中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1059-1073 DOI: 10.7536/PC200715   Next Articles

• Review •

Photoluminescence Mechanisms of Carbon Quantum Dots

Xingchen Wu1, Wenhui Liang1,2, Chenxin Cai1,*()   

  1. 1 College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
    2 College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Chenxin Cai
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21675088)
Richhtml ( 184 ) PDF ( 1686 ) Cited
Export

EndNote

Ris

BibTeX

Carbon quantum dots (CQDs) generally refer to zero-dimensional carbon materials with a particle size of less than 10 nm. Due to their excellent optical properties, they have been used extensively in the fields of bioimaging, optical devices, biocomposite materials, biosensing, etc., and can be expected to become one of the most widely used carbon material in the future. The optical properties of CQDs are affected by particle size, surface functional groups, synthesis temperature, type of solvent, and pH. In order to precisely control their optical properties and further expand their scope of application, their photoluminescence (PL) mechanisms need to be elucidated in details, however, the PL mechanism of CQDs is currently not complete clear. At present, the proposed PL mechanism includes quantum confinement effect, surface states emission, molecular fluorophores and carbogenic core, polycyclic aromatic hydrocarbon molecular emission, self-trapped exciton emission, surface dipole emission center, aggregate emission center, multiple emission center, slowed solvent relaxation and solvatochromic shift etc. But each mechanism can only explain part of the PL phenomenon of CQDs to a certain extent. No mechanism can explain all the PL phenomena of CQDs, which seriously restricts the regulation of the optical properties of CQDs. This review classifies and summarizes the different PL mechanisms of CQDs, its purpose is to provide a reference for further elucidating its PL mechanism and achieving controllable adjustment of the optical characteristics of CQDs.

