中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 467-475 DOI: 10.7536/PC170216 Previous Articles   Next Articles

• Review •

Research and Application of Photo-Luminescent Colloidal Quantum Dots

Yongyin Kang1, Zhicheng Song2, Peisheng Qiao1, Xiangpeng Du1, Fei Zhao1*   

  1. 1. Najing Technology Co., Ltd., Hangzhou 310052;
    2. Qingdao Hisense Electric Appliance Co., Ltd., Qingdao 266071, China
  • Received: Revised: Online: Published:
PDF ( 2348 ) Cited
Export

EndNote

Ris

BibTeX

Colloidal quantum dots have attracted impressive attention in the last decades due to their various characteristics and advantages, such as broad excitation range, narrow FWHM (full width at the half maximum), adjustable color and the solution processability. After 30 years' development, the quantum dots materials have been successfully prepared in the "Green Synthesis" route, as well as design and optimization of core-shell structure. Some kinds of the quantum dots could already be produced and supplied in the form of industrial products, with the corresponding commercial applications for photoluminescence devices, including the LED lightening and display fields. In the current stage, more efforts are putting on the development and application of display products, where the photo-luminescent quantum dots device could help to improve the NTSC from 72% to above 100%. Most of the main TV producers have participated in the application of quantum dots and brought out the quantum dots display products, owing to their excellence in color performance and image quality. This paper presents the basic principles of quantum dots emission, development process of quantum dots preparation and structure design, current technology applications in the LED lightening and display fields, as well as their broad application prospects and challenge.
Contents
1 Introducation
2 Colloidal quantum dots
3 Development of colloidal quantum dots
3.1 Synthesis of quantum dots
3.2 Structure design of quantum dots
4 Photo-luminescence applications of colloidal quantum dots
4.1 LED lighting
4.2 LCD display
5 Conclusion

CLC Number: 

