Guo X, Xiao J, Li X, Chen W H, Wu W J, Liu H, Wang Y, Wu M H, Wang G X. Small, 2021, 17(9):1902085.

doi: 10.1002/smll.v17.9
[2]
Yan K, Guan Y F, Cong Y, Xu T X, Zhu H, Li X K. Chin. J Inorg. Chem., 2019, 35:1203.
( 严康, 关云锋, 丛野, 徐畑祥, 朱辉, 李轩科. 无机化学学报, 2019, 35:1203.).
[3]
Anasori B, Gogotsi Y. 2D Metal Carbides and Nitrides(MXenes):Structure,Properties and Applications. Switzerland: Springer, 2019.3.
[4]
Gogotsi Y, Anasori B. ACS Nano, 2019, 13(8):8491.

doi: 10.1021/acsnano.9b06394 pmid: 31454866
[5]
Zhao W J, Qin J Z, Yin Z F, Hu X, Liu B J. Prog. Chem., 2019, 31:1729.
( 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 化学进展, 2019, 31:1729.).

doi: 10.7536/PC190321
[6]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37):4248.

doi: 10.1002/adma.201102306
[7]
Xu T X, Wang J P, Cong Y, Jiang S, Zhang Q, Zhu H, Li Y J, Li X K. Chin. Chem. Lett., 2020, 31(4):1022.

doi: 10.1016/j.cclet.2019.11.038
[8]
VahidMohammadi A, Mojtabavi M, Caffrey N M, Wanunu M, Beidaghi M. Adv. Mater., 2019, 31(8):1806931.

doi: 10.1002/adma.v31.8
[9]
Ying G B, Kota S, Dillon A D, Fafarman A T, Barsoum M W. FlatChem, 2018, 8:25.

doi: 10.1016/j.flatc.2018.03.001
[10]
He H T, Xia Q X, Wang B X, Wang L B, Hu Q K, Zhou A G. Chin. Chem. Lett., 2020, 31(4):984.

doi: 10.1016/j.cclet.2019.08.025
[11]
Hu J P, Xu B, Ouyang C, Yang S A, Yao Y G. J. Phys. Chem. C, 2014, 118(42):24274.

doi: 10.1021/jp507336x
[12]
Zhang Y J, Zhou Z J, Lan J H, Ge C C, Chai Z F, Zhang P H, Shi W Q. Appl. Surf. Sci., 2017, 426:572.

doi: 10.1016/j.apsusc.2017.07.227
[13]
Wang C D, Chen S M, Xie H, Wei S Q, Wu C Q, Song L. Adv. Energy Mater., 2019, 9(4):1970013.

doi: 10.1002/aenm.v9.4
[14]
Wei S Q, Wang C D, Chen S M, Zhang P J, Zhu K F, Wu C Q, Song P, Wen W, Song L. Adv. Energy Mater., 2020, 10(12):1903712.

doi: 10.1002/aenm.v10.12
[15]
Wang Z G, Yu K, Feng Y, Qi R J, Ren J, Zhu Z Q. ACS Appl. Mater. Interfaces, 2019, 11(47):44282.

doi: 10.1021/acsami.9b15586
[16]
Li X L, Li M, Yang Q, Li H F, Xu H L, Chai Z F, Chen K, Liu Z X, Tang Z J, Ma L T, Huang Z D, Dong B B, Yin X W, Huang Q, Zhi C Y. ACS Nano, 2020, 14(1):541.

doi: 10.1021/acsnano.9b06866
[17]
Sun D D, Hu Q K, Chen J F, Zhou A G. Key Eng. Mater., 2014,602-603: 527.
[18]
Guan Y F, Jiang S, Cong Y, Wang J P, Dong Z J, Zhang Q, Yuan G M, Li Y J, Li X K. 2D Mater., 2020, 7(2):025010.
[19]
Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Chem. Soc., 2013, 135(43):15966.

doi: 10.1021/ja405735d
[20]
Guo Y T, Zhou A G, Hu Q K, Wang L B. J. Synth. Cryst., 2019, 48:2158.
( 郭奕彤, 周爱国, 胡前库, 王李波. 人工晶体学报, 2019, 48:2158.).
[21]
Zheng W, Sun Z M, Zhang P G, Tian W B, Wang Y, Zhang Y M. Mater. R., 2017, 31:1.
( 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31:1.).
[22]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):16098.

