中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (8): 814-823 DOI: 10.7536/PC170505 Previous Articles   Next Articles

• Review •

Metal-Enhanced Fluorescence from Quantum Dots

Daiwen Pang, Zhiliang Chen, Shasha Lv, Yi Lin*, Zhiling Zhang, Daiwen Pang   

  1. Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21275111, 21535005) and the China Scholarship Council (No. 201406275115).
PDF ( 2141 ) Cited
Export

EndNote

Ris

BibTeX

Quantum dots (QDs) have been extensively applied in biological detection, in vivo imaging and optoelectronic devices due to their unique optical properties including broad excitation spectra, tunable and narrow emission spectra, high brightness and excellent resistance to photobleaching. Nevertheless, application of aqueous QDs, especially that of aqueous near-infrared fluorescence QDs, is limited by their relatively weak fluorescence and poor stability. Therefore, the development of new approaches for the enhancement of fluorescence of QDs is urgently needed. In recent years, it has been found that the brightness and photostability of QDs can be favorably enhanced by surface plasmon resulted from the nearby metallic nanostructures, which is termed as metal-enhanced fluorescence (MEF). Thus novel strategies for solving the above problems can be proposed based on MEF from QDs, which can be mainly attributed to the increased excitation rate and the increased radiative rate of the excited QDs. In this review, mechanism of MEF, especially that of MEF related to QDs, is introduced based on the near-field interaction between metallic nanostructures and QDs. Key factors affecting the efficiency of fluorescence emission are reviewed, including the distance between metallic nanostructures and QDs, the type of QDs, the composition, shape, and size of metallic nanostructures, and so forth. Current progresses in the application of MEF from QDs are also summarized. Finally, challenges in the development of MEF from QDs are discussed. We believe that with the rapid development of nanoscience and nanotechnology, MEF from QDs will attract more and more attention and show unique potentials in the near future.
Contents
1 Introduction
2 Mechanism
2.1 Luminescence of QDs
2.2 Metal-enhanced fluorescence from QDs
3 Key factors affecting metal-enhanced fluorescence from QDs
3.1 Distance between metallic nanostructures and QDs
3.2 Composition, shape and size of metallic nanostructures
3.3 Types of QDs
4 Applications
5 Conclusion

CLC Number: 

