中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (9): 1238-1250 DOI: 10.7536/PC190211 Previous Articles   Next Articles

From Preparation to Lighting and Display Applications of Ⅰ-Ⅲ-Ⅵ Quantum Dots

Yanqiao Xu1, Ting Chen1,2,**(), Lianjun Wang2,3,**(), Weihui Jiang1,2, Wan Jiang2,3, Zhixiang Xie1   

  1. 1. School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
    2. National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China;
    3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received: Online: Published:
  • Contact: Ting Chen, Lianjun Wang
  • About author:
    ** E-mail: (Ting Chen);
    (Lianjun Wang)
  • Supported by:
    The National Natural Science Foundation of China(No.51402135); The National Natural Science Foundation of China(No.51432004); The National Natural Science Foundation of China(No.51774096); The Fund for Distinguished Young Scholars of Jiangxi Province(No.20171BCB23071); The Natural Science Foundation of Jiangxi Province(No.20181BAB216009); The Natural Science Foundation of Jiangxi Province(No.20171BAB216008); The Science Foundation of Jiangxi Provincial Department of Education(No.GJJ180708); The Science Foundation of Jiangxi Provincial Department of Education(No.GJJ180707)
Richhtml ( 25 ) PDF ( 678 ) Cited
Export

EndNote

Ris

BibTeX

Semiconductor quantum dots(QDs) present great potential in applications of light emitting diodes, solar cells and bio-labeling fields owing to their unique optical and electronic properties. Although the traditional Ⅱ-Ⅵ and Ⅲ-Ⅴ type QDs possess appealing emission properties, the intrinsic toxicity of heavy metal elements, such as cadmium and lead, severely sheds doubt on their large-scale commercial applications. As a new kind of fluorescent material that has emerged in recent years, Ⅰ-Ⅲ-Ⅵ multiple QDs are considered as promising alternatives to the traditional binary QDs due to their low toxicity, tunable bandgaps, large Stokes shifts and long photoluminescence lifetime, which have been receiving considerable attention of researchers. In this review, we highlight the current research progress on theⅠ-Ⅲ-Ⅵ QDs. Firstly, the regulation mechanism of the luminescent properties is illuminated on the basis of their structure and composition. Moreover, the emphasis is focused on the current research of the organic and aqueous preparation pathways in recent years. Simultaneously, their primary applications in the lighting and display fields are summarized, and the comparison of the latest research progress of devices betweenⅠ-Ⅲ-Ⅵ QDs and other QDs is made. Finally, we outline the challenges concerning the development of the luminescentⅠ-Ⅲ-Ⅵ QDs and conclude the main future research directions.

