中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 1020-1030 DOI: 10.7536/PC181210 Previous Articles   Next Articles

Application of Graphene Quantum Dots in Energy Storage Devices

Le Gong1, Rong Yang1,**(), Rui Liu1, Liping Chen2, Yinglin Yan1, Zufei Feng1   

  1. 1.School of Science, Xi’an University of Technology, Xi’an 710054, China
    2.School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
  • Received: Online: Published:
  • Contact: Rong Yang
  • Supported by:
    International Science and Technology Cooperation Program of China(2015DFR50350); National Natural Science Foundation of China(51702256); Key Research and Development Plan of Shaanxi Province(2017GY-160); Innovation Capability Support Program of Shaanxi(2019TD-019)
Richhtml ( 49 ) PDF ( 1086 ) Cited
Export

EndNote

Ris

BibTeX

In term of new carbon-based material, graphene quantum dots(GQDs) are a boundless promising electrode material for energy storage devices due to their excellent properties of large specific surface area, high conductivity, excellent transparency and unique fluorescence characteristics. GQDs form composites with metal compounds or carbon material to construct three-dimensional spatial structures, which is conductive to electron diffusion and ion transport, greatly improving the practical application performance of GQDs as electrode materials. Furthermore, heteroatoms-doped GQDs can provide more active sites and enhance the utilization of active substance. Herein, The synthesis strategies of GQDs, which are mainly classified into top-down and bottom-up methods,are briefly introduced. The effects of various preparation methods on the particle size, surface defect sites and fluorescence characteristics of GQDs are also distinct. The applications of GQDs, doped GQDs and their composites in energy storage devices such as supercapacitors, lithium ion batteries, solar cells and fuel cells in recent years, it is obvious that GQDs-based electrode materials with quantum confinement effect and boundary effect have great potential for new energy storage devices. The influence of distinctive space structure on electrochemical properties are analyzed. In addition, it is pointed out that the future development of GQDs is to find a rapid, green and environmentally-friendly method for mass synthesis of GQDs, uniform and effective doping or compounding and constructing a unique spatial structure of electrode materials, which can further improve the electrochemical performance in the applications of energy storage devices.