[1] Geddes C D, Lakowicz J R. J Fluoresc., 2002, 12:121.
[2] Aslan K, Wu M, Lakowicz J R, Geddes C D. J. Am. Chem. Soc., 2007, 129:1524.
[3] Hong G S, Tabakman S M, Welsher K, Wang H L, Wang X R, Dai H J. J. Am. Chem. Soc., 2010, 132:15920.
[4] Zong J, Yang X L, Trinchi A, Hardin S, Cole I, Zhu Y H, Li C Z, Muster T, Wei G. Nanoscale, 2013, 5:11200.
[5] Harun N A, Benning M J, Horrocks B R, Fulton D A. Nanoscale, 2013, 5:3817.
[6] 赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q). 化学进展(Progress in Chemistry), 2016, 28(11):1615.
[7] Mishra H, Geddes C D. J. Phys. Chem. C, 2014, 118:28791.
[8] Darvill D, Centeno A, Xie F. Phys. Chem. Chem. Phys., 2013, 15:15709.
[9] Bauch M, Toma K, Toma M, Zhang Q W, Dostalek J. Plasmonics., 2014, 9:781.
[10] Dong J, Zhang Z L, Zheng H R, Sun M T. Nanophotonics, 2015, 4:472.
[11] Song J T, Yang X Q, Zhang X S, Yan D M, Wang Z Y, Zhao Y D. ACS Appl. Mater. Interfaces, 2015, 7:17287.
[12] B Koh, Li X Y, Zhang B, Yuan B, Lin Y, Antaris A L, Wan H, Gong M, Yang J, Zhang X D, Liang Y Y, Dai H J. Small, 2016, 12:457.
[13] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[14] Reschgenger U, Grabolle M, Cavalierejaricot S, Nitschke R, Nann T. Nat. Methods, 2008, 5:763.
[15] Hong Z Y, Lv C, Liu A A, Liu S L, Sun E Z, Zhang Z L, Lei A W, Pang D W. ACS Nano, 2015, 9:11750.
[16] Wen L, Lin Y, Zhang Z L, Lu W, Lv C, Chen Z G, Wang H Z, Pang D W. Biomaterials, 2016, 99:24.
[17] Lv C, Lin Y, Liu A A, Hong Z Y, Wen L, Zhang Z F, Zhang Z L, Wang H Z, Pang D W. Biomaterials, 2016, 106:69.
[18] Liu S L, Wang Z G, Zhang Z L, Pang D W. Chem. Soc. Rev., 2016, 45:1211.
[19] Wen L, Zheng Z H, Liu A A, Lv C, Zhang L J, Ao J, Zhang Z L, Wang H Z, Lin Y, Pang D W. J. Nanobiotechnol., 2017, 15:37.
[20] Liu A A, Zhang Z, Sun E Z, Zheng Z, Zhang Z L, Hu Q X, Wang H Z, Pang D W. ACS Nano, 2016, 10:1147.
[21] Xiong L H, Cui R, Zhang Z L, Yu X, Xie Z X, Shi Y B, Pang D W. ACS Nano, 2014, 8:5116.
[22] Hu J, Wen C Y, Zhang Z L, Xie M, Hu J. Wu M, Pang D W. Anal. Chem., 2013, 85:11929.
[23] Wang J J, Jiang Y Z, Lin Y, Wen L, Lv C, Zhang Z L, Chen G, Pang D W. Anal. Chem., 2015, 87:11105.
[24] Wu M, Zhang Z L, Chen G, Wen C Y, Wu L L, Hu J, Xiong C C, Chen J J, Pang D W. Small, 2015, 11:5280.
[25] Hu J, Zhang Z L, Wen C Y, Tang M, Wu L L, Liu C, Zhu L, Pang D W. Anal. Chem., 2016, 88:6577.
[26] Chen G, Zhu J Y, Zhang Z L, Zhang W, Ren J G, Wu M, Hong Z Y, Lv C, Pang D W, Zhao Y F. Angew. Chem. Int. Ed., 2015, 54:1036.
[27] Gu Y P, Cui R, Zhang Z L, Xie Z X, Pang D W. J. Am. Chem. Soc., 2012, 134:79.
[28] Zhao J Y, Chen G, Gu Y P, Cui R, Zhang Z L, Yu Z L, Tang B, Zhao Y F, Pang D W. J. Am. Chem. Soc., 2016, 138:1893.
[29] 刘锋(Liu F), 朱俊(Zhu J), 魏俊峰(Wei J F), 李毅(Li Y)胡林华(Hu L H), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2013, 25(2):1068.
[30] Drexhage K H. J. Lumin., 1970, 1:693.
[31] Lakowicz J R, Chowdhury M H, Ray K, Zhang J, Fu Y, Badugu R, Sabanayagam C R, Nowaczyk K, Szmacinski H, Aslan K, Geddes C D. Proc. SPIE Int. Soc. Opt. Eng., 2006, 6099:609909.
[32] Lakowicz J R. Anal. Biochem., 2005, 337:171.
[33] Geddes C D, Cao H S, Gryczynski I, Gryczynski Z, Fang J Y, Lakowicz J R. J. Phys. Chem. A, 2003, 107:3443.
[34] 吕国伟(Lv G W), 沈红明(Shen H M), 程宇清(Cheng Y Q), 龚旗煌(Gong Q H). 科学通报(Chinese Science Bulletin), 2015, 60(33):3169.
[35] 何鑫(He X), 张梅(Zhang M), 冯晋阳(Feng J Y), 宋明霞(Song M X), 赵修建(Zhao X J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2011, 40(03):559.
