中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1308-1316 DOI: 10.7536/PC180136 Previous Articles   Next Articles

• Review •

Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation

Chunxue Li1,2, Yu Qiao1,2*, Xue Lin1,2, Guangbo Che1*   

  1. 1. Key Laboratory of Preparation and Application of Environmentally Friendly Materials of Ministry of Education, Jilin Normal University, Changchun 130103, China;
    2. College of Chemistry, Jilin Normal University, Siping 136000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21576112) and the Natural Science Foundation Project of Jilin Province (No. 20180623042TC, 20180101181JC, 20150623024TC-19).
PDF ( 987 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) materials have attracted much attention in the field of photocatalysis, as compared with conventional porous materials, which are structurally ordered and diverse, with adjustable pore size and ultra-high specific surface area. At the same time, quantum dots (Quantum Dots, QDs) of nano-fluorescent materials have good optical properties and can convert near-infrared light into visible light, which can promote the absorption of visible light, which accounts for a large proportion of the solar spectrum, and the emergence of QDs has also contributed to the development of photocatalysis. But as a single phase catalyst, they have autologous shortcomings, limiting their use as a photocatalyst for future application and development. In recent years, researchers have found that the effective combination of QDs and MOFs materials to form a composite photocatalyst is one of the ways to improve the photocatalytic performance of single phase catalysts, and a preliminary study has been carried out. The results show that catalytic performance is greatly improved and it has broad application prospect in solving environmental problems. This paper combines the status quo at home and abroad, and a series of studies on the preparation of QDs@MOFs composite photocatalyst as well as its application and development in the field of photocatalytic degradation are reviewed. This paper also puts forward the key problems that should be paid attention to in the process of QDs@MOFs composite photocatalyst and the future development trend.
Contents
1 Introduction
2 Preparation of QDs@MOFs materials
2.1 The method of ship in the bottle
2.2 The method of bottle around the ship
2.3 The method of photochemical deposition
2.4 The method of direct surface functionalization
2.5 Other methods
3 Application of QDs@MOFs materials in the field of photocatalytic degradation
3.1 Application of MOFs materials in the field of photocatalytic degradation
3.2 Application of QDs in the field of photocatalytic degradation
3.3 Application of QDs@MOFs materials in the field of photocatalytic degradation
4 Conclusion and outlook

CLC Number: 

[1] Hou W B, Cronin S B. Adv. Funct. Mater., 2013, 23:1612.
[2] Zhang H, Fan X F, Quan X, Chen S, Yu H T. Environ. Sci. Technol., 2011, 45:5731.
[3] Solís-Casados D A, Escobar-Alarcón L, Gómez-Oliván L M, Haro-Poniatowski E, Klimova T. Fuel, 2017, 198:3.
[4] Zhao W, Li J H, Wei Z B, Wang S M, He H, Sun C, Yang S G. Appl. Catal. B-Environ., 2015, 179:9.
[5] Zhou W J, Liu H, Wang J Y, Liu D, Du G J, Cui J J. ACS Appl. Mater. Inter., 2010, 2:2385.
[6] Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43:5468.
[7] Zhang W H, Kozachuk O, Medishetty R, Schneemann A, Wagner R, Khaletskaya K, Epp K, Fischer R A. Eur. J. Inorg.Chem., 2015, 2015:3913.
[8] Mao Y Y, Chen D K, Hu P, Guo Y, Ying Y L, Ying W, Peng X S. Chem. Eur. J., 2015, 21:15127.
[9] Liang Z J, Marshall M, Chaffee A L. Energ. Fuel, 2009, 23:2785.
[10] Cao F, Zhang C J, Xiao Y L, Huang H L, Zhang W J, Liu D H, Zhong C L, Yang Q Y, Yang Z H, Lu X H. Ind. Eng. Chem. Res., 2012, 51:11274.
[11] Zhao M T, Deng K, He L C, Liu Y, Li G D, Zhao H J, Tang Z Y. J. Am. Chem. Soc., 2014, 136:1738.