doi: 10.1038/natrevmats.2016.98
[23]
Hu C F, He L F, Liu M Y, Wang X H, Wang J Y, Li M S, Bao Y W, Zhou Y C. J. Am. Ceram. Soc., 2008, 91(12):4029.

doi: 10.1111/jace.2008.91.issue-12
[24]
Hossein-Zadeh M, Mirzaee O, Mohammadian-Semnani H, Razavi M. Ceram. Int., 2019, 45(18):23902.

doi: 10.1016/j.ceramint.2019.07.236
[25]
Hossein-Zadeh M, Ghasali E, Mirzaee O, Mohammadian-Semnani H, Alizadeh M, Orooji Y, Ebadzadeh T. J. Alloy. Compd., 2019, 795:291.

doi: 10.1016/j.jallcom.2019.05.029
[26]
Hamm C M, Dürrschnabel M, Molina-Luna L, Salikhov R, Spoddig D, Farle M, Wiedwald U, Birkel C S. Mater. Chem. Front., 2018, 2(3):483.

doi: 10.1039/C7QM00488E
[27]
Roy C, Banerjee P, Bhattacharyya S. J. Eur. Ceram. Soc., 2020, 40(3):923.

doi: 10.1016/j.jeurceramsoc.2019.10.020
[28]
Wang B X, Zhou A G, Hu Q K, Wang L B. Int. J. Appl. Ceram. Technol., 2017, 14(5):873.

doi: 10.1111/ijac.2017.14.issue-5
[29]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11):4730.

doi: 10.1021/jacs.9b00574
[30]
VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. ACS Nano, 2017, 11(11):11135.

doi: 10.1021/acsnano.7b05350 pmid: 29039915
[31]
Wang L B, Liu D R, Lian W W, Hu Q K, Liu X Q, Zhou A G. J. Mater. Res. Technol., 2020, 9(1):984.

doi: 10.1016/j.jmrt.2019.11.038
[32]
Liu F F, Zhou J, Wang S W, Wang B X, Shen C, Wang L B, Hu Q K, Huang Q, Zhou A G. J. Electrochem. Soc., 2017, 164(4):A709.

doi: 10.1149/2.0641704jes
[33]
Wu M, Wang B X, Hu Q K, Wang L B, Zhou A G. Materials, 2018, 11(11):2112.

doi: 10.3390/ma11112112
[34]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7):2374.

doi: 10.1021/cm500641a
[35]
Zhou J, Gao S H, Guo Z L, Sun Z M. Ceram. Int., 2017, 43(14):11450.

doi: 10.1016/j.ceramint.2017.06.016
[36]
Wang Y, Zheng W, Zhang P G, Tian W B, Chen J, Sun Z M. J. Mater. Sci., 2019, 54(18):11991.

doi: 10.1007/s10853-019-03756-6
[37]
Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H. J. Am. Chem. Soc., 2019, 141(24):9610.

doi: 10.1021/jacs.9b02578
[38]
Zada S, Dai W H, Kai Z, Lu H T, Meng X D, Zhang Y Y, Cheng Y R, Yan F, Fu P C, Zhang X J, Dong H F. Angew. Chem. Int. Ed., 2020, 59(16):6601.

doi: 10.1002/anie.v59.16
[39]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19(8):894.

doi: 10.1038/s41563-020-0657-0
[40]
Cai X K, Luo Y T, Liu B L, Cheng H M. Chem. Soc. Rev., 2018, 47(16):6224.

doi: 10.1039/C8CS00254A
[41]
Naguib M, Unocic R R, Armstrong B L, Nanda J. Dalton Trans., 2015, 44(20):9353.

doi: 10.1039/C5DT01247C
[42]
Chen Z, Yang X B, Qiao X, Zhang N, Zhang C F, Ma Z L, Wang H Q. J. Phys. Chem. Lett., 2020, 11(3):885.

doi: 10.1021/acs.jpclett.9b03827
[43]
Ming F W, Liang H F, Zhang W L, Ming J, Lei Y J, Emwas A H, Alshareef H N. Nano Energy, 2019, 62:853.

doi: 10.1016/j.nanoen.2019.06.013
[44]
Shan Q M, Mu X P, Alhabeb M, Shuck C E, Pang D, Zhao X, Chu X F, Wei Y J, Du F, Chen G, Gogotsi Y, Gao Y, Dall’Agnese Y. Electrochem. Commun., 2018, 96:103.