Fig. 1 Schematic demonstration of the top-down and bottom-up approaches for synthesis of GQDs[11]
Fig. 2 (a) Schematic diagrams of the synthesis processes of the CuCo2S4 nanosheets and the GQDs/CuCo2S4 nanocomposites grown on the Ni foam.(b) SEM image of the CuCo2S4 nanosheets.(c) SEM image of the GQD/CuCo2S4 nanocomposites[39]
Fig. 3 Schematic illustration of the mechanism of the G-GQDs EPD process[41]
Fig. 4 Schematic illustration of fabrication of N-GQDs@Fe3O4-HNTs and their charge and discharge processes[47]
Fig. 5 Distribution of N/O co-doped GQDs(blue sphere N, red sphere O, grey sphere C, white sphere H)[48]
Fig. 6 (a) Schematics of the fabrication process of GVG composite. The yellow basis represents the GF substrate. The green arrays represent VO2 nanoarrays, and the blue covering represents the GQDs.(b) The SEM, and(c) TEM images of GVG composites.(d) Cycling performance of GV and GVG at 60 C for 1500 cycles[51]
Fig. 7 The procedure for synthesis of PF-GQDs@SiNP[14]
Fig. 8 (a) The structure and(b) the magnified structure of GQDs-S/CB. Schematic configuration of(c) S/CB,(d) GQDs-S/CB employed as a cathode in Li-S batteries[13]
Fig. 9 Schematic illustration of the GQDs/Si heterojunction solar cell with(a)Au,(b)graphene film on top as the transparent electrode[64.65]
Fig. 10 Illustration of the preparation procedure for the BN-GQDs/G nanocomposite[72]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A . Science, 2004,306(5696):666.
[2]
Wang H B, Maiyalagan T, Wang X . ACS Catal., 2012,2(5):781.
[3]
Allen M J, Tuang V C, Kaner R B . Chem. Rev., 2010,110(1):132.
[4]
Rossetti R, Nakahara S, Brus L E . J.Chem. Phys., 1983,79(2):1086.
[5]
Halperin B I . Sci. Am. 1986,254(4):52.
[6]
Bacon M, Bradley S J, Nann T . Part. Part. Syst. Char., 2014,31(4):415.
[7]
Jin Z H, Owour P, Lei S D, Ge L H . Curr. Opin. Colloid. Interface Sci., 2015,20(5):439.
[8]
Tian P, Tang L, Teng K S, Lau S P . Materials Today Chemistry, 2018,10:221.
[9]
Kuo W S, Chen H H, Chen S Y, Chang C Y, Chen P C, Hou Y I, Shao Y T, Kao H F, Hsu C L L, Chen S J, Wu S R, Wang J Y . Biomaterials, 2017,120:185.
[10]
Fang B Y, Li C, Song Y Y, Tan F, Cao Y C, Zhao Y D . Biosens. Bioelectron., 2018,100:41.
[11]
Abbas A, Mariana L T, Phan A N . Carbon, 2018,140:77.
[12]
Bak S, Kim D, Lee H . Current Applied Physics, 2016,16:1192.
[13]
Park J J, Moon J, Kim C, Kang J H, Lim E, Park J, Lee K J, Yu S H, Seo J H, Lee J, Heo J, Tanaka N, Cho S P, Pyun J, Cabana J, Hong B H, Sung Y E . NPG Asia Materials, 2016,8(5):272.
[14]
Kong L J, Yang Y Q, Li R Y, Li Z J . Electrochim. Acta, 2016,198:144.
[15]
Pan D Y, Zhang J C, Li Z, Wu M H . Adv. Mater., 2010,22(6):734.
[16]
Ahmed B, Kumar S, Oiha A K, Hirsch F, Riese S, Fischer I . J. Photoch. Photobio. A, 2018,364:671.
[17]
Ahirwar S, Mallick S, Bahadur D . ACS Omega, 2017,2:83843.
[18]
Huang H G, Yang S W, Li Q T, Yang Y C, Wang G, You X F, Mao B H, Wang H S, Ma Y, He P, Liu Z, Ding G Q, Xie X M . Langmuir, 2018,34(1):250.
[19]
Yu J J, Liu S Y, Chen S, Wang T H . Ind. Eng. Chem. Res., 2017,56:10028.
[20]
Shin Y H, Park J, Hyun D, Yang J, Lee J H, Kim J H, Lee H . Nanoscale, 2015,7(13):5633.
[21]
Liu B T, Peng L L, Chen W B, Wang J, Han T, Mo Q H . Nanosci. Nanotechnol. Lett., 2017,9(3):297.
[22]
Kumar S, Ojha A K, Ahmed B, Kumar A, Das J, Materny A . Materials Today Communications, 2017,11:76.
[23]
Dong Y Q, Shao J W, Chen C Q, Li H, Wang R X, Chi Y W, Lin X M, Chen G N . Carbon, 2012,50(12):4738.
[24]
Yan X, Cui X, Li L S . J.Am. Chem. Soc., 2010,132(17):5944. https://www.ncbi.nlm.nih.gov/pubmed/20377260