[12] Yang C, You X, Cheng J H, Zheng H D, Chen Y C. Appl. Catal. B-Environ., 2017, 200:673.
[13] Liu Y Y, Zhang W N, Li S Z, Cui C L, Wu J, Chen H Y, Huo F W. Chem. Mater., 2014, 26:1119.
[14] Gole B, Sanyal U, Banerjee R, Mukherjee P S. Inorg. Chem., 2016, 55:2345.
[15] Li Y, Xu H, Ouyang S X, Ye J H. Phys. Chem. Chem. Phys., 2016, 18:7563.
[16] Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116:1151.
[17] Corma A, García H, Llabrés i Xamena F X. Chem. Rev., 2010, 110:4606.
[18] Lee J K, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38:1450.
[19] Gao J K, Miao J W, Li P Z, Teng W Y, Yang L, Zhao Y L, Liu B, Zhang Q C. Chem. Commun., 2014, 50:3786.
[20] Junghans U, Suttkus C, Lincke J, Lassig D, Krautscheid H, Glaser R. Micropor. Mesopor. Mat., 2015, 216:151.
[21] Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. Nature, 2000, 404:982.
[22] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129:2607.
[23] Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo G V, Fischer R A. Eur. J. Inorg. Chem., 2010, 2010:3701.
[24] Arnanz A, Pintado-Sierra M, Corma A, Iglesias M, Sánchez F. Adv. Synth. Catal., 2012, 354:1347.
[25] Bhattacharjee S, Lee Y R, Puthiaraj P, Cho S M, Ahn W S. Catal. Surv. Asia, 2015, 19:203.
[26] 邱健豪(Qiu J H), 何明(He M), 贾明民(Jia M M), 姚建峰(Yao J F). 化学进展(Progress in Chemistry), 2016, 28(7):1016.
[27] Kim J, Cho H Y, Ahn W S. Catal. Surv. Asia, 2012, 16:106.
[28] Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4:4254.
[29] Wu Y P, Wu X Q, Wang J F, Zhao J, Dong W W, Li D S, Zhang Q C. Cryst. Growth Des., 2016, 16:2309.
[30] Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B-Environ., 2016, 193:198.
[31] Ge L, Zhou W, Rudolph V, Zhu Z H. J. Mater. Chem. A, 2013, 1:6350.
[32] Sun Q, Liu M, Li K Y, Zuo Y, Han Y T, Wang J H, Song C S, Zhang G L, Guo X W. CrystEngComm, 2015, 17:7160.
[33] Liu X C, Zhou Y Y, Zhang J C, Tang L, Luo L, Zeng G M. ACS Appl. Mater. Inter., 2017, 9:20255.
[34] Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134:13926.
[35] Nelson A P, Farha O K, Mulfort K L, Hupp J T. J. Am. Chem. Soc., 2009, 131:458.
[36] Wang R, Gu L N, Zhou J J, Liu X L, Teng F, Li C H, Shen Y H, Yuan Y P. Adv. Mater. Interfaces, 2015, 2:1500037.
[37] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4:11.
[38] Wang W J, Yu J C, Shen Z R, Chan D K L, Gu T. Chem. Commun., 2014, 50:10148.
[39] Zhan Y, Liu Z M, Liu Q Q, Huang D, Wei Y, Hu Y C, Lian X J, Hu C F. New J. Chem., 2017, 41:3930.
[40] Zhang X D, Wang H X, Wang H, Zhang Q, Xie J F, Tian Y P, Wang J, Xie Y. Adv. Mater., 2014, 26:4438.
[41] Kaur R, Rana A, Singh R K, Chhabra V A, Kim K H, Deep A. RSC Adv., 2017, 7:29015.
[42] Aguilera-Sigalat J, Bradshaw D. Coordin. Chem. Rev., 2016, 307:267.
[43] 胡先运(Hu X Y), 郭庆生(Guo Q S), 刘玉乾(Liu Y Q), 孙清江(Sun Q J), 孟铁宏(Meng T H), 张汝国(Zhang R G). 化学进展(Progress in Chemistry), 2017, 29(2/3):300.