Fig. 1 Unit cell of the(a) chalcopyrite structure, (b) zinc blende structure, and(c) wurtzite structure[46]. Copyright 2013, Royal Society of Chemistry
Fig. 2 Emission mechanism of CuInS2 quantum dots[63]. Copyright 2015, Elsevier
Table 1 Organic preparation methods forⅠ-Ⅲ-Ⅵ type quantum dots
Materials Precursors, ligands, solvents Methods Conditions Emission
peak/nm
Size/nm QY/% ref
Cu-Fe-S/CdS Cu(Ac)2, FeCl2, S, DDT, OA, ODE Hot injection 180 ℃, Ar 520~1000 3~15 87 15
Cu-In-S/ZnS Cu(Ac)2, In(Ac)3, S, TOP, DDT, OA, SA, ODE Hot injection 180 ℃ 500~950 2~20 30 18
Cu-Zn-In-S CuAc, In(Ac)3, Zn(Ac)2, S, DDT, OA, ODE Hot injection 230 ℃, Ar 620~750 2~7 70 21
Zn-Ag-In-S/Zn-In-S/ZnS AgNO3, In(acac)3, HZAD, S, OLA, OA, OTT, ODE Hot injection 180 ℃, N2 511~590 3.3~3.9 87 26
Cu-In-S/ZnS CuI, In(Ac)3, Zn(Ac)2, S, OTT, OA, ODE Hot injection 230 ℃, N2 577~602 1.9~7.1 89 27
Zn-Cu-In-S CuI, InI3, S, DECZn, TOP, OLA, ODE Heating up 160~280 ℃,
N2
570~800 3~6 5 13
Cu-In/Ga-S/ZnS CuI, GaI3, In(Ac)3, Zn(Ac)2, S, DDT, OA, OLA, ODE Heating up 240 ℃, N2 495~536 4.8~6.3 85 16
Cu-In-Zn-S CuI, In(Ac)3, Zn(St)2, DDT, TOP, ODE Heating up 230 ℃ 590~640 2.7 80 19
Cu-Zn-In-S/ZnS Cu(Ac)2, In(Ac)3, Zn(Ac)2, S, DDT, OAm, ODE Heating up 220 ℃ 450~810 2.4~3.9 85 22
Cu-In-S/ZnS CuI, In(Ac)3, Zn(St)2, DDT, ODE Heating up 230 ℃, Ar 665~717 2~4 78 23
Zn-Cu-In-S/ZnS CuI, In(Ac)3, Zn(SA)2, DDT, OA, ODE Heating up 240 ℃, Ar 600~815 3.2~6.2 50 28
Zn-Ag-In-S AgNO3, In(Ac)3, Zn(St)2, S, DDT, TOP, OA, ODE Heating up 120~210 ℃,
N2
520~680 5~7.4 41 29
Cu-In-Zn-S Cu(Ac)2, In(Ac)3, Zn(Ac)2, DDT, OLA, ODE Heating up 230 ℃, Ar 520~700 2.5 76 57
Cu-In-S/ZnS
Cu-In-S/CdS
CuI, In(Ac)3, Zn(St)2, Cd-OA, S, DDT Heating up 230 ℃, Ar 630~780 2.2~3.3 86 62
Cu-In-S/ZnS CuI, In(Ac)3, Zn(Ac)2, DDT, ODE Solvothermal 180 ℃ 545~614 1.4~3.6 65 55
Cu-In-S/ZnS CuI, In(Ac)3, Zn(Ac)2, S, OA, OAm, DDT, ODE Microwave 190~240 ℃ 610~712 2.7~3.2 56 75
Cu-In-S (PPh3)2CuIn(Set)4, C6H14S, TOPO, DOP Thermal decomposition 200 ℃, Ar 700 2~4 4.4 17
Ag-In-S AgNO3, In(NO3)3, NaS2CN(C2H5)2, OCA, OLA Thermal decomposition 180 ℃ 650~830 3.8~4.3 70 76
Table 2 Aqueous preparation methods forⅠ-Ⅲ-Ⅵ type quantum dots
Materials Precursors, ligands Methods Conditions Emission
peak/nm
Size/nm QY/% ref
Cu-In-S/ZnS CuCl2·2H2O, InCl3, Zn(Ac)2·2H2O, Na2S·2H2O, SC, GSH Heating up 95 ℃ 543~625 2.1~3.8 38 31
Zn-Ag-In-S AgNO3, Zn(Ac)2, In(Ac)3, Na2S2O3, Thiourea, Na2S·9H2O, GSH Heating up 100 ℃ 525~625 2.0~2.5 30 37
Zn-Ag-In-Se AgNO3, Zn(Ac)2, In(Ac)3, Na2SeSO3, GSH Heating up 100 ℃ 450~760 3.5~4.0 30 38
Ag-In-S/ZnS AgNO3, InCl3, Na2S·9H2O, Zn(Ac)2, MAA Heating up 90~
95 ℃
580~770 2.0~3.5 47 39
Cu-In-Zn-S CuCl2·2H2O, InCl3·4H2O, Zn(Ac)2·2H2O, Na2S, SC, GSH Heating up 95 ℃ 588~668 3.5~3.9 5.95 40
Ag-In-S-ZnS AgNO3, In(NO3)3, Zn(NO3)2, Na2S, GSH, PAA, MAA Heating up 100 ℃ 525~640 3.0 20 59
Zn-Cu-In-S CuCl2, InCl3·4H2O, Zn(Ac)2, Na2xH2O, MPA Heating up 100 ℃ 600~700 4.0~7.0 4.7 61
Ag-In-S/ZnS AgNO3, In(OH)3, TGA, Gelatin, (NH4)2S, ZnCl2 Electric pressure cooker 120 ℃ 535~607 2.4~2.9 39.1 32
Cu-In-Se/ZnS
Ag-In-Se/ZnS
CuCl2·2H2O, AgNO3, In(OH)3, ZnO, TGA, Se, NaBH4, Gelatin Electric pressure cooker 120 ℃ 582~686 3.6, 3.9 23.3 33
Ag-In-S/ZnS AgNO3, In(OH)3, ZnCl2, (NH4)2S, TGA, Gelatin Electric pressure cooker 120 ℃ 570~615 3.0 57 34
Ag-In-S/ZnS AgNO3, In(OH)3, Zn(NO3)2·6H2O, (NH4)2S, TGA, Gelatin, PVA Electric pressure cooker 120 ℃ 560~575 2.5~3.4 64 35
Ag-In-S AgNO3, InCl3, PEI, Na2S·9H2O Electric pressure cooker 120 ℃ 550~560 3.1 32 36
Cu-In-S/ZnS CuCl2, InCl3, Na2S, SC, TGA Electric pressure cooker 120 ℃ 545~610 3.5~5.1 40 65
Cu-In-S/ZnS CuCl2·2H2O, InCl3, Zn(Ac)2·2H2O, Thiourea, SC, GSH Microwave 95 ℃ 543~700 3.2~4.8 43 58
Ag-In-S/ZnS AgNO3, In(NO3)3·4H2O, Zn(Ac)2·2H2O, Na2S, GSH Microwave 100 ℃ 553~570 2.5 40 66
Zn-Ag-In-S AgAc, In(Ac)3, Zn(Ac)2, Na2S, GSH One-step 95 ℃ 560~660 3.0~4.0 15 77
Cu-Zn-In-S CuCl2·2H2O, InCl3, Zn(Ac)2·2H2O, Na2S, Thiourea, SC, GSH Hydrothermal 150 ℃ 465~700 4.6~5.5 25~35 78
Fig. 3 (a) Absorption spectra, (b) normalized PL spectra, (c) the digital photograph under UV lamp and(d) schematic energy level diagram of CZIS QDs[78]. Copyright 2015, Royal Society of Chemistry
Fig. 4 (a) Schematic for the large-scale preparation process of CISe/ZnS and AISe/ZnS core/shell QDs, (b) the digital photographs of a commercial electric pressure cooker and(c) the crude dispersion of the as-prepared core/shell QDs[33]. Copyright 2015, Royal Society of Chemistry
Table 3 Parameters of pc-LED by usingⅠ-Ⅲ-Ⅵ quantum dots
Fig. 5 (a) EL spectra, (b) operating images, (c) variations of CRI, CCT, luminous efficacy and(d) CIE color coordinates of LEDs fabricated with different weight ratios between CGS and CIS QDs[16]. Copyright 2017, Royal Society of Chemistry
Table 4 Parameters of electroluminescent devices by usingⅠ-Ⅲ-Ⅵ quantum dots
Fig. 6 (a) Structure, (b) current efficiency and external quantum efficiency as a function of luminance, (c) corresponding energy level diagram, and(d) EL spectra with increasing driving voltage of EL devices[27]. Copyright 2016, American Chemical Society
[1]
Peng X, Schlamp M C, Kadavanich A V, Alivisatos A P . J. Am. Chem. Soc., 1997, 119(30):7019.
[2]
Peng X, Manna L, Yang W, Wickham J, Scher E, Kadacanich A, Alivisatos A P . Nature, 2000, 404(6773):59. https://www.ncbi.nlm.nih.gov/pubmed/10716439