doi: 10.1016/j.elecom.2018.10.012
[45]
Wang C D, Wei S Q, Chen S M, Cao D F, Song L. Small Methods, 2019, 3(12):1900495.

doi: 10.1002/smtd.v3.12
[46]
Cao Y, Wu T, Zhang K, Meng X, Dai W, Wang D, Dong H, Zhang X. ACS Nano, 2019, 13:1499.

doi: 10.1021/acsnano.8b07224 pmid: 30677286
[47]
Yuan Y Y, Li H S, Wang L G, Zhang L, Shi D E, Hong Y X, Sun J L. ACS Sustainable Chem. Eng., 2019, 7(4):4266.

doi: 10.1021/acssuschemeng.8b06045
[48]
Wang C D, Xie H, Chen S M, Ge B H, Liu D B, Wu C Q, Xu W J, Chu W S, Babu G, Ajayan P M, Song L. Adv. Mater., 2018, 30(32):1802525.

doi: 10.1002/adma.v30.32
[49]
Wei S, Wang C, Zhang P, Zhu K, Chen S, Song L. J. Inorg. Mater., 2020, 35:139.
[50]
Li M, Huang Q. J. Inorg. Mater., 2020, 35:1.
( 李勉, 黄庆. 无机材料学报, 2020, 35:1.).
[51]
Champagne A, Shi L, Ouisse T, Hackens B, Charlier J C. Phys. Rev. B, 2018, 97(11):115439.

doi: 10.1103/PhysRevB.97.115439
[52]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1):72.

doi: 10.1039/C8CS00324F
[53]
Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Adv. Funct. Mater., 2013, 23(17):2185.

doi: 10.1002/adfm.v23.17
[54]
Ashton M, Mathew K, Hennig R G, Sinnott S B. J. Phys. Chem. C, 2016, 120(6):3550.

doi: 10.1021/acs.jpcc.5b11887
[55]
Li Z, Wu Y. Small, 2019, 15(29):1804736.

doi: 10.1002/smll.v15.29
[56]
Thakur R, VahidMohammadi A, Moncada J, Adams W R, Chi M Y, Tatarchuk B, Beidaghi M, Carrero C A. Nanoscale, 2019, 11(22):10716.

doi: 10.1039/c9nr03020d pmid: 31120085
[57]
Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V. Chem. Mater., 2017, 29(11):4848.

doi: 10.1021/acs.chemmater.7b00745
[58]
Hu M M, Hu T, Li Z J, Yang Y, Cheng R F, Yang J X, Cui C, Wang X H. ACS Nano, 2018, 12(4):3578.

doi: 10.1021/acsnano.8b00676
[59]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. J. Am. Chem. Soc., 2014, 136(17):6385.

doi: 10.1021/ja501520b
[60]
Natu V, Hart J L, Sokol M, Chiang H, Taheri M L, Barsoum M W. Angew. Chem. Int. Ed., 2019, 58(36):12655.

doi: 10.1002/anie.v58.36
[61]
Zhao X F, Vashisth A, Prehn E, Sun W M, Shah S A, Habib T, Chen Y X, Tan Z Y, Lutkenhaus J L, Radovic M, Green M J. Matter, 2019, 1(2):513.

doi: 10.1016/j.matt.2019.05.020
[62]
Kurtoglu M, Naguib M, Gogotsi Y, Barsoum M W. MRS Commun., 2012, 2(4):133.

doi: 10.1557/mrc.2012.25
[63]
Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L H, Haines B, May S J, Billinge S J L, Gogotsi Y. Nanoscale, 2017, 9(45):17722.

doi: 10.1039/c7nr06721f pmid: 29134998
[64]
Gao G Y, Ding G Q, Li J, Yao K L, Wu M H, Qian M C. Nanoscale, 2016, 8(16):8986.

doi: 10.1039/C6NR01333C
[65]
Frey N C, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y, Shenoy V B. ACS Nano, 2019, 13(3):2831.

doi: 10.1021/acsnano.8b09201
[66]
Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Chem. Rev., 2018, 118(18):9233.

doi: 10.1021/acs.chemrev.8b00252
[67]
Yao S S, Li N, Ye H Q, Han K. Prog. Chem., 2018, 30(7):932.
( 姚送送, 李诺, 叶红齐, 韩凯. 化学进展, 2018, 30(7):932.)

doi: 10.7536/PC171114
[68]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.