Contents

1 Introduction

2 Optical characteristics of CQDs

2.1 UV-Vis absorption characteristics

2.2 Fluorescence characteristics (photoluminescence characteristics)

2.3 Electroluminescence characteristics

2.4 Up-converted luminescence

3 PL mechanism of CQDs

3.1 Quantum confinement effect

3.2 Surface states emission

3.3 Molecular fluorophores and carbogenic core

3.4 Polycyclic aromatic hydrocarbon molecular emission

3.5 Self-trapped exciton emission

3.6 Surface dipole emission center

3.7 Aggregate emission center

3.8 Multiple emission center

3.9 Slowed solvent relaxation and solvatochromic shift

4 Conclusion and outlook

Fig. 1 (a) Absorption spectra of CQDs prepared under different conditions[55]; (b) solvent-induced absorption peak redshift for CQDs[49]; (c) aggregation-induced absorption in the long-wavelength region[55]; (d) modification group-induced absorption of CQDs in the long-wavelength region[23]
Fig. 2 (a) Formal process of photoluminescence: electrons transition and back to lower energy levels, releasing energy in the form of photons; (b) PL emission spectra of the CQDs under excitation wavelengths from 300 to 470 nm[23]
Fig. 3 (a)ECL responses of Pt electrodes (a’) with and (b’) without CQDs at its surface in 0.1 mol/L phosphate buffer solution[59]. (b) Electroluminescence(EL) spectra and photographs of multicolor emissions[63]
Fig. 4 Excitation-dependent up-conversion fluorescence spectra of CQDs[66]
Fig. 5 The mechanism of up-and down-conversion fluorescence: single-photon absorption, release less energy, and produce down-conversion fluorescence. Multiphoton absorption releases more energy and produces up-converted fluorescence
Fig. 6 (a) Absorption spectra of CQDs with different particle sizes[68]. (b) Normalized PL spectra of CQDs with different particle sizes[68]. (c)Calculated emission wavelength with diameter of graphene quantum dots[73]. (d) Energy gap of π-π * transitions calculated based on DFT as a function of the number of fused aromatic rings[74]
Fig. 7 (a) Fluorescence photographs of CQDs with different color under 365 nm UV excitation[75]. (b) Schematic diagram of the band gap of four selected CQDs (average particle size is about 2.6 nm)[75]. (c) Schematic diagram of PL emission affected by the surface state[76]
Fig. 8 (a) Schematic representation of the emission characteristics of three photoactive species produced from the thermal treatment of mixture of CA and EA[81]. (b) Schematic illustration of the CQDs obtained at different hydrothermal temperatures[82]
Fig. 9 (a) Absorption spectra of CQDs, anthracene, perylene, pyrene. (b) PL spectra of CQDs, anthracene, perylene, pyrene under 337 nm excitation wavelength. (c) Absorption spectra of CQDs and PAH-film. (d) Schematic diagram of PAH-induced luminescence[87]
Fig.10 Changes in the content of fluorophores and aromatic domain structures with different reaction times[88]
Fig.11 (a) Emission anisotropy and degree of linear polarization of CQDs. (b) Electric-field modulation of CQDs emission. (c) Power-dependent PL intensity. (d) Electronic structure of self-trapped excitons, which contribute to carbon dots emission[91]
Fig.12 (a) HRTEM images of individual CQDs possessing various crystal structures. (b) Consecutive images of the same sample area recorded by using an azimuthally polarized laser beam (scanning direction up-down). Each double-lobe pattern corresponds to the same CQDs. (c) Single CQDs spectra under 467 nm. (d) PL spectra of single CQDs under 467 and 488 nm laser[95]
Fig.13 (a) Absorption, excitation and fluorescence spectra of CQDs at 300 K. (b) CQDs aggregation structure model and its distortion process. (c) Aggregation structure-induced band gap reduction[97]
Fig.14 (a) Proposed fluorescent mechanism of the ternary fluorescent centers of CQDs[103]. (b) Schematic diagram of one-pot synthesis and purification of CQDs. Changes in particle size and defect content lead to shift in PL emission wavelength[104]
Fig.15 (a) Photograph of the CQDs excited by different wavelength lights in solvents of CCl4, toluene, CHCl3, acetone, DMF, and H2O[109]. (b) Illustration of the possible emission processes of the CQDs in different solvents[109]. (c) Illustration of the combination of solvent and molecule to generate new energy level[109]. (d) Photographs of CQDs, DA-CQDs, and PFDA-CQDs in chloroform and methanol under white light, 365 nm UV light, and 302 nm UV light[111]
[1]
Liu R L, Wu D Q, Feng X L, Müllen K. J. Am. Chem. Soc., 2011, 133(39):15221.

doi: 10.1021/ja204953k
[2]
Fernando K A S, Sahu S, Liu Y M, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E, Sun Y P. ACS Appl. Mater. Interfaces, 2015, 7(16):8363.

doi: 10.1021/acsami.5b00448
[3]
Wang L, Chen X, Lu Y L, Liu C X, Yang W S. Carbon, 2015, 94:472.

doi: 10.1016/j.carbon.2015.06.084
[4]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40):12736.

doi: 10.1021/ja040082h
[5]
Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19(4):484.

doi: 10.1039/B812943F
[6]
Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F, Kang Z H. Dalton Trans., 2012, 41(31):9526.

doi: 10.1039/c2dt30985h pmid: 22751568
[7]
Cai Z W, Li F M, Wu P, Ji L J, Zhang H, Cai C X, Gervasio D F. Anal. Chem., 2015, 87(23):11803.

doi: 10.1021/acs.analchem.5b03201
[8]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52(14):3953.

doi: 10.1002/anie.v52.14
[9]
Wang Z F, Yuan F L, Li X H, Li Y C, Zhong H Z, Fan L Z, Yang S H. Adv. Mater., 2017, 29(37):1702910.

doi: 10.1002/adma.v29.37
[10]
Baragau I A, Power N P, Morgan D J, Heil T, Lobo R A, Roberts C S, Titirici M M, Dunn S, Kellici S. J. Mater. Chem. A, 2020, 8(6):3270.

doi: 10.1039/C9TA11781D
[11]
Liu Y S, Li W, Wu P, Liu S X. Progress in Chemistry, 2018, 30:349.
( 刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30:349.)

doi: 10.7536/PC170808
[12]
Gu Z G, Li D J, Zheng C, Kang Y, Wöll C, Zhang J. Angew. Chem. Int. Ed., 2017, 56(24):6853.

doi: 10.1002/anie.201702162
[13]
Hou H S, Banks C E, Jing M J, Zhang Y, Ji X B. Adv. Mater., 2015, 27(47):7861.

doi: 10.1002/adma.201503816
[14]
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128(24):7756.

pmid: 16771487
[15]
Yu C H, Jiang X H, Qin D M, Mo G C, Zheng X F, Deng B Y. ACS Sustainable Chem. Eng., 2019, 7(19):16112.