[36] 吕凤婷(Lv F T), 郑海荣(Zheng H R), 房喻(Fang Y). 化学进展(Progress in Chemistry), 2007, 19(02):256.
[37] 孟凡斌(Meng F B), 徐慧(Xu H), 兰伟(Lan W), 刘冲冲(Liu C C), 纪秀翠(Ji X C). 化学通报(Chemistry), 2015, 78(06):489.
[38] 胡军(Hu J). 武汉大学博士论文(Doctoral Dissertation of Wuhan University), 2011.
[39] Smith A M, Nie S M. Acc. Chem. Res., 2010, 43:190.
[40] 童廉明(Tong L M), 徐红星(Xu H X). 物理(Physics), 2012, 41(09):582.
[41] Barnes W L, Dereux A, Ebbesen T W. Nature, 2003, 424:824.
[42] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107:668.
[43] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys.:Condens. Matter., 2002, 14:597.
[44] Ru E, Grand J, Félidj N. Spectral Profile Modifications in Metal-Enhanced Fluorescence. John Wiley & Sons, Inc, 2010. 25.
[45] Le Ru E C, Etchegoin P G, Grand J, Félidj N, Aubard J. J. Phys. Chem. C, 2007, 111:16076.
[46] Anger P, Bharadwaj P, Novotny L. Phys. Rev. Lett., 2006, 96:113002.
[47] Li G L, Moehwald H, Shchukin D G. Chem. Soc. Rev., 2013, 44:3628.
[48] Khanal B P, Pandey A, Li L, Lin Q L, Bae W K, Luo H M, Klimov V I, Pietryga J M. ACS Nano, 2012, 6:3832.
[49] Liu N G, Prall B S, Klimov V I. J. Am. Chem. Soc., 2006, 128:15362.
[50] Naiki H, Masuhara A, Masuo S, Onodera T, Kasai H, Oikawa H. J. Phys. Chem. C, 2013, 117:2455.
[51] Soganci I M, Nizamoglu S, Mutlugun E, Akin O, Demir H V. Opt. Lett., 2007, 15:14289.
[52] Vion C, Spinicelli P, Coolen L, Schwob C, Frigerio J M. Opt. Express., 2010, 18:7440.
[53] Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S. Nano Lett., 2002, 2:1449.
[54] Chan Y H, Chen J, Wark S E, Skiles S L, Dong H S. ACS Nano, 2009, 3:1735.
[55] Jang E, Son K J, Koh W. Colloid Polym. Sci., 2014, 292:1355.
[56] Tanaka K, Plum E, Ou J Y, Uchino T, Zheludev N I. Phys. Rev. Lett., 2010, 105:227403.
[57] Lin T J, Chuang W J, Cheng S, Chen Y F. Appl. Phys. Lett., 2009, 94:173506.
[58] Chen C W, Wang C H, Wei C M, Chen Y F. Appl. Phys. Lett., 2009, 94:71906.
[59] Pompa P P, Martiradonna L, Torre A D, Carbone L, Mercato L. Sens. Actuators B, 2007, 126:187.
[60] Song J H, Atay T, Shi S F, Urabe H, Nurmikko A V. Nano Lett., 2005, 5:1557.
[61] Akimov A V, Mukherjee A, Yu C L, DE Chang, Zibrov A S. Nature, 2007, 450:402.
[62] Song M, Wu B, Chen G, Liu Y, Ci X T, Wu K, Zeng H P. J. Phys. Chem. C, 2014, 118:8514.
[63] Li Y Q, Guan L Y, Zhang H L, Chen J, Lin S, Ma Z Y, Zhao Y D. Anal. Chem., 2011, 83:4103.
[64] Bermúdez U E, Kreuzer M P, Itzhakov S, Rigneault H, Quidant R. Adv. Mater., 2012, 24:314.
[65] Song H Y, Wong T I, Sadovoy A, Wu L, Bai P. Lab Chip., 2014, 15:253.
[66] Fu Y, Zhang J, Lakowicz J R. Chem. Commun., 2009, 3:313.
[67] Peng B, Li Z P, Mutlugun E, Hernandez M P, Li D H, Zhang Q, Gao Y, Demir H V, Xiong Q H. Nanoscale, 2014, 6:5592.
[68] Nepal D, Drummy L F, Biswas S, Park K, Vaia R A. ACS Nano, 2013, 7:9064.
[69] Chen H D, Xia Y S. Anal. Chem., 2014, 86:11062.
[70] Wu K, Zhang J P, Fan S S, Li J, Zhang C, Qiao K K, Qian L H, Han J B, Tang J, Wang S. Chem. Commun., 2015, 51:141.
[71] Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L. Nat. Nanotechnol., 2006, 1:126.
[72] Munechika K, Chen Y C, Tillack A F, Kulkarni A P, Jen-La P I, Munro A M, Ginger D S. Nano Lett., 2011, 11:2725.
[73] Munechika K, Chen Y C, Tillack A F, Kulkarni A P, Plante I J, Munro A M, Ginger D S. Nano Lett., 2010, 10:2598.
[74] Zhang L, Song Y K, Fujita T, Zhang Y, Chen M W, Wang T H. Adv. Mater., 2014, 26:1289.
[75] Langhuth H, Frédérick S, Kaniber M, Finley J J, Rührmair U. J. Fluoresc., 2011, 2:539.