doi: 10.1038/nature13970
[69]
Luo J M, Zhang W K, Yuan H D, Jin C B, Zhang L Y, Huang H, Liang C, Xia Y, Zhang J, Gan Y P, Tao X Y. ACS Nano, 2017, 11(3):2459.

doi: 10.1021/acsnano.6b07668
[70]
Dall’Agnese Y, Taberna P L, Gogotsi Y, Simon P. J. Phys. Chem. Lett., 2015, 6(12):2305.

doi: 10.1021/acs.jpclett.5b00868
[71]
Sun D D, Hu Q K, Chen J F, Zhang X Y, Wang L B, Wu Q H, Zhou A G. ACS Appl. Mater. Interfaces, 2016, 8(1):74.

doi: 10.1021/acsami.5b03863
[72]
Zheng W, Yang L, Zhang P G, Chen J, Tian W B, Zhang Y M, Sun Z M. Mater. R., 2018, 32:2513.
( 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 材料导报, 2018, 32:2513.).
[73]
Liu F F, Liu Y C, Zhao X D, Liu K Y, Yin H Q, Fan L Z. Small, 2020, 16(8):1906076.

doi: 10.1002/smll.v16.8
[74]
Li Y, Guo Y, Jiao Z. Curr. Appl. Phys., 2020, 20:310.

doi: 10.1016/j.cap.2019.11.025
[75]
Zhu J J, Schwingenschlögl U. 2D Mater., 2017, 4(2):025073.
[76]
Bak S M, Qiao R M, Yang W L, Lee S, Yu X Q, Anasori B, Lee H, Gogotsi Y, Yang X Q. Adv. Energy Mater., 2017, 7(20):1700959.

doi: 10.1002/aenm.v7.20
[77]
Wang Y T, Shen J L, Xu L C, Yang Z, Li R, Liu R P, Li X Y. Phys. Chem. Chem. Phys., 2019, 21(34):18559.

doi: 10.1039/C9CP03419F
[78]
Liang P, Zhang L, Wang D, Man X L, Shu H B, Wang L, Wan H Z, Du X Q, Wang H. Appl. Surf. Sci., 2019, 489:677.

doi: 10.1016/j.apsusc.2019.06.033
[79]
Tian Y, An Y L, Wei H, Wei C L, Tao Y, Li Y, Xi B J, Xiong S L, Feng J K, Qian Y T. Chem. Mater., 2020, 32(9):4054.

doi: 10.1021/acs.chemmater.0c00787
[80]
Gao G P, O’Mullane A P, Du A J. ACS Catal., 2017, 7(1):494.

doi: 10.1021/acscatal.6b02754
[81]
Ling C Y, Shi L, Ouyang Y X, Chen Q, Wang J L. Adv. Sci., 2016, 3(11):1600180.

doi: 10.1002/advs.v3.11
[82]
Yoon Y, Tiwari A P, Choi M, Novak T G, Song W, Chang H, Zyung T, Lee S S, Jeon S, An K S. Adv. Funct. Mater., 2019, 29(30):1903443.

doi: 10.1002/adfm.v29.30
[83]
Wang Z G, Xu W Q, Yu K, Feng Y, Zhu Z Q. Nanoscale, 2020, 12(10):6176.

doi: 10.1039/D0NR00207K
[84]
Kuang P Y, He M, Zhu B C, Yu J G, Fan K, Jaroniec M. J. Catal., 2019, 375:8.

doi: 10.1016/j.jcat.2019.05.019
[85]
Zhou S, Yang X W, Pei W, Liu N S, Zhao J J. Nanoscale, 2018, 10(23):10876.

doi: 10.1039/c8nr01090k pmid: 29616270
[86]
Huang D P, Xie Y, Lu D Z, Wang Z Y, Wang J Y, Yu H H, Zhang H J. Adv. Mater., 2019:1901117.
[87]
Morales-García Á, Fernández-Fernández A, Viñes F, Illas F. J. Mater. Chem. A, 2018, 6(8):3381.

doi: 10.1039/C7TA11379J
[88]
Thakur R, VahidMohammadi A, Smith J, Hoffman M, Moncada J, Beidaghi M, Carrero C A. ACS Catal., 2020, 10(9):5124.

doi: 10.1021/acscatal.0c00797
[89]
Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Huang Q, Chen T. Chem. Commun., 2015, 51(2):314.

doi: 10.1039/C4CC07220K
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[6] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[7] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[8] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[9] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[10] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[11] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[14] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[15] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.