doi: 10.1038/35003535 pmid: 10716439
[3]
Li Z, Ji Y, Xie R, Grisham S Y, Peng X . J. Am. Chem. Soc., 2011, 133(43):17248. https://www.ncbi.nlm.nih.gov/pubmed/21939230

doi: 10.1021/ja204538f pmid: 21939230
[4]
Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X . Bioconjugate Chem., 2010, 21(4):604. https://www.ncbi.nlm.nih.gov/pubmed/20369817

doi: 10.1021/bc900323v pmid: 20369817
[5]
Tang F, Pang D W, Chen Z, Shao J B, Xiong L H, Xiang Y P, Xiong Y, Wu K, Ai H W, Zhang H, Zheng X L, Lv J R, Liu W Y, Hu H B, Mei H, Zhang Z, Sun H, Xiang Y, Sun Z Y . Nanoscale, 2016, 8(8):4688. https://www.ncbi.nlm.nih.gov/pubmed/26853517

doi: 10.1039/c5nr07424j pmid: 26853517
[6]
Lee Y L, Lo Y S . Adv. Funct. Mater., 2009, 19(4):604.
[7]
Peng W, Du J, Pan Z, Nakazawa N, Sun J, Du Z, Shen G, Yu J, Hu J S, Shen Q, Zhong X . ACS Appl. Mater. Interfaces, 2017, 9(6):5328. https://www.ncbi.nlm.nih.gov/pubmed/28092935

doi: 10.1021/acsami.6b14649 pmid: 28092935
[8]
Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X . Nature, 2014, 515(7525):96. 8e44a249-aaa4-4296-b796-ae6d210e7f89http://dx.doi.org/10.1038/nature13829