doi: 10.1021/ja1009376 pmid: 20377260
[25]
Xu C, Yang S W, Tian L F, Guo T Q, Ding G Q, Zhao J W, Sun J, Lu J, Wang Z Y . Appl. Phys. Express, 2017,10(3):032102.
[26]
Lu L Q, Zhu Y C, Shi C, Pei Y T . Carbon, 2016,109:373.
[27]
Li H T, He X D, Liu Y, Huang H, Lian S Y, Lee S T, Kang Z H . Carbon, 2011,49(2):605.
[28]
Umrao S, Jang M H, Oh J H, Kim G, Sahoo S, Cho Y H, Srivastva A, Oh I K . Carbon, 2015,81:514.
[29]
Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X M, Teng K S, Lu M C, Zeng S J, Hao J H, Lua S P . ACS Nano, 2012,6(6):5102.
[30]
Wang L, Wang Y L, Xu T, Liao H B, Yao C J, Liu Y, Li Z, Chen Z W, Pan D Y, Sun L T, Wu M H . Nature Communications, 2014,5:5357.
[31]
Xia X H, Tu J P, Zhang Y Q, Wang X L, Gu C D, Zhao X B, Fan H L . ACS Nano, 2012,6(6):5531.
[32]
Zhang L J, Xia G L, Guo Z P, Li X G, Sun D L, Yu X B . Int. J. Hydrogen Energ., 2016,41:14252.
[33]
李巧乐(Li Q L), 燕映霖(Yan Y L), 杨蓉(Yang R), 陈利萍(Chen L P), 任冰(Ren B), 许云华(Xu Y H) . 化工进展 (Chemical Industry and Engineering Progress), 2017,36(9):3353.
[34]
Raza W, Ali F, Raza N, Luo Y, Kim K H, Yang J H, Kumar S, Mehmood A, Kwon E . Nano Energy, 2018,52:441.
[35]
Wu Y G, Liu Z, Ran F . Micropor. Mesopor. Mater., 2019,275:14.
[36]
Aken M L V, Maleski K, Mathis T S, Breslin J P . ECS J. Solid. State. Sc., 2017,6(6):3103.
[37]
Huang Y Y, Shi T L, Zhong Y, Cheng S Y, Jiang S L, Chen C, Liao G L, Tang Z R . Electrochim Acta, 2018,269:45.
[38]
Liu W W, Feng Y Q, Yan B X, Chen J T, Xue Q J . Adv. Funct. Mater., 2013,23:4111.
[39]
Huang Y Y, Lin L W, Shi T L, Cheng S Y, Zhong Y, Chen C, Tang Z R . Applied Surface Science, 2019,463:498.
[40]
Hu Y, Zhao Y, Lu G W, Chen N, Zhang Z P, Li H . Nanotechnology, 2013,24:195401.
[41]
Lee K, Lee H, Shin Y, Yoon Y, Kim D, Lee H . Nano Energy, 2016,26:746.
[42]
Ganganboina A B, Chowdhury A D, Doong R A . ACS Sustainable Chem. Eng., 2017,5:4930.
[43]
Islam M S, Deng Y, Tong L Y, Roy A K, Faisal S N, Hassan M, Minett A I, Gomes V G . Materials Today Communications, 2017,10:112.
[44]
Li Z, Liu X, Wang L, Bu F, Wei J J, Pan D Y, Wu M H . Small, 2018,8:21460.
[45]
Kuar M, Kuar M, Sharma V K . Adv. Colloid. Interfac., 2018,259:44.
[46]
Li Z, Cao L, Qin P, Liu X, Chen Z W, Wang L, Pan D Y . Carbon, 2018,139:67.
[47]
Ganganboina A B, Chowdhury A D, Doong R A . Electrochim. Acta, 2017,245:912.
[48]
Li Z, Li Y F, Wang L, Cao L, Liu X, Chen Z W, Pan D Y, Wu M H . Electrochim. Acta, 2017,235:561.
[49]
Sun C W, Liu L, Gong Y D, Wilkinson D P, Zhang J J . Nano Energy, 2017,33:363.
[50]
Zhu C R, Chao D L, Sun J, Bacho M, Fan Z X, Ng C F, Xia X H, Huang H, Zhang H, Shen Z X, Ding G Q, Fan H J . Adv. Mater. Interfaces, 2015,2(2):1400499.
[51]
Chao D L, Zhu C R, Xia X H, Liu J L, Zhang X, Wang J, Liang P . Nano Lett., 2015,15:565.
[52]
Ji Y C, Hu J, Biskupek J, Kaiser U, Song Y F, Streb C . Chem. Eur. J., 2017,23:16637.
[53]
Kundu S, Ragupathy P, Pillai V K . J.Electrochem. Soc., 2016,163(6):A1112.