doi: 10.1021/acssuschemeng.9b02886
[16]
Tong L L, Wang X X, Chen Z Z, Liang Y H, Yang Y P, Gao W, Liu Z H, Tang B. Anal. Chem., 2020, 92(9):6430.

doi: 10.1021/acs.analchem.9b05553
[17]
Li H X, Yan X, Kong D S, Jin R, Sun C Y, Du D, Lin Y H, Lu G Y. Nanoscale Horiz., 2020, 5(2):218.

doi: 10.1039/C9NH00476A
[18]
Wu X D, Zhao B, Zhang J Z, Xu H, Xu K Q, Chen G. J. Phys. Chem. C, 2019, 123(42):25570.

doi: 10.1021/acs.jpcc.9b06672
[19]
Xiao L, Sun H D. Nanoscale Horiz., 2018, 3(6):565.

doi: 10.1039/C8NH00106E
[20]
Liu G J, Wang X H, Han G T, Yu J Y, Zhao H G. Mater. Adv., 2020, 1(2):119.

doi: 10.1039/D0MA00181C
[21]
Gao J W, Wu C L, Deng D, Wu P, Cai C X. Adv. Healthcare Mater., 2016, 5(18):2437.

doi: 10.1002/adhm.v5.18
[22]
Hoang V C, Dave K, Gomes V G. Nano Energy, 2019, 66:104093.

doi: 10.1016/j.nanoen.2019.104093
[23]
Wang H, Sun P F, Cong S, Wu J, Gao L J, Wang Y, Dai X, Yi Q H, Zou G F. Nanoscale Res. Lett., 2016, 11(1):1.

doi: 10.1186/s11671-015-1209-4
[24]
Su W, Guo R H, Yuan F L, Li Y C, Li X H, Zhang Y, Zhou S X, Fan L Z. J. Phys. Chem. Lett., 2020, 11(4):1357.

doi: 10.1021/acs.jpclett.9b03891
[25]
Xie C C, Fan T T, Wang A J, Chen S L. Ind. Eng. Chem. Res., 2019, 58(1):120.

doi: 10.1021/acs.iecr.8b05101
[26]
Tang C Y, Liu C, Han Y, Guo Q Q, Ouyang W, Feng H J, Wang M Z, Xu F. Adv. Healthcare Mater., 2019, 8(10):1801534.

doi: 10.1002/adhm.v8.10
[27]
Li H T, Deng Y D, Liu Y D, Zeng X, Wiley D, Huang J. Chem. Commun., 2019, 55(30):4419.

doi: 10.1039/C9CC00830F
[28]
Fan Q, Li J H, Zhu Y H, Yang Z L, Shen T, Guo Y Z, Wang L H, Mei T, Wang J Y, Wang X B. ACS Appl. Mater. Interfaces, 2020, 12:4797.

doi: 10.1021/acsami.9b20785
[29]
Shangguan J F, Huang J, He D G, He X X, Wang K M, Ye R Z, Yang X, Qing T P, Tang J L. Anal. Chem., 2017, 89(14):7477.

doi: 10.1021/acs.analchem.7b01053 pmid: 28628302
[30]
Kalaiyarasan G, Veerapandian M, JebaMercy G, Balamurugan K, Joseph J. ACS Biomater. Sci. Eng., 2019, 5(6):3089.

doi: 10.1021/acsbiomaterials.9b00394
[31]
Yan F Y, Bai Z J, Ma T C, Sun X D, Zu F L, Luo Y M, Chen L. Sens. Actuat. B: Chem., 2019, 296:126638.

doi: 10.1016/j.snb.2019.126638
[32]
Chen L, Yang G C, Wu P, Cai C X. Biosens. Bioelectron., 2017, 96:294.

doi: S0956-5663(17)30332-9 pmid: 28511112
[33]
Ji L J, Chen L, Wu P, Gervasio D F, Cai C X. Anal. Chem., 2016, 88(7):3935.

doi: 10.1021/acs.analchem.6b00131
[34]
Dieleman C D, Ding W Y, Wu L J, Thakur N, Bespalov I, Daiber B, Ekinci Y, Castellanos S, Ehrler B. Nanoscale, 2020, 12(20):11306.