[1] Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. Advanced Materials, 2010, 22(28):3076.
[2] Shirasaki Y, Supran G J, Bawendi M G, Bulovi? V. Nature Photonics, 2013, 7(1):13.
[3] Peng X G. Nano Research, 2009, 2(6):425.
[4] Amirav L, Alivisatos A P. J. Am. Chem. Soc., 2013, 135(35):13049.
[5] Coe-Sullivan S, Liu W, Allen P, Steckel J S. ECS Journal of Solid State Science and Technology, 2013, 2(2):3026.
[6] Choi Y, Seol M, Kim W, Yong K. J. Phys. Chem. C, 2014, 118(11):5664.
[7] Luo Z, Chen Y, Wu S T. Optics Express, 2013, 21(22):26269.
[8] Wood V, Bulovic V. Colloidal Quantum Dot Optoelectronics and Photovoltaics. London:Cambridge University Press, 2013. 148.
[9] Chen J, Hardev V, Yurek J. Nanotech. L. & Bus., 2014, 11:4.
[10] 邢滨(Xing B), 李万万(Li W W), 孙康(Sun K). 化学进展(Progress in Chemistry), 2008, 20(6):841.
[11] Demir H V, Nizamoglu S, Erdem T, Mutlugun E, Gaponik N, Eychmüller A. Nano Today, 2011, 6(6):632.
[12] Kim S, Im S H, Kim S W. Nanoscale, 2013, 5(12):5205.
[13] Kim T H, Jun S, Cho K S, Choi B L, Jang E. MRS Bulletin, 2013, 38(09):712.
[14] Bourzac K. Nature, 2013, 493(7432):283.
[15] 金一政(Jin Y Z), 彭笑刚(Peng X G). 浙江大学学报(理学版)(Journal of Zhejiang University (Science Edition)),2016, 43(6):635.
[16] Pu C D, Peng X G. J. Am. Chem. Soc., 2016, 138(26):8134.
[17] Lin W, Niu Y, Meng R, Huang L, Cao H, Zhang Z, Qin H, Peng X G. Nano Research, 2016, 9(1):260.
[18] Guyot-Sionnest P. Comptes Rendus Physique, 2008, 9(8):777.
[19] Pokatilov E P, Fonoberov V A, Fomin V M, Devreese J T. Physical Review B, 2001, 64(24):245328.
[20] Pandey A, Guyot-Sionnest P. Science, 2008, 322(5903):929.
[21] Baskoutas S, Terzis A F. J. App. Phys., 2006, 99(1):013708.
[22] Biadala L, Louyer Y, Tamarat P, Lounis B. Physical Review Letters, 2009, 103(3):037404.
[23] Jiang Y, Xu S, Wang C, Shao H, Wang Z, Cui Y. Journal of Materials Chemistry, 2012, 22(27):13469.
[24] Jiang Y, Wang C, Xu S, Shao H, Lin X, Wang Z, Cui Y. Journal of Fluorescence, 2014, 24(1):183.
[25] Rajh T, Micic O I, Nozik A J. J. Phys. Chem., 1993, 97(46):11999.
[26] Gao M, Kirstein S, M hwald H, Rogach A L, Kornowski A, Eychmüller A, Weller H. J. Phys. Chem. B, 1998, 102(43):8360.
[27] Zhang H, Zhou Z, Yang B, Gao M. J. Phys. Chem. B, 2003, 107(1):8.
[28] Schäfer H J, Haag-Kerwer A, Rausch T. Plant Mol. Biol., 1998, 37(1):87.
[29] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127(14):5261.
[30] Talapin D V, Rogach A L, Shevchenko E V, Kornowski A, Haase M, Weller H. J. Am. Chem. Soc., 2002, 124(20):5782.
[31] Rogach A L, Kornowski A, Gao M, Eychmüller A, Weller H. J. Phys. Chem. B, 1999, 103(16):3065.
[32] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115:8706.
[33] Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370:354.
[34] Alivisatos A P. Science, 1996, 271(5251):933.
[35] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123(7):1389.
[36] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123(1):183.
[37] Yu W W, Peng X G. Angew. Chem. Int. Ed., 2002, 41(13):2368.
[38] 付龙(Fu L), 潘一(Pan Y), 徐子健(Xu Z J), 杨双春(Yang S C). 现代化工(Mordern Chemical Industry)2015, 35 (3):11.
[39] Jasieniak J, Bullen C, Van Embden J, Mulvaney P. J. Phys. Chem. B, 2005, 109(44):20665.
[40] Shen H, Wang H, Tang Z, Niu J Z, Lou S, Du Z, Li L S. Cryst. Eng. Comm., 2009, 11(8):1733.
[41] Bullen C, Embden J V, Jasieniak J, Cosgriff J E, Mulder R J, Rizzardo E, Gu M, Raston C L. Chemistry of Materials, 2010, 22(14):4135.
[42] Hou B, Benitoalifonso D, Webster R, Cherns D, Galan M C, Fermin D. Journal of Materials Chemistry, 2014, 2(19):6879.
[43] Cirillo M. Doctoral Dissertation of Ghent University, 2013.
[44] Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F. Chemistry of Materials, 2003, 15(16):3142.
[45] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q B. J. Am. Chem. Soc., 2015, 132(5):1470.
[46] Mahapatra N, Panja S, Mandal A, Halder M. Journal of Materials Chemistry C, 2014, 2(35):7373.
[47] 牛原(Niu Y). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[48] Ott F D, Spiegel L L, Norris D J, Erwin S C. Physical Review Letters, 2014, 113(15):156803.
[49] Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Nano Letters, 2001, 1(4):207.
[50] Weiss E A. Accounts of Chemical Research, 2013, 46(11):2607.
[51] Yang Y, Li J, Lin L, Peng X G. Nano Research, 2015, 8(10):3353.
[52] Peng X G, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404(6773):59.
[53] Gao Y, Peng X G. J. Am. Chem. Soc., 2014, 136(18):6724.
[54] Peng X G, Wickham J, Alivisatos A P. J. Am. Chem. Soc., 1998, 120(21):5343.
[55] Li Z, Peng X G. J. Am. Chem. Soc., 2011, 133(17):6578.
[56] Peng Z A, Peng X G. J. Am. Chem. Soc., 2002, 124(13):3343.
[57] Brown P R, Kim D, Lunt R R, Zhao N, Bawendi M G, Grossman J C, Bulovic? V. ACS Nano, 2014, 8(6):5863.
[58] Yu W W, Qu L, Guo W, Peng X. Chem. Mater., 2003, 15 (14):2854.
[59] Bawendi M G, Steigerwald M L, Brus L E. Annual Review of Physical Chemistry, 1990, 41(1):477.
[60] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101(46):9463.
[61] Hines M A, Guyot-Sionnest P. J. Phys. Chem., 1996, 100:468.