doi: 10.1038/nature13829
[9]
Park S H, Hong A, Kim J H, Yang H, Lee K . ACS Appl. Mater. Interfaces, 2015, 7(12):6764. https://www.ncbi.nlm.nih.gov/pubmed/25757746

doi: 10.1021/acsami.5b00166 pmid: 25757746
[10]
Siramdas R, McLaurin E J . Chem. Mater., 2017, 29(5):2101.
[11]
Deng Z, Lie F L, Shen S, Ghosh I, Mansuripur M, Muscat A . Langmuir, 2009, 25(1):434.
[12]
Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q . ACS Nano, 2012, 6(5):3695. https://www.ncbi.nlm.nih.gov/pubmed/22515909

doi: 10.1021/nn301218z pmid: 22515909
[13]
Nakamura H, Kato W, Uehara M, Nose K, Omata T, Matsuo S O Y, Miyazaki M, Maeda H . Chem. Mater., 2006, 18(14):3330.
[14]
Cichy B, Wawrzynczyk D, Samoc M, Stręk W . J. Mater. Chem. C, 2017, 5(1):149.
[15]
Bhattacharyya B, Pandey A . J. Am. Chem. Soc., 2016, 138(32):10207. https://www.ncbi.nlm.nih.gov/pubmed/27447297

doi: 10.1021/jacs.6b04981 pmid: 27447297
[16]
Kim J H, Kim B Y, Jang E P, Han C Y, Jo J H, Do Y R, Yang H . J. Mater. Chem. C, 2017, 5(27):6755.
[17]
Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F . J. Phys. Chem. B, 2004, 108(33):12429.
[18]
Xie R, Rutherford M, Peng X . J. Am. Chem. Soc., 2009, 131(15):5691. https://www.ncbi.nlm.nih.gov/pubmed/19331353

doi: 10.1021/ja9005767 pmid: 19331353
[19]
Trizio L D, Prato M, Genovese A, Casu A, Povia M, Simonutti R, Alcocer M J P, D’Andrea C, Tassone F, Manna L, Manna L . Chem. Mater., 2012, 24(12):2400. https://www.ncbi.nlm.nih.gov/pubmed/23016764

doi: 10.1162/jocn_a_00302 pmid: 23016764
[20]
Xiang W, Ma X, Luo L, Cai W, Xie C, Liang X . Mater. Chem. Phys., 2015, 149/150(4):437.
[21]
Zhang J, Xie R, Yang W . Chem. Mater., 2011, 23(14):3357. https://www.ncbi.nlm.nih.gov/pubmed/28005300

doi: 10.1002/chem.201604818 pmid: 28005300
[22]
Zhang W, Lou Q, Ji W, Zhao J, Zhong X . Chem. Mater., 2014, 26(2):1204.
[23]
Song W S, Yang H . Chem. Mater., 2012, 24(10):1961.
[24]
Chevallier T, Blevennec G L, Chandezon F . Nanoscale, 2016, 8(14):7612. https://www.ncbi.nlm.nih.gov/pubmed/26985657

doi: 10.1039/c5nr07082a pmid: 26985657
[25]
Jo D Y, Yang H . Chem. Commun., 2016, 52(4):709. https://www.ncbi.nlm.nih.gov/pubmed/26579551

doi: 10.1039/c5cc07968c pmid: 26579551
[26]
Ko M, Yoon H C, Yoo H, Oh J H, Yang H, Do Y R . Adv. Funct. Mater., 2017, 27(4):1602638.
[27]
Kim J H, Yang H . Chem. Mater., 2016, 28(17):6329.
[28]
Guo W, Chen N, Dong C, Zhang B, Hu C, Chang J . Theranostics, 2013, 3(2):99. https://www.ncbi.nlm.nih.gov/pubmed/23422883

doi: 10.7150/thno.5361 pmid: 23422883
[29]
Tang X, Ho W B A, Xue J M . J. Phys. Chem. C, 2012, 116(17):9769.
[30]
Speranskaya E S, Beloglazova N V, Abé S, Aubert T, Smet P F, Poelman D, Goryacheva I Y, Saeger S D, Hens Z . Langmuir, 2014, 30(25):7567. https://www.ncbi.nlm.nih.gov/pubmed/24892375

doi: 10.1021/la501268b pmid: 24892375
[31]
Chen Y, Li S, Huang L, Pan D . Inorg. Chem., 2013, 52(14):7819. https://www.ncbi.nlm.nih.gov/pubmed/23805901