doi: 10.1039/D0NR01077D
[35]
Srivastava S, Gajbhiye N S. ChemPhysChem, 2011, 12(14):2624.

doi: 10.1002/cphc.v12.14
[36]
Sciortino A, Marino Evan Dam B, Schall P, Cannas M, Messina F. J. Phys. Chem. Lett., 2016, 7(17):3419.

doi: 10.1021/acs.jpclett.6b01590 pmid: 27525451
[37]
Sharma A, Gadly T, Neogy S, Ghosh S K, Kumbhakar M. J. Phys. Chem. Lett., 2017, 8(5):1044.

doi: 10.1021/acs.jpclett.7b00170 pmid: 28198626
[38]
Liu E S, Li D, Zhou X J, Zhou G F, Xiao H, Zhou D, Tian P F, Guo R Q, Qu S N. ACS Sustainable Chem. Eng., 2019, 7(10):9301.

doi: 10.1021/acssuschemeng.9b00325
[39]
Feng T, Zeng Q S, Lu S Y, Yan X J, Liu J J, Tao S Y, Yang M X, Yang B. ACS Photonics, 2018, 5(2):502.

doi: 10.1021/acsphotonics.7b01010
[40]
Zhang Y Q, Zhuo P, Yin H, Fan Y, Zhang J H, Liu X Y, Chen Z Q. ACS Appl. Mater. Interfaces, 2019, 11(27):24395.

doi: 10.1021/acsami.9b04600
[41]
Dong X W, Wei L M, Su Y J, Li Z L, Geng H J, Yang C, Zhang Y F. J. Mater. Chem. C, 2015, 3(12):2798.

doi: 10.1039/C5TC00126A
[42]
Gan Z X, Xiong S J, Wu X L, Xu T, Zhu X B, Gan X, Guo J H, Shen J C, Sun L T, Chu P K. Adv. Opt. Mater., 2013, 1(12):926.

doi: 10.1002/adom.v1.12
[43]
Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. Carbon, 2013, 60:421.

doi: 10.1016/j.carbon.2013.04.055
[44]
Chen L, Wu C L, Du P, Feng X W, Wu P, Cai C X. Talanta, 2017, 164:100.

doi: S0039-9140(16)30877-3 pmid: 28107902
[45]
Yeh T F, Huang W L, Chung C J, Chiang I T, Chen L C, Chang H Y, Su W C, Cheng C, Chen S J, Teng H. J. Phys. Chem. Lett., 2016, 7(11):2087.

doi: 10.1021/acs.jpclett.6b00752 pmid: 27192445
[46]
Ding H, Wei J S, Zhang P, Zhou Z Y, Gao Q Y, Xiong H M. Small, 2018, 14(22):1800612.

doi: 10.1002/smll.201800612 pmid: 29709104
[47]
Holá K, Sudolská M, Kalytchuk S, Nachtigallová D, Rogach A L, Otyepka M, Zbořil R. ACS Nano, 2017, 11(12):12402.

doi: 10.1021/acsnano.7b06399
[48]
Wang C X, Xu Z Z, Cheng H, Lin H H, Humphrey M G, Zhang C. Carbon, 2015, 82:87.

doi: 10.1016/j.carbon.2014.10.035
[49]
Wu M H, Zhan J, Geng B J, He P P, Wu K, Wang L, Xu G, Li Z, Yin L Q, Pan D Y. Nanoscale, 2017, 9(35):13195.

doi: 10.1039/C7NR04718E
[50]
Wang Y C, Jiang X E. Sci. China Chem., 2016, 59(7):836.

doi: 10.1007/s11426-016-0022-y
[51]
Yang G C, Wu C L, Luo X J, Liu X Y, Gao Y, Wu P, Cai C X, Saavedra S S. J. Phys. Chem. C, 2018, 122(11):6483.

doi: 10.1021/acs.jpcc.8b01385
[52]
Yuan F L, Yuan T, Sui L Z, Wang Z B, Xi Z F, Li Y C, Li X H, Fan L Z, Tan Z A, Chen A M, Jin M X, Yang S H. Nat. Commun., 2018, 9(1):2249.

doi: 10.1038/s41467-018-04635-5
[53]
Mai X D, Thi Kim Chi T, Nguyen T C, Ta V T. Mater. Lett., 2020, 268:127595.