[62] Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. J. Am. Chem. Soc., 1997, 119:7019.
[63] Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G. J. Am. Chem. Soc., 2003, 125:12567.
[64] Xie R G, Kolb U, Li J X, Basche T, Mews A. J. Am. Chem. Soc., 2005, 127:7480.
[65] Blackman B, Battaglia D, Peng X G. Chemistry of Materials, 2008, 20:4827.
[66] Chen D, Zhao F, Qi H, Rutherford M, Peng X G. Chemistry of Materials, 2010, 22:1437.
[67] Sung T W, Lo Y L. Sensors & Actuators B Chemical, 2013, 188(11):702.
[68] Aubert T, Soenen S J, Wassmuth D, Cirillo M, Deun R V, Braeckmans K, Hens Z. ACS Applied Materials & Interfaces, 6(14):11714.
[69] Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U. Science, 2011, 332(6025):77.
[70] Fainblat R, Muckel F, Barrows C J, Vlaskin V A, Gamelin D R, Bacher G. ACS Nano, 2014, 8(12):12669.
[71] Beaulac R, Archer P I, Ochsenbein S T, Gamelin D R. Advanced Functional Materials, 2008,18(18):3873.
[72] Xie R G, Peng X G. J. Am. Chem. Soc., 2009, 131(30):10645.
[73] Pu C, Ma J, Qin H, Yan M, Fu T, Niu Y, Yang X, Huang Y, Zhao F, Peng X G. ACS Central Science, 2015, 2(1):32.
[74] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y. ACS Nano, 2015, 9(4):4533.
[75] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. Advanced Functional Materials, 2016, 26(15):1
[76] Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, Yassitepe E, Buin A, Hoogland S, Sargent E H. Nature, 2015, 523(7560):324.
[77] Lee J, Sundar V C, Heine J R, Bawendi M G, Jensen K F. Advanced Materials, 2000, 12(15):1102.
[78] Liu J, Katahara J, Li G, Coe-Sullivan S, Hurt R H. Environmental Science & Technology, 2012, 46(6):3220.
[79] Jun S, Lee J, Jang E. ACS Nano, 2013, 7(2):1472.
[80] Chen H, He J, Wu S T. Recent Advances on Quantum-Dot-Enhanced Liquid Crystal Displays. IEEE Journal of Selected Topics in Quantum Electronics, 2017.
[81] Müller M, Kaiser M, Stachowski G M, Resch-Genger U, Gaponik N, Eychmüller A. Chemistry of Materials, 2014, 26(10):3231.
[82] Erdem T, Demir H V. Nanophotonics, 2013, 2(1):57.
[83] Nizamoglu S, Demir H V. Journal of Applied Physics, 2009, 105(8):083112.
[84] 毕文刚(Bi W G), 苏凯(Su K), 彭笑刚(Peng X G), 乔铁成(Qiao T C). 2011中国LED照明论坛论文集(Proceedings of the 2011 Chinese Lighting Forum), 2011. 112.
[85] Twietmeyer K, Sadasivan S. Journal of the Society for Information Display, 2016, 24(5):312.
[86] Shen H, Cao W, Shewmon N T, Yang C, Li L S, Xue J. Nano Letters, 2015, 15(2):1211.
[87] Kurtin J, Puetz N, Theobald B, Stott N, Osinski J. SID Symposium Digest of Technical Papers, 2014, 45(1):146.
[88] Grinolds D D W, Brown P R, Harris D K, Bulovic V, Bawendi M G. Nano Letters, 2014, 15(1):21.
[89] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z, Breen C, Kazlas P T. Nature Photonics, 2013, 7 (5):407.
[90] Wood V, Panzer M J, Chen J, Bradley M S, Halpert J E, Bawendi M G, Bulovi? V. Advanced Materials, 2009, 21(21):2151.
[91] Yoshihara T, Itou K, Nakamura K, Furukawa M, Iqbal A, Hao Z. US 7175948, 2007.
[92] 陈亚文(Chen Y W). CN201610513686.3, 2016.
[93] 梁宇恒(Liang Y H). CN201510646777.X, 2015.
[94] 李冬泽(Li D Z). CN201510779371.9, 2015.
[95] 郭仁炜(Guo R W). CN201310314014.6, 2013.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[3] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[4] Xiong Xingquan, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng. Highly Efficient Synthesis of Amides [J]. Progress in Chemistry, 2016, 28(4): 497-506.
[5] Zhang Dongjie, Zhang Congyun, Lu Ya, Hao Yaowu, Liu Yaqing. Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method [J]. Progress in Chemistry, 2015, 27(8): 1057-1064.
[6] Chen Siyuan, Dong Xu, Zha Liusheng. Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2015, 27(7): 831-840.
[7] Wang Jiaxi, Wei Xiaojun, Shen Jiayu, Lü Xiaomeng, Xie Jimin, Chen Min. Photocatalytic Selective Transformation of Organics [J]. Progress in Chemistry, 2014, 26(09): 1460-1470.
[8] Li Lei, Li Yanxing, Yao Yao, Yao Lianghong, Ji Weijie, Au Chak-Tong. Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.
[9] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[10] Li Guanglu, He Tao, Li Xuemei. Preparation and Applications of Core-Shell Structured Nanocomposite Materials: the State-of-the-Art [J]. Progress in Chemistry, 2011, 23(6): 1081-1089.
[11] Liu Bin, Liao Shijun, Liang Zhenxing. Core-Shell Structure: The Best Way to Achieve Low-Pt Fuel Cell Electrocatalysts [J]. Progress in Chemistry, 2011, 23(5): 852-859.
[12] . Preparation and Application of Magnetic Core-shell Mesoporous Silica Microspheres [J]. Progress in Chemistry, 2010, 22(06): 1116-1124.
[13] Shi Jing Ren Nan Zhang Yahong Tang Yi. Advances in the Research of Microcapsular Reactor [J]. Progress in Chemistry, 2009, 21(09): 1750-1756.
[14] Ren Manman|Zhou Zhen**|Gao Xueping| Yan Jie. Core-shell Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2008, 20(05): 771-777.
[15] Yong Zhao,Xianliang Sheng,Jin Zhai**. Development of TiO2 Photo-Anodes in Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2006, 18(11): 1452-1459.