中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 776-784 DOI: 10.7536/PC170317 Previous Articles   Next Articles

• Review •

β-HgS Quantum Dots:Preparation, Properties and Applications

Kang Liu, Guanbin Gao*, Taolei Sun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51533007,51521001,21404083).
PDF ( 774 ) Cited
Export

EndNote

Ris

BibTeX

Due to the tunable Vis-NIR fluorescence and interband fluorescence, β-HgS quantum dots have shown broad application prospects in multi-field such as photoelectric conversion and fluorescence imaging. In this review, the preparation, properties and applications of β-HgS quantum dots are summarized systematically. Firstly, five synthesis methods of β-HgS quantum dots are classified into two categories by solution phase:synthesis in aqueous phase and organic phase. Then, the physical properties of β-HgS quantum dots differing from bulk β-HgS are expounded. Next, the latest applications of β-HgS quantum dots in ion detection, cell imaging, in vivo imaging, light converter and fluorescent ink are summed up. Subsequently, the main two issues existing in the applications of β-HgS quantum dots are pointed out:one is their low photoelectric conversion rate and fluorescence quantum yield for photoelectric device, the other is their poor ability in specific recognition for biomedical fluorescence imaging. Finally, our personal perspectives to solve the problem are outlined that self-assembly aggregates of β-HgS quantum dots could be prepared to improve their photoelectric conversion rate and thermostability; and that chiral biomolecules could be introduced into the surface of β-HgS quantum dots as ligand to obtain chiral β-HgS quantum dots, these chiral β-HgS quantum dots might have potential chiral recognition ability and better biocompatibility which could be used for fluorescence imaging in vitro and in vivo. This review points out a new direction for the development of β-HgS quantum dots.
Contents
1 Introduction
2 Synthesis of β-HgS quantum dots
2.1 Synthesis in organic phase
2.2 Synthesis in aqueous phase
3 Properties of β-HgS quantum dots
3.1 Continuous adjustable fluorescence emission in Vis-NIR band
3.2 Stable electron occupation in the lowest quantum state and interband fluorescence
3.3 Transmission properties for electric magnetic polaron
3.4 High fluorescence quantum yield and good light stability
3.5 Selective recognition ability for metal ion
4 Applications of β-HgS quantum dots
4.1 Heavy metal ion probe
4.2 Cell imaging
4.3 In vivo imaging
4.4 Light converter
4.5 Fluorescent ink
5 Conclusion

CLC Number: 