doi: 10.1016/j.matlet.2020.127595
[54]
Schneider J, Reckmeier C J, Xiong Yvon Seckendorff M, Susha A S, Kasák P, Rogach A L. J. Phys. Chem. C, 2017, 121(3):2014.

doi: 10.1021/acs.jpcc.6b12519
[55]
Reckmeier C J, Schneider J, Xiong Y, Häusler J, Kasák P, Schnick W, Rogach A L. Chem. Mater., 2017, 29(24):10352.

doi: 10.1021/acs.chemmater.7b03344
[56]
Wang J L, Wang Y L, Zheng J X, Yu S P, Yang Y Z, Liu X G. Progress in Chemistry, 2018, 30:1186.
( 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 化学进展, 2018, 30:1186.)

doi: 10.7536/PC180103
[57]
Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X M, Teng K S, Luk C M, Zeng S J, Hao J H, Lau S P. ACS Nano, 2012, 6(6):5102.

doi: 10.1021/nn300760g
[58]
Wang Y Y, Li Y, Yan Y, Xu J, Guan B Y, Wang Q, Li J Y, Yu J H. Chem. Commun., 2013, 49(79):9006.

doi: 10.1039/c3cc43375g
[59]
Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B. J. Am. Chem. Soc., 2009, 131(13):4564.

doi: 10.1021/ja809073f
[60]
Zhu H, Wang X L, Li Y L, Wang Z J, Yang F, Yang X R. Chem. Commun., 2009, (34):5118.
[61]
Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21):5895.

doi: 10.1021/cm1018844
[62]
Xu Y, Wu M, Feng X Z, Yin X B, He X W, Zhang Y K. Chem. Eur. J., 2013, 19(20):6282.

doi: 10.1002/chem.201204372
[63]
Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. ACS Nano, 2013, 7(12):11234.

doi: 10.1021/nn405017q
[64]
Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37):11318.

pmid: 17722926
[65]
Jia X F, Li J, Wang E K. Nanoscale, 2012, 4(18):5572.

doi: 10.1039/c2nr31319g
[66]
Zong J, Zhu Y H, Yang X L, Shen J H, Li C Z. Chem. Commun., 2011, 47(2):764.

doi: 10.1039/C0CC03092A
[67]
Goryacheva I Y, Sapelkin A V, Sukhorukov G B. Trac Trends Anal. Chem., 2017, 90:27.

doi: 10.1016/j.trac.2017.02.012
[68]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Adv. Mater., 2017, 29(3):1604436.

doi: 10.1002/adma.v29.3
[69]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C, Yang X B, Lee S T. Angewandte Chemie Int. Ed., 2010, 49(26):4430.

doi: 10.1002/anie.200906154
[70]
Zhu J Y, Bai X, Chen X, Shao H, Zhai Y, Pan G C, Zhang H Z, Ushakova E V, Zhang Y, Song H W, Rogach A L. Adv. Opt. Mater., 2019, 7(9):1801599.

doi: 10.1002/adom.v7.9
[71]
Zhi B, Cui Y, Wang S Y, Frank B P, Williams D N, Brown R P, Melby E S, Hamers R J, Rosenzweig Z, Fairbrother D H, Orr G, Haynes C L. ACS Nano, 2018, 12(6):5741.

doi: 10.1021/acsnano.8b01619 pmid: 29883099
[72]
Moniruzzaman M, Anantha Lakshmi B, Kim S, Kim J. Nanoscale, 2020, 12(22):11947.

doi: 10.1039/d0nr02225j pmid: 32458861
[73]
Sk M A, Ananthanarayanan A, Huang L, Lim K H, Chen P. J. Mater. Chem. C, 2014, 2(34):6954.

doi: 10.1039/C4TC01191K
[74]
Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Adv. Mater., 2010, 22(4):505.

doi: 10.1002/adma.v22:4
[75]
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1):484.

doi: 10.1021/acsnano.5b05406 pmid: 26646584
[76]
Liu C, Wang R J, Wang B, Deng Z Q, Jin Y Z, Kang Y J, Chen J C. Microchimica Acta, 2018, 185(12):1.

doi: 10.1007/s00604-017-2562-z
[77]
Sciortino A, Gazzetto M, Soriano M L, Cannas M, Cárdenas S, Cannizzo A, Messina F. Phys. Chem. Chem. Phys., 2019, 21(30):16459.