[76] Ahmed S R, Cha H R, Park J Y, Park E Y, Lee D, Lee J. Nanoscale Res. Lett., 2012, 7:438.
[77] Lee J, Lytton-Jean A K, Hurst S J, Mirkin C A. Nano Lett., 2007, 7:2112.
[78] Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. J. Phys. Chem. B, 2006, 110:7238.
[79] Zhang J, Fu Y, Chowdhury M H, Lakowicz J R. Journal of Physical Chemistry C Nanomaterials & Interfaces., 2007, 112:18.
[80] Liu Y L, Kang N, Ke X B, Wang D, Ren L, Wang H J. RSC Adv., 2016, 6:27395.
[81] Viste P, Plain J, Jaffiol R, Vial A, Adam P M, Royer P. ACS Nano, 2010, 4:759.
[82] Peng M, Bi G, Cai C F, Guo G X, Wu H Z, Xu Z S. Opt. Lett., 2016, 41:1466.
[83] 王海艳(Wang H Y), 窦秀明(Dou X M), 倪海桥(Ni H Q), 牛智川(Niu Z C), 孙宝权(Sun B Q). 物理学报(Acta Physica Sinica), 2014, 63(02):27801.
[84] Cheng H, Wang C X, Xu Z Z, Lin H H, Zhang C. RSC Adv., 2015, 5:20.
[85] Liang H Y, Zhao H G, Li Z P, Harnagea C, Ma D L. Nanoscale. 2016, 8:4882.
[86] Liu L, Xu X L, Luo T, Liu Y S, Yang Z, Lei J M. Solid State Commun., 2012, 152:1103.
[87] Theodorou I G, Jawad Z A, Qin H, Aboagye E O, Porter A E. Nanoscale, 2016, 8:12869.
[88] Chan Y H, Chen J X, Liu Q S, Wark S E, Dong H S, Batteas J D. Anal. Chem., 2010, 82:3671.
[89] Ahmed S R, Hossain M A, Park J Y, Kim S H, Lee D. Biosens. Bioelectron., 2014, 58:33.
[90] Jiang P, Zhu C N, Zhang Z L, Tian Z Q, Pang D W. Biomaterials, 2012, 33:5130.
[91] Zhu C N, Chen G, Tian Z Q, Wang W, Zhong W Q, Li Z, Zhang Z L, Pang D W. Small, 2017, 13:1602309.
[92] Cho S, Jeon H, Yoo H, Cho K M, Jung W, Kim J, Jung H. Nano Lett., 2015, 15:7273.
[93] 侯元晖(Hou Y H), 朱东亮(Zhu D L), 彭颖(Peng Y), 陈志良(Chen Z L), 翟彩华(Zhai C H), 杨梦丽(Yang M L), 张志淩(Zhang Z L), 林毅(Lin Y).分析科学学报(Journal of Analytical Science), 2017, 33(4):297.
[1] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[2] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[3] Yingying Wei, Lin Chen, Junli Wang, Shiping Yu, Xuguang Liu, Yongzhen Yang. Synthesis and Applications of Chiral Carbon Quantum Dots [J]. Progress in Chemistry, 2020, 32(4): 381-391.
[4] Yanqiao Xu, Ting Chen, Lianjun Wang, Weihui Jiang, Wan Jiang, Zhixiang Xie. From Preparation to Lighting and Display Applications of Ⅰ-Ⅲ-Ⅵ Quantum Dots [J]. Progress in Chemistry, 2019, 31(9): 1238-1250.
[5] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[6] Guoying Yao, Qinglu Liu, Zongyan Zhao. Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 516-535.
[7] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[8] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.
[9] Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*. Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method [J]. Progress in Chemistry, 2018, 30(4): 349-364.
[10] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[11] Linfeng Wei, Jianzhong Ma, Wenbo Zhang, Yan Bao. The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization [J]. Progress in Chemistry, 2017, 29(6): 637-648.
[12] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[13] Xianyun Hu, Qingsheng Guo, Yuqian Liu, Qingjiang Sun, Tiehong Meng, Ruguo Zhang. Design Strategies and Applications of Quantum Dots Fluorescent Sensing [J]. Progress in Chemistry, 2017, 29(2/3): 300-317.
[14] Yao Qiuhong, Lin Liping, Zhao Tingting, Chen Xi. Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots [J]. Progress in Chemistry, 2015, 27(11): 1523-1530.
[15] Shi Xingbo, Wen Chao, Fu Zhaodi, Deng Fangming, Zheng Shu, Liu Qiuyun. Photo Properties and Applications of Single Quantum Dots [J]. Progress in Chemistry, 2014, 26(11): 1781-1792.