doi: 10.1021/ic400083w pmid: 23805901
[32]
Kang X, Huang L, Yang Y, Pan D . J. Phys. Chem. C, 2015, 119(14):7933.
[33]
Kang X, Yang Y, Huang L, Tao Y, Wang L, Pan D . Green Chem., 2015, 17(8):4482.
[34]
Kang X, Yang Y, Wang L, Wei S, Pan D . ACS Appl. Mater. Interfaces, 2015, 7(50):27713. https://www.ncbi.nlm.nih.gov/pubmed/26629791

doi: 10.1021/acsami.5b10870 pmid: 26629791
[35]
Wang L, Kang X, Pan D . Phys. Chem. Chem. Phys., 2016, 18(46):31634. https://www.ncbi.nlm.nih.gov/pubmed/27834974

doi: 10.1039/c6cp06022f pmid: 27834974
[36]
Wang L, Kang X, Pan D . Inorg. Chem., 2017, 56(11):6122. https://www.ncbi.nlm.nih.gov/pubmed/28474898

doi: 10.1021/acs.inorgchem.7b00053 pmid: 28474898
[37]
Deng D, Cao J, Qu L, Achilefu S, Gu Y . Phys. Chem. Chem. Phys., 2013, 15(14):5078. https://www.ncbi.nlm.nih.gov/pubmed/23450151

doi: 10.1039/c3cp00046j pmid: 23450151
[38]
Wang J, Zhang R, Bao F, Han Z, Gu Y, Deng D . RSC Adv., 2015, 5(108):88583.
[39]
Raevskaya A, Lesnyak V, Haubold D, Dzhagan V, Stroyuk O, Gaponik N, Zahn D R T, Eychmüller A . J. Phys. Chem. C, 2017, 121(16):9032.
[40]
Xu Y, Chen T, Hu X, Jiang W, Wang L, Jiang W, Liu J . J. Colloid Interf. Sci., 2017, 496:479.
[41]
陈冰昆(Chen B K), 钟海政(Zhong H Z), 邹炳锁(Zou B S) . 化学进展(Progress in Chemistry), 2011, 23(11):2276.
[42]
Zhong H, Bai Z, Zou B . J. Phys. Chem. Lett., 2012, 3(21):3167. https://www.ncbi.nlm.nih.gov/pubmed/26296024

doi: 10.1021/jz301345x pmid: 26296024
[43]
Torimoto T, Kameyama T, Kuwabata S . J. Phys. Chem. Lett., 2014, 5(2):336. https://www.ncbi.nlm.nih.gov/pubmed/26270709

doi: 10.1021/jz402378x pmid: 26270709
[44]
Liu S, Su X . RSC Adv., 2014, 4(82):43415.
[45]
Li S, Tang X, Zang Z, Yao Y, Yao Z, Zhong H . Chinese J.Catal., 2018, 39(4):590. https://www.ncbi.nlm.nih.gov/pubmed/6875000

doi: 10.1002/1097-4679(198307)39:4【-逻*辑*与-】amp;amp;lt;590::aid-jclp2270390422【-逻*辑*与-】amp;amp;gt;3.0.co;2-b pmid: 6875000
[46]
Aldakov D, Lefrançois A, Reiss P . J. Mater. Chem. C, 2013, 1(24):3756.
[47]
Qi Y, Liu Q, Tang K, Liang Z, Ren Z, Liu X . J. Phys. Chem. C, 2009, 113(10):3939.
[48]
Norako M E, Brutchey R L . Chem. Mater., 2010, 22(5):1613.
[49]
Nose K, Soma Y, Omata T, Matsuo S O Y . Chem. Mater., 2009, 21(13):2607.
[50]
Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y . J. Am. Chem. Soc., 2008, 130(17):5620. https://www.ncbi.nlm.nih.gov/pubmed/18396869

doi: 10.1021/ja711027j pmid: 18396869
[51]
Xiang W D, Yang H L, Liang X J, Zhong J S, Wang J, Luo L, Xie C P . J. Mater. Chem. C, 2013, 1(10):2014.
[52]
Berends A C, Rabouw F T, Spoor F C M, Bladt E, Grozema F C, Houtepen A J, Siebbeles L D A, Donega C M . J. Phys. Chem. Lett., 2016, 7(17):3503. https://www.ncbi.nlm.nih.gov/pubmed/27552674

doi: 10.1021/acs.jpclett.6b01668 pmid: 27552674
[53]
Chen B, Pradhan N, Zhong H . J. Phys. Chem. Lett., 2018, 9(2):435. https://www.ncbi.nlm.nih.gov/pubmed/29303589