doi: 10.1039/c9cp03063h pmid: 31313777
[78]
Zhang W K, Liu Y Q, Meng X R, Ding T, Xu Y Q, Xu H, Ren Y R, Liu B Y, Huang J J, Yang J H, Fang X M. Phys. Chem. Chem. Phys., 2015, 17(34):22361.

doi: 10.1039/C5CP03434E
[79]
Zhao Y Y, Qu S N, Feng X Y, Xu J C, Yang Y, Su S C, Wang S P, Ng K W. J. Phys. Chem. Lett., 2019, 10(16):4596.

doi: 10.1021/acs.jpclett.9b01848 pmid: 31361140
[80]
Jiang K, Feng X Y, Gao X L, Wang Y H, Cai C Z, Li Z J, Lin H W. Nanomaterials, 2019, 9(4):529.

doi: 10.3390/nano9040529
[81]
Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J. Am. Chem. Soc., 2012, 134(2):747.

doi: 10.1021/ja204661r pmid: 22201260
[82]
Song Y B, Zhu S J, Zhang S T, Fu Y, Wang L, Zhao X H, Yang B. J. Mater. Chem. C, 2015, 3(23):5976.

doi: 10.1039/C5TC00813A
[83]
Shamsipur M, Barati A, Taherpour A A, Jamshidi M. J. Phys. Chem. Lett., 2018, 9(15):4189.

doi: 10.1021/acs.jpclett.8b02043 pmid: 29995417
[84]
Wang T S, Wang A L, Wang R X, Liu Z Y, Sun Y, Shan G Y, Chen Y W, Liu Y C. Sci. Rep., 2019, 9(1):1.
[85]
Mishra K, Koley S, Ghosh S. J. Phys. Chem. Lett., 2019, 10(3):335.

doi: 10.1021/acs.jpclett.8b03803
[86]
Xiong Y, Schneider J, Ushakova E V, Rogach A L. Nano Today, 2018, 23:124.

doi: 10.1016/j.nantod.2018.10.010
[87]
Fu M, Ehrat F, Wang Y, Milowska K Z, Reckmeier C, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15(9):6030.

doi: 10.1021/acs.nanolett.5b02215
[88]
Ehrat F, Bhattacharyya S, Schneider J, Löf A, Wyrwich R, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2017, 17(12):7710.

doi: 10.1021/acs.nanolett.7b03863
[89]
Righetto M, Privitera A, Fortunati I, Mosconi D, Zerbetto M, Curri M L, Corricelli M, Moretto A, Agnoli S, Franco L, Bozio R, Ferrante C. J. Phys. Chem. Lett., 2017, 8(10):2236.

doi: 10.1021/acs.jpclett.7b00794
[90]
Shi B M, Nachtigallová D, Aquino A J A, Machado F B C, Lischka H. J. Phys. Chem. Lett., 2019, 10(18):5592.

doi: 10.1021/acs.jpclett.9b02214
[91]
Xiao L, Wang Y, Huang Y, Wong T, Sun H D. Nanoscale, 2017, 9(34):12637.

doi: 10.1039/C7NR03913A
[92]
Gazzetto M, Sciortino A, Nazari M, Rohwer E, Giammona G, Mauro N, Feurer T, Messina F, Cannizzo A. ACS Appl. Nano Mater., 2020, 3(7):6925.

doi: 10.1021/acsanm.0c01259
[93]
Chen S W, Ullah N, Zhang R Q. J. Phys. Chem. Lett., 2018, 9(17):4857.

doi: 10.1021/acs.jpclett.8b01972
[94]
Gao Y, Yu G N, Wang Y, Dang C, Sum T C, Sun H D, Demir H V. J. Phys. Chem. Lett., 2016, 7(14):2772.

doi: 10.1021/acs.jpclett.6b01122
[95]
Ghosh S, Chizhik A M, Karedla N, Dekaliuk M O, Gregor I, Schuhmann H, Seibt M, Bodensiek K, Schaap I A T, Schulz O, Demchenko A P, Enderlein J, Chizhik A I. Nano Lett., 2014, 14(10):5656.

doi: 10.1021/nl502372x
[96]
Mahat M, Rostovtsev Y, Karna S, Lim G N, D’Souza F, Neogi A. ACS Photonics, 2018, 5(2):614.