[54]
Li R Y, Jiang Y Y, Zhou X Y, Li Z J, Gu Z G, Wang G L . Electrochim. Acta, 2015,178:303.
[55]
Zhu X Q, Li J, Liu P, Feng C, Ali R N, Xiang B . Appl. Phys. A-Mater., 2018,124:722.
[56]
邓南平(Deng N P), 马晓敏(Ma X M), 阮艳莉(Ruan Y L), 王晓清(Wang X Q), 康卫民(Kang W M), 程博闻(Cheng B W) . 化学进展 (Progress in Chemistry), 2016,28(9):1435.
[57]
Zhang L L, Wang Y J, Niu Z Q, Chen J . Carbon, 2019,414:400.
[58]
Assadi M K, Bakhoda S, Saidur R, Hanaei H . Renew. Sust. Energ. Rev., 2018,81:2812.
[59]
Wang G Q, Dong W N, Ma P, Yan C, Zhang W, Liu L Q . Electrochim. Acta, 2018,290:273.
[60]
Subramanian A, Pan Z H, Rong G L, Li H F, Qiu Y C, Xu Y J, Hou Y, Zheng Z Z, Zhang Y G . J.Power Sources, 2017,343:39.
[61]
Yu C, Liu Z Q, Chen Y W, Meng X T, Li M Y, Qiu J S . Sci. China Mater., 2016,59(2):104.
[62]
Ding Z C, Hao Z, Meng B, Xie Z Y, Liu J, Dai L M . Nano Energy, 2015,15:186.
[63]
Moon B J, Jang D, Yi Y, Lee H, Kim S J, Oh Y L, Lee S H, Park M, Lee S, Bae S . Nano Energy, 2017,34:36.
[64]
Gao P, Ding K, Wang Y, Ruan K Q, Diao S L, Zhang Q, Sun B Q . J. Phys. Chem. C, 2014,118:5164.
[65]
Diao S L, Zhang X J, Shao Z B, Ding K, Jie J S, Zhang X H . Nano Energy, 2017,31:359.
[66]
Shen D L, Zhang W F, Xie F Y, Li Y F, Abate A, Wei M D . J.Power Sources, 2018,402:320.
[67]
池滨(Chi B), 侯三英(Hou S Y), 刘广智(Liu G Z), 廖世(Liao S) . 化学进展 (Progress in Chemistry), 2018,30(2/3):243.
[68]
Zhang L L, Chang Q W, Chen H M, Shao M S . Nano Energy, 2016,29:198.
[69]
Li G, Yi Q F, Yang X K, Chen Y, Zhou X L, Xie G . Carbon, 2018,140:557.
[70]
Vecchio C L, Sebastian D, Alegre C, Arico A S, Baglio V . J.Electroanal. Chem., 2017,808:464.
[71]
Shinde D B, Dhavale V M, Kurungot S, Pillal V K . Indian Academy of Sciences, 2015,38(2):435.
[72]
Fei H L, Ye R Q, Ye G L, Gong Y L, Peng Z W, Fan X J, Samuel E L G, Aiayan P M, Tour J M . ACS Nano, 2014,8(10):10837.
[73]
Yao Y, Guo Y S, Du W, Tong X Y, Zhang X . J.Mater. Sci-Mater. Electron., 2018,29(20):17695.
[1] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[2] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[3] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[4] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[5] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[6] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[7] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[8] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[9] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[10] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[11] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[12] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[13] Zhaoying Pan, Jianzhong Ma, Wenbo Zhang, Linfeng Wei. Flexible Conductive Polymer Composites in Strain Sensors* [J]. Progress in Chemistry, 2020, 32(10): 1592-1607.
[14] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.
[15] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.