doi: 10.1021/acs.jpclett.7b03037 pmid: 29303589
[54]
Hamanaka Y, Ogawa T, Tsuzuki M . J. Phys. Chem. C, 2011, 115(5):1786.
[55]
Nam D E, Song W S, Yang H . J. Mater. Chem., 2011, 21(45):18220.
[56]
Zang H, Li H, Makarov N S, Velizhanin K A, Wu K, Park Y S, Klimov V I . Nano Lett., 2017, 17(3):1787. https://www.ncbi.nlm.nih.gov/pubmed/28169547

doi: 10.1021/acs.nanolett.6b05118 pmid: 28169547
[57]
Leng Z, Huang L, Shao F, Lv Z, Li T, Gu X, Han H . Mater. Lett., 2014, 119(1):100.
[58]
Ji W Q, Zhang Q H, Wang C F, Chen S . Ind. Eng. Chem. Res., 2016, 55(45):11700.
[59]
Regulacio M D, Win K Y, Lo S L, Zhang S Y, Zhang X, Wang S, Han M Y, Zheng Y . Nanoscale, 2013, 5(6):2322. https://www.ncbi.nlm.nih.gov/pubmed/23392168

doi: 10.1039/c3nr34159c pmid: 23392168
[60]
Lany S, Zunger A . Phys. Rev B: Condens. Matter Mater. Phys., 2005, 72(3):035215.
[61]
Zhang B, Wang Y, Yang C, Hu S, Gao Y, Zhang Y, Wang Y, Demir H V, Liu L, Yong K T . Phys. Chem. Chem. Phys., 2015, 17(38):25133. https://www.ncbi.nlm.nih.gov/pubmed/26349413

doi: 10.1039/c5cp03312h pmid: 26349413
[62]
Li L, Pandey A, Werder D J, Khanal B P, Pietryga J M, Klimov V I . J. Am. Chem. Soc., 2011, 133(5):1176. https://www.ncbi.nlm.nih.gov/pubmed/21207995

doi: 10.1021/ja108261h pmid: 21207995
[63]
Wang X, Liang Z, Xu X, Wang N, Fang J, Wang J, Xu G . J. Alloy Compd., 2015, 640:134. https://linkinghub.elsevier.com/retrieve/pii/S0925838815009974

doi: 10.1016/j.jallcom.2015.03.249
[64]
Hamanaka Y, Kuzuya T, Sofue T, Kino T, Ito K, Sumiyama K . Chem. Phys. Lett., 2008, 466(4):176.
[65]
Chen Y, Li S, Huang L, Pan D . Nanoscale, 2014, 6(3):1295. https://www.ncbi.nlm.nih.gov/pubmed/24337019

doi: 10.1039/c3nr05014a pmid: 24337019
[66]
Xiong W W, Yang G H, Wu X C, Zhu J J . J. Mater. Chem. B, 2013, 1(33):4160. https://www.ncbi.nlm.nih.gov/pubmed/32260969

doi: 10.1039/c3tb20638f pmid: 32260969
[67]
Hamanaka Y, Ozawa K, Kuzuya T . J. Phys. Chem. C, 2014, 118(26):14562.
[68]
Kim Y K, Cho Y S, Chung K, Choi C J . Proc. SPIE, 2011, 8094:80940I-3.
[69]
Spangler L C, Chu R, Lu L, Kiely C J, Berger B W, Mclntosh S . Nanoscale, 2017, 9(27):9340. https://www.ncbi.nlm.nih.gov/pubmed/28661538

doi: 10.1039/c7nr02852k pmid: 28661538
[70]
Yuan X, Zhao J, Jing P, Zhang W, Li H, Zhang L, Zhong X, Masumoto Y . J. Phys. Chem. C, 2012, 116(22):11973.
[71]
Gabka G, Bujak P, Giedyk K, Ostrowski A, Malinowska K, Herbich J, Golec B, Wielgus I, Pron A . Inorg. Chem., 2014, 53(10):5002. https://www.ncbi.nlm.nih.gov/pubmed/24786548

doi: 10.1021/ic500046m pmid: 24786548
[72]
Yoon H C, Oh J H, Ko M, Yoo H, Do Y R . ACS Appl. Mater. Interfaces, 2015, 7(13):7342. https://www.ncbi.nlm.nih.gov/pubmed/25781889