doi: 10.1021/acsphotonics.7b01188
[97]
Malyukin Y, Viagin O, Maksimchuk P, Dekaliuk M, Demchenko A. Nanoscale, 2018, 10(19):9320.

doi: 10.1039/c8nr02296h pmid: 29737346
[98]
Su Y, Xie Z G, Zheng M. J. Colloid Interface Sci., 2020, 573:241.

doi: 10.1016/j.jcis.2020.04.004
[99]
Anjali Devi J S, Aparna R S, Anjana R R, Nebu J, Anju S M, George S. J. Phys. Chem. A, 2019, 123(34):7420.

doi: 10.1021/acs.jpca.9b04568 pmid: 31373812
[100]
Chen Y C, Lam J W Y, Kwok R T K, Liu B, Tang B Z. Mater. Horiz., 2019, 6(3):428.

doi: 10.1039/C8MH01331D
[101]
Yang H Y, Liu Y L, Guo Z Y, Lei B F, Zhuang J L, Zhang X J, Liu Z M, Hu C F. Nat. Commun., 2019, 10(1):1.

doi: 10.1038/s41467-018-07882-8
[102]
Yan F Y, Jiang Y X, Sun X D, Wei J F, Chen L, Zhang Y Y. Nano Res., 2020, 13(1):52.

doi: 10.1007/s12274-019-2569-3
[103]
Chen Y Q, Lian H Z, Wei Y, He X, Chen Y, Wang B, Zeng Q G, Lin J. Nanoscale, 2018, 10(14):6734.

doi: 10.1039/C8NR00204E
[104]
Liu Z X, Zou H Y, Wang N, Yang T, Peng Z W, Wang J, Li N, Huang C Z. Sci. China Chem., 2018, 61(4):490.

doi: 10.1007/s11426-017-9172-0
[105]
Ding Y F, Zheng J X, Wang J L, Yang Y Z, Liu X G. J. Mater. Chem. C, 2019, 7(6):1502.

doi: 10.1039/C8TC04887H
[106]
Stepanidenko E A, Arefina I A, Khavlyuk P D, Dubavik A, Bogdanov K V, Bondarenko D P, Cherevkov S A, Kundelev E V, Fedorov A V, Baranov A V, Maslov V G, Ushakova E V, Rogach A L. Nanoscale, 2020, 12(2):602.

doi: 10.1039/c9nr08663c pmid: 31828268
[107]
Basu N, Mandal D. J. Phys. Chem. C, 2018, 122(32):18732.

doi: 10.1021/acs.jpcc.8b04601
[108]
Tepliakov N V, Kundelev E V, Khavlyuk P D, Xiong Y, Leonov M Y, Zhu W R, Baranov A V, Fedorov A V, Rogach A L, Rukhlenko I D. ACS Nano, 2019, 13(9):10737.

doi: 10.1021/acsnano.9b05444 pmid: 31411860
[109]
Wang H, Sun C, Chen X R, Zhang Y, Colvin V L, Rice Q, Seo J, Feng S Y, Wang S N, Yu W W. Nanoscale, 2017, 9(5):1909.

doi: 10.1039/c6nr09200d pmid: 28094404
[110]
Gao D, Liu X L, Jiang D L, Zhao H, Zhu Y D, Chen X Q, Luo H R, Fan H S, Zhang X D. Sens. Actuat. B: Chem., 2018, 277:373.

doi: 10.1016/j.snb.2018.09.031
[111]
Sato K, Sato R, Iso Y, Isobe T. Chem. Commun., 2020, 56(14):2174.

doi: 10.1039/C9CC09333H
[112]
Wang H, Haydel P, Sui N, Wang L N, Liang Y, Yu W W. Nano Res., 2020, 13(9):2492.

doi: 10.1007/s12274-020-2884-8
[113]
Khan S, Gupta A, Verma N C, Nandi C K. Nano Lett., 2015, 15(12):8300.

doi: 10.1021/acs.nanolett.5b03915
[114]
Bai J L, Ma Y S, Yuan G J, Chen X, Mei J, Zhang L, Ren L L. J. Mater. Chem. C, 2019, 7(31):9709.

doi: 10.1039/C9TC02422K
[115]
Yoshinaga T, Akiu M, Iso Y, Isobe T. J. Lumin., 2020, 224:117260.

doi: 10.1016/j.jlumin.2020.117260
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.