[1] Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C. Nature, 1998, 391:59.
[2] Viswanatha R, Battaglia D M, Curtis M E, Mishima T D, Johnson M B, Peng X. Nano Res., 2008, 1:138.
[3] Breen M L, Dinsmore A D, Pink R H, Qadri S B, Ratna B R. Langmuir, 2001, 17:903.
[4] Zhu H, Jiang R, Guan Y, Fu Y, Xiao L, Zeng G. Sep. Purif. Technol., 2010, 74:187.
[5] Keuleyan S, Lhuillier E, Guyot-Sionnedt P. J. Am. Chem. Soc., 2011, 133:16422.
[6] Chakraborty I, Mitra D, Moulik S P. J. Nanopart. Res., 2005, 7:227.
[7] Higginson K A, Kuno M, Bonevich J, Qadri S B, Yousuf M, Mattoussi H. J. Phys. Chem. B, 2002, 106:9982.
[8] Wichiansee W, Nordin M N, Green M, Curry R J. J. Mater. Chem., 2011, 21:7331.
[9] Yang J, Zhang W H, Hu Y P, Yu J S. J. Colloid Interface Sci., 2012, 379:8.
[10] Jeong K S, Deng Z Y, Keuleyan S, Liu H, Guyot-Sionnest P. J. Phys. Chem. Lett., 2014, 5:1139.
[11] Liu H, Guyot-Sionnest P. J. Phys. Chem. C, 2015, 119:14797.
[12] Yang J, Hu Y, Tan J, Jia L, Zhu Y H, Yu J S. J. Mater. Chem. B, 2015, 3:6928.
[13] Vasudevan D, Gaddam R R, Trinchi A, Cole I. J. Alloys Compd., 2015, 636:395.
[14] Goswami N, Giri A, Kar S, Bootharaju M S, John R, Xavier P L, Pradeep T, Pal S K. Small, 2012, 8:3175.
[15] Shen C C, Tseng W L. Inorg. Chem., 2009, 48:8689.
[16] Zhang J T, Tang Y, Lee K, Ouyang M. Science, 2010, 327:1634.
[17] Gao Z Y, Liu N, Wu D P, Tao W G, Xu F, Jiang K. Appl. Surf. Sci., 2012, 258:2473.
[18] Brus L E. J. Chem. Phys., 1983, 79:5566.
[19] Rossetti R, Nakahara S, Brus L E. J. Chem. Phys., 1983, 79:1086.
[20] Brus L E. J. Chem. Phys., 1984, 80:4403.
[21] Fojtik A, Weller H, Koch U, Henglein A. Ber. Bunsen. Phys. Chem., 1984, 88:969.
[22] Weller H, Schmidt H M, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E. Chem. Phys. Lett., 1986, 124:557.
[23] Brus L. J. Phys. Chem., 1986, 90:2555.
[24] Dannhauser T, O'Neil M, Johansson K, Whitten D, Mclendon G. J. Phys. Chem., 1986, 90:6074.
[25] Lianos P, Thomas J K. Chem. Phys. Lett., 1986, 125:299.
[26] Brennan J G, Siegrist T, Carroll P J, Stuczynski S M, Reynders P, Brus L E, Steigerwald M L. Chem. Mater., 1990, 2:403.
[27] Brennan J G, Siegrist T, Carroll P J, Stuczynski S M, Brus L E, Steigerwald M L. J. Am. Chem. Soc., 1989, 111:4141.
[28] Douglas T, Theopold K H. Inorg. Chem., 1991, 30:594.
[29] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115:8706.
[30] Cao Y C, Wang J. J. Am. Chem. Soc., 2004, 126:14336.
[31] Yang Y A, Wu H, Williams K R, Cao Y C. Angew. Chem., 2005, 117:6870.
[32] Lamer V K, Dinegar R H. J. Am. Chem. Soc., 1950, 72:4847.
[33] Peng Z A, Peng X. J. Am. Chem. Soc., 2001, 123:183.
[34] Smith A M, Ruan G, Rhyner M N, Nie S M. Ann. Biomed. Eng., 2006, 34:3.
[35] Hines M A, Guyot-Sionnest P. J. Phys. Chem. B, 1998, 102:3655.
[36] Uchida H, Curtis C J, Kamat P V, Jones K M, Nozik A J. J. Phys. Chem., 1992, 96:1156.
[37] Guzelian A A, Banin U, Kadavanich A V, Peng X, Alivisatos A P. Appl. Phys. Lett., 1996, 69:1432.
[38] Yang J, Sargent E, Kelley S, Ying J Y. Nat. Mater., 2009, 8:683.
[39] Yang J, Lee J Y, Ying J Y. Chem. Soc. Rev., 2011, 40:1672.
[40] Han L, Hou P F, Feng Y, Liu H, Li J L, Peng Z J, Yang J. Dalton Trans., 2014, 43:11981.
[41] Shen G H, Guyot-Sionnest P. J. Phys. Chem. C, 2016, 120:11744.
[42] Pradhan N, Katz B, Efrima S. J. Phys. Chem. B, 2003, 107:13843.
[43] Kim S W, Zimmer J P, Ohnishi S, Tracy J B, Frangioni J V, Bawendi M G. J. Am. Chem. Soc., 2005, 127:10526.
[44] Battaglia D, Peng X G. Nano Lett., 2002, 2:1027.
[45] Ryu E, Kim S, Jang E, Jun S, Jang H, Kim B, Kim S W. Chem. Mater., 2009, 21:573.
[46] Kim Y H, Jun Y W, Jun B H, Lee S M, Cheon J. J. Am. Chem. Soc., 2002, 124:13656.
[47] Li C L, Ando M, Murase N. Chem. Lett., 2008, 37:856.
[48] Xu W, Lou S, Li S, Wang H, Shen H, Niu J Z, Du Z L, Li L S. Colloids Surf. A, 2009, 341:68.
[49] Keuleyan S, Lhuillier E, Guyot-Sionnest P. J. Am. Chem. Soc., 2011, 133:16422.
[50] Rogach A L, Kornowski A, Gao M Y, Eychmüller A, Weller H. J. Phys. Chem. B, 1999, 103:3065.
[51] Kong Y F, Chen J, Gao F, Li W T, Xu X, Pandoli O, Yang H, Ji J J, Cui D L. Small, 2010, 6:2367.
[52] Keshari A K, Singh P K, Parashar V, Pandey A C. J. Lumin., 2010, 130:315.
[53] Zhou W B, Baneyx F. ACS Nano, 2011, 5:8013.
[54] Mansur H S, González J C, Mansur A A P. Colloids Surf. B, 2011, 84:360.
[55] Ghosh D, Mondal S, Ghosh S, Saha A. J. Mater. Chem., 2012, 22:699.
[56] Yang L, Shen Q M, Zhou J G, Jiang K. Mater. Lett. 2005, 59:2889.
[57] Zhang L, Yang G R, He G X, Wang L, Liu Q R, Zhang Q X, Qin D Z. Appl. Surf. Sci., 2012, 258:8185.
[58] Alivisatos A P. Science, 1996, 271:933.
[59] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[60] Omata T. J. Ceram. Soc. Jpn., 2015, 123:1.
[61] Smith A M, Nie S M. J. Am. Chem. Soc., 2011, 133:24.
[62] Yoon B, Jeong J, Jeong K S. J. Phys. Chem. C, 2016, 120:22062.
[63] Chen M L, Guyot-Sionnest P. ACS Nano, 2017, 11:4165.
[64] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101:9463.
[65] Talapin D V, Mekis I, G tzinger S, Kornowski A, Benson O, Weller H. J. Phys. Chem. B, 2004, 108:18826.
[66] Yang J, Hu Y, Luo J, Zhu Y H, Yu J S. Langmuir, 2015, 31:3500.
[67] Li W J, Zhong X H. J. Phys. Chem. Lett., 2015, 6:796.
[68] Xiao F X, Miao J, Liu B. J. Am. Chem. Soc., 2014, 136:1559.
[69] Hanein D, Geiger B, Addadi L. Science, 1994, 263:1413.
[70] Zhang M X, Qing G Y, Sun T L. Chem. Soc. Rev., 2012, 41:1972.
[71] Gao G B, Zhang M X, Lu P, Guo G L, Wang D, Sun T L. Angew. Chem. Int. Ed., 2015, 54:2245.
[72] 龚德君(Gong D J), 高冠斌(Gao G B), 张明曦(Zhang M X), 孙涛垒(Sun T L). 化学进展(Progress in Chemistry), 2016, 28(2/3):296.
[73] 高冠斌(Gao G B), 龚德君(Gong D J), 张明曦(Zhang M X), 孙涛垒(Sun T L). 化学学报(Acta Chimica Sinica), 2016, 74:363.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[8] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[13] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[14] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[15] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.