[44] 王娇娇(Wang J J), 冯苗(Feng M), 詹红兵(Zhan H B). 化学进展(Progress in Chemistry), 2013, 25(1):86.
[45] Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Sicox J, Wise F, Shen Q, Kycia S. Appl. Phys. Lett., 1997, 71:3406.
[46] Pang X H, Bian H J, Wang W J, Liu C, Khan M S, Wang Q, Qi J N, Wei Q, Du B. Biosens. Bioelectron., 2017, 91:456.
[47] Zhang Q, Quan X, Wang H, Chen S, Su Y, Li Z L. Sci. Rep., 2017, 7:3128.
[48] Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Appl. Catal. B-Environ., 2017, 210:45.
[49] 徐海娥(Xu H E), 闫翠娥(Yan C E). 化学进展(Progress in Chemistry), 2005, 17(5):800.
[50] Luo Z M, Yang D L, Yang C, Wu X Y, Hu Y L, Zhang Y, Yuwen L H, Yeow E K L, Weng L X, Huang W, Wang L H. Appl. Surf. Sci., 2018, 434:155.
[51] Zhao D, Wan X Y, Song H J, Hao L Y, Su Y Y, Lv Y. Sensor Actuat. B-Chem., 2014, 197:50.
[52] Xu S J, Li D, Wu P Y. Adv. Funct. Mater., 2015, 25:1127.
[53] Liu Q Q, Hu C F, Wang X M. RSC Adv., 2016, 6:25605.
[54] 石星波(Shi X B), 温超(Wen C),符招弟(Fu Z D), 邓放明(Deng F M), 郑舒(Zheng S), 刘秋云(Liu Q Y). 化学进展(Progress in Chemistry), 2014, 26(11):1781.
[55] 唐永安(Tang Y A), 胡军(Hu J), 杨祥良(Yang X L), 徐辉碧(Xu H B). 化学进展(Progress in Chemistry), 2014, 26(10):1731.
[56] 牛晶晶(Niu J J), 高辉(Gao H), 田万发(Tian W F). 化学进展(Progress in Chemistry), 2014, 26(2/3):270.
[57] Bandyopadhyay A, Ghosh D, Kaley N M, Pati S K. J. Phys. Chem. C, 2017, 121:1982.
[58] Li Y H, Lv K L, Ho W K, Dong F, Wu X F, Xia Y. Appl. Catal. B-Environ., 2017, 202:611.
[59] Fernando K A S, Sahu S, Liu Y M, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E, Sun Y P. ACS Appl. Mater. Inter., 2015, 7:8363.
[60] Liu J, Strachan D M, Thallapally P K. Chem. Commun., 2014, 50:466.
[61] Houk R J T, Jacobs B W, Gabaly F E, Chang N N, Talin A A, Graham D D, House S D, Robertson L M, Allendorf M D. Nano Lett., 2009, 9:3413.
[62] Nunzio M R d, Agostoni V, Cohen B, Gref R, Douhal A. J. Med. Chem., 2014, 57:411.
[63] Liu S N, Zhou J, Cai Z Y, Fang G Z, Cai Y S, Pan A Q, Liang S Q. J. Mater. Chem. A, 2016, 4:17838.
[64] Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 2016, 45:2327.
[65] Ji M, Lan X, Han Z P, Hao C, Qiu J S. Inorg. Chem., 2012, 51:12389.
[66] Schlichte K, Kratzke T, Kaskel S. Micropor. Mesopor. Mat., 2004, 73:81.
[67] Gallis D F S, Parkes M V, Greathouse J A, Zhang X Y, Nenoff T M. Chem. Mater., 2015, 27:2018.
[68] Wang H H, Yang J, Liu Y Y, Song S Y, Ma J F. Cryst. Growth Des., 2015, 15:4986.
[69] Choi K M, Kim D, Rungtaweevoranit B, Trickett C A, Barmanbek J T D, Yang P D, Yaghi O M. J. Am. Chem. Soc., 2017, 139:356.
[70] Shen L J, Huang L J, Liang S J, Liang R W, Qin N, Wu L. RSC Adv., 2014, 4:2546.