doi: 10.1021/acsami.5b00664 pmid: 25781889
[73]
Song W S, Kim J H, Lee J H, Lee H S, Do Y R, Yang H . J. Mater. Chem., 2012, 22(41):21901.
[74]
Pearson R G . J. Am. Chem. Soc., 1963, 85(22):3533.
[75]
Hong M, Xuan T, Liu J, Jiang Z, Chen Y, Chen X, Li H . RSC Adv., 2015, 5(124):102682.
[76]
Dai M, Ogawa S, Kameyama T, Okazaki K, Kudo A, Kuwabata S, Tsuboi Y, Torimoto T . J. Mater. Chem., 2012, 22(25):12851.
[77]
Luo Z, Zhang H, Huang J, Zhong X . J. Colloid Interf. Sci., 2012, 377(1):27. https://linkinghub.elsevier.com/retrieve/pii/S0021979712003724

doi: 10.1016/j.jcis.2012.03.074
[78]
Jiang T, Song J, Wang H, Ye X, Wang H, Zhang W, Yang M, Xia R, Zhu L, Xu X . J. Mater. Chem. B, 2015, 3(11):2402. https://www.ncbi.nlm.nih.gov/pubmed/32262071

doi: 10.1039/c4tb01957a pmid: 32262071
[79]
Hu X, Chen T, Xu Y, Wang M, Jiang W, Jiang W . J. Lumin., 2018, 200:189.
[80]
陈婷(Chen T), 徐彦乔(Xu Y Q), 王连军(Wang L J), 江莞(Jiang W), 江伟辉(Jiang W H), 刘健敏(Liu J M), 谢志翔(Xie Z X) . CN 201610920307.2, 2016.
[81]
Chen T, Xu Y, Wang L, Jiang W, Jiang W, Xie Z . Chem. Eur. J., 2018, 24(61):16407. https://www.ncbi.nlm.nih.gov/pubmed/30136426

doi: 10.1002/chem.201803548 pmid: 30136426
[82]
Demir H V, Nizamoglu S, Erdem T, Mutlugun E, Gaponik N, Eychmüllerc A . Nano Today, 2011, 6(6):632.
[83]
Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y . Mater. Sci. Eng. R, 2010, 71(1):1.
[84]
Chen B, Zhou Q, Li J, Zhang F, Liu R, Zhong H, Zou B . Opt. Express, 2013, 21(8):10105. https://www.ncbi.nlm.nih.gov/pubmed/23609715

doi: 10.1364/OE.21.010105 pmid: 23609715
[85]
Chen B, Zhong H, Wang M, Liu R, Zou B . Nanoscale, 2013, 5(8):3514. https://www.ncbi.nlm.nih.gov/pubmed/23503592

doi: 10.1039/c3nr33613a pmid: 23503592
[86]
Zhou Q, Chen B, Bai Z, Zou B, Zhong H . Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp., 2014, 45(1):1285.
[87]
Chen B, Susha A S, Reckmeier C J, Kershaw S V, Wang Y, Zou B, Zhong H, Rogach A L . Adv. Mater., 2017, 29(1):1604284.
[88]
Yuan X, Ma R, Zhang W, Hua J, Meng X, Zhong X, Zhang J, Zhao J, Li H . ACS Appl. Mater. Interfaces, 2015, 7(16):8659. https://www.ncbi.nlm.nih.gov/pubmed/25866991

doi: 10.1021/acsami.5b00925 pmid: 25866991
[89]
Chuang P H, Lin C C, Liu R S . ACS Appl. Mater. Interfaces, 2014, 6(17):15379. https://www.ncbi.nlm.nih.gov/pubmed/25111960

doi: 10.1021/am503889z pmid: 25111960
[90]
Colvin V L, Schlamp M C, Alivisatos A P . Nature, 1994, 370(6488):354.
[91]
Zhang H, Chen S, Sun X W . ACS Nano, 2018, 12(1):697. https://www.ncbi.nlm.nih.gov/pubmed/29253334

doi: 10.1021/acsnano.7b07867 pmid: 29253334
[92]
Zhang Y, Xie C, Su H, Liu J, Pickering S, Wang Y, Yu W W, Wang J, Wang Y, Hahm J I, Dellas N, Mohney S E, Xu J . Nano Lett., 2011, 11(2):329. https://www.ncbi.nlm.nih.gov/pubmed/21188964

doi: 10.1021/nl1021442 pmid: 21188964
[93]
Tan Z, Zhang Y, Xie C, Su H, Liu J, Zhang C, Dellas N, Mohney S E, Wang Y, Wang J, Xu J . Adv. Mater., 2011, 23(31):3553. https://www.ncbi.nlm.nih.gov/pubmed/21732559

doi: 10.1002/adma.201100719 pmid: 21732559
[94]
Kim J H, Yang H . Opt. Lett., 2014, 39(17):5002. https://www.ncbi.nlm.nih.gov/pubmed/25166059