[71] Kornienko N, Zhao Y B, Kley C S, Zhu C H, Kim D, Lin S, Chang C J, Yaghi O M, Yang P D. J. Am. Chem. Soc., 2015, 137:14129.
[72] Wang J L, Wang C, Lin W B. ACS Catal., 2012, 2:2630.
[73] Meng Q G, Xin X L, Zhang L L, Dai F N, Wang R M, Sun D F. J. Mater. Chem. A, 2015, 3:24016.
[74] Wu Z B, Yuan X Z, Zhang J, Wang H, Jiang L B, Zeng G M. ChemCatChem, 2017, 9:41.
[75] Liu C B, Sun H Y, Li X Y, Bai H Y, Cong Y, Ren A, Che G B. Inorg. Chem. Commun., 2014, 47:80.
[76] Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G S. Energ. Environ. Sci., 2014, 7:2831.
[77] Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.
[78] Liu C B, Cong Y, Sun H Y, Che G B. Inorg. Chem. Commun., 2014, 47:71.
[79] Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Dalton T., 2014, 43:3792.
[80] Qiao Y, Zhou Y F, Guan W S, Liu L H, Liu B, Che G B, Liu C B, Lin X, Zhu E W. Inorg. Chim. Acta, 2017, 466:291.
[81] Freeman R, Willner I. Chem. Soc. Rev., 2012, 41:4067.
[82] Zhou J, Yang Y, Zhang C Y. Chem. Commun., 2013, 49:8605.
[83] 黄启同(Huang Q T), 林小凤(Lin X F), 李飞明(Li F M), 翁文(Weng W), 林丽萍(Lin L P), 胡世荣(Hu S R). 化学进展(Progress in Chemistry), 2015, 27(11):1604.
[84] Zolfaghari-Isavandi Z, Shariatinia Z. J. Alloy. Compd., 2018, 737:99.
[85] Lin X, Xu D, Zhao R, Xi Y, Zhao L N, Song M S, Zhai H J, Che G B, Chang L M. Sep. Purif. Technol., 2017, 178:163.
[86] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49:4430.
[87] Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6:1059.
[88] Lin X, Xu D, Zheng J, Song M S, Che G B, Wang Y S, Yang Y, Liu C, Zhao L N, Chang L M. J. Alloy. Compd., 2016, 688:891.
[89] Zhang H C, Huang H, Ming H, Li H T, Zhang L L, Liu Y, Kang Z H. J. Mater. Chem., 2012, 22:10501.
[90] Lin X, Wang Y S, Zheng J, Liu C, Yang Y, Che G B. Dalton T., 2015, 44:19185.
[91] Xu T T, Hu J L, Yang Y W, Que W X, Yin X T, Wu H J, Chen L X. J. Alloy. Compd., 2018, 734:196.
[92] Kaur R, Vellingiri K, Kim K H, Paul A K, Deep A. Chemosphere, 2016, 154:620.
[93] Esken D, Turner S, Wiktor C, Kalidindi S B, Tendeloo G V, Fischer R A. J. Am. Chem. Soc., 2011, 133:16370.
[94] Wakaoka T, Hirai K, Murayama K, Takano Y, Takagi H, Furukawa S, Kitagawa S. J. Mater. Chem. C, 2014, 2:7173.
[95] Kaur R, Sharma A L, Kim K H, Deep A. J. Ind. Eng. Chem., 2017, 53:77.
[96] Jin S Y, Son H J, Farha O K, Wiederrecht G P, Hupp J T. J. Am. Chem. Soc., 2013, 135:955.
[97] He J, Yan Z Y, Wang J Q, Xie J, Jiang L, Shi Y M, Yuan F G, Yu F, Sun Y J. Chem. Commun., 2013, 49:6761.
[98] Wen M C, Mori K, Kamegawa T, Yamashita H. Chem. Commun., 2014, 50:11645.
[99] Gan H J, Wang Z, Li H M, Wang Y R, Sun L P, Li Y F. RSC Adv., 2016, 6:5192.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[8] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[9] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[10] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[11] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[12] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[15] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.