doi: 10.1364/OL.39.005002 pmid: 25166059
[95]
Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H . Chem. Mater., 2016, 28(4):1085. https://www.ncbi.nlm.nih.gov/pubmed/31428822

doi: 10.1007/s00167-019-05671-4 pmid: 31428822
[96]
Ji C, Lu M, Wu H, Zhang X, Shen X, Wang X, Zhang Y, Wang Y, Yu W W . ACS Appl. Mater. Inferfaces, 2017, 9(9):8187. https://www.ncbi.nlm.nih.gov/pubmed/28191918

doi: 10.1021/acsami.6b16238 pmid: 28191918
[97]
Lee K H, Lee J H, Kang H D, Park B, Kwon B, Ko H, Lee C, Lee J, Yang H . ACS Nano, 2014, 8(5):4893. https://www.ncbi.nlm.nih.gov/pubmed/24758609

doi: 10.1021/nn500852g pmid: 24758609
[98]
Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M, Klimov V I, Pietryga J M, Klimov V I . Nat. Commun., 2013, 4(10):2661.
[99]
Kim J H, Lee K H, Jo D Y, Lee Y, Hwang J Y, Yang H . Appl. Phys. Lett., 2014, 105(13):133104. http://aip.scitation.org/doi/10.1063/1.4896911

doi: 10.1063/1.4896911
[100]
Li J, Jin H, Wang K, Xie D, Xu D, Xu X, Xu G . RSC Adv., 2016, 6(76):72462. https://www.ncbi.nlm.nih.gov/pubmed/27920902

doi: 10.1039/C6RA07859A pmid: 27920902
[101]
Kim J H, Jo D Y, Lee K H, Jang E P, Han C Y, Jo J H, Yang H . Adv. Mater., 2016, 28(25):5093. https://www.ncbi.nlm.nih.gov/pubmed/27135303

doi: 10.1002/adma.201600815 pmid: 27135303
[102]
Zhu B, Ji W, Duan Z, Sheng Y, Wang T, Yuan Q, Zhang H, Tang X, Zhang H . J. Mater. Chem. C, 2018, 6(17):4683. http://xlink.rsc.org/?DOI=C8TC01022F

doi: 10.1039/C8TC01022F
[103]
Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H . Adv. Mater., 2018, 30(30):1800764. https://www.ncbi.nlm.nih.gov/pubmed/29888521

doi: 10.1002/adma.201800764 pmid: 29888521
[104]
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F . Nat. Photonics, 2019, 13:418.
[105]
Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y, Wang S, Du Z, Li L S, Zhang Z . Nat. Photonics, 2019, 13:192. https://doi.org/10.1038/s41566-019-0364-z

doi: 10.1038/s41566-019-0364-z
[1] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[2] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[3] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[4] Yingying Wei, Lin Chen, Junli Wang, Shiping Yu, Xuguang Liu, Yongzhen Yang. Synthesis and Applications of Chiral Carbon Quantum Dots [J]. Progress in Chemistry, 2020, 32(4): 381-391.
[5] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[6] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[7] Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*. Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method [J]. Progress in Chemistry, 2018, 30(4): 349-364.
[8] Daiwen Pang, Zhiliang Chen, Shasha Lv, Yi Lin*, Zhiling Zhang, Daiwen Pang. Metal-Enhanced Fluorescence from Quantum Dots [J]. Progress in Chemistry, 2017, 29(8): 814-823.
[9] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[10] Linfeng Wei, Jianzhong Ma, Wenbo Zhang, Yan Bao. The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization [J]. Progress in Chemistry, 2017, 29(6): 637-648.
[11] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[12] Xianyun Hu, Qingsheng Guo, Yuqian Liu, Qingjiang Sun, Tiehong Meng, Ruguo Zhang. Design Strategies and Applications of Quantum Dots Fluorescent Sensing [J]. Progress in Chemistry, 2017, 29(2/3): 300-317.
[13] Yao Qiuhong, Lin Liping, Zhao Tingting, Chen Xi. Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots [J]. Progress in Chemistry, 2015, 27(11): 1523-1530.
[14] Shi Xingbo, Wen Chao, Fu Zhaodi, Deng Fangming, Zheng Shu, Liu Qiuyun. Photo Properties and Applications of Single Quantum Dots [J]. Progress in Chemistry, 2014, 26(11): 1781-1792.
[15] Liu Xiaojun, Tu Yang, Gai Hongwei*. Imaging of Single Molecules by Wide-Field Optical Microscopy [J]. Progress in Chemistry, 2013, 25(0203): 370-379.