中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 349-364 DOI: 10.7536/PC170808 Previous Articles   Next Articles

• Review •

Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method

Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*   

  1. College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31570567, 31500467).
PDF ( 3922 ) Cited
Export

EndNote

Ris

BibTeX

Carbon quantum dots acting as a new class of “zero-dimensional” carbon nanomaterials have attracted much attention. Hydrothermal carbonization method has been by far one of the most widely used synthesis methods. Many kinds of raw materials can be selected for preparing carbon quantum dots via hydrothermal carbonization method. The preparation process of hydrothermal carbonization is simple. It is able to obtain the carbon quantum dots with abundant oxygen-containing functional groups on the surface and showing excellent water solubility via hydrothermal carbonization. Furthermore, surface functional modification of carbon quantum dots can be carried out during the preparation process. The carbon cores of hydrothermal carbon quantum dots are graphite or amorphous structures. The structures and properties of hydrothermal carbon quantum dots are influenced mainly by raw material types and preparation conditions (including hydrothermal carbonization temperature, time and chemical additives). The products have found good applications in the fields of photocatalysis technology, analysis and detection, the vivo imaging and cellular labeling, light-emitting diodes (LED), drug delivery and so on. In this review, the preparation, properties, formation mechanism (including dehydration, polymerization, carbonization and passivation progress of raw materials) and luminescence mechanism (including surface defect state effect and quantum size effect) of hydrothermal carbon quantum dots are summerized. Simultaneously, the applications of hydrothermal carbon quantum dots are reviewed. The problems remaining to be solved are summarized and the future developments are prospected.
Contents
1 Introduction
2 Preparation of hydrothermal carbon quantum dots
2.1 Influence of feedstocks
2.2 Influence of preparation conditions
3 Properties of hydrothermal carbon quantum dots
3.1 Surface chemical structure
3.2 Crystal structure
3.3 Optical property
4 Formation mechanism of hydrothermal carbon quantum dots
5 Luminescence mechanism of hydrothermal carbon quantum dots
5.1 Surface defect state effect
5.2 Quantum size effect
6 Applications of hydrothermal carbon quantum dots
6.1 Photocatalysis
6.2 Detection probes
6.3 Bioimaging
6.4 Drug delivery
6.5 Light-emitting diodes
6.6 Other applications
7 Conclusion

CLC Number: 

[1] Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126:12736.
[2] Schroeder K L, Goreham R V, Nann T. Pharm. Res., 2016, 33:2337.
[3] Hola K, Zhang Y, Wang Y, Giannelis E P, Zboril R, Rogach A L. Nano Today, 2014, 9:590.
[4] Guo Y M, Zhang L F, Zhang S S, Yang Y, Chen X H, Zhang M C. Biosens. Bioelectron., 2015, 63:61.
[5] Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[6] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B, Pang D W. Adv. Mater., 2011, 23:5801.
[7] Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F, Kang Z H. Dalton Trans., 2012, 41:9526.
[8] Chen B S, Li F M, Weng W, Guo H X, Zhang X Y, Chen Y B, Huang T T, Hong X L, You S Y, Lin Y M, Zeng K H, Chen S. Nanoscale, 2012, 5:1967.
[9] Kwon W, Rhee S W. Chem. Commun., 2012, 48:5256.
[10] Miao P, Han K, Tang Y G, Wang B D, Lin T, Cheng W B. Nanoscale, 2015, 7:1586.
[11] Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49:6726.
[12] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44:362.
[13] 黄启同(Huang Q T), 林小凤(Lin X F), 李飞明(Li F M), 翁文(Weng W), 林丽萍(Lin L P), 胡世荣(Hu S R). 化学进展(Progress in Chemistry), 2015, 27(11):1604.
[14] 胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展(Progress in Chemistry), 2010, 22(2/3):345.
[15] 颜范勇(Yan F Y), 邹宇(Zou Y), 王猛(Wang M), 代林枫(Dai L F), 周旭光(Zhou X G), 陈莉(Chen L). 化学进展(Progress in Chemistry), 2014, 26(1):61.
[16] Zhang B, Liu C Y, Liu Y. Eur. J. Inorg. Chem., 2010, 4411.
[17] Hsu P C, Chang H T. Chem. Commun., 2012, 48:3984.
[18] Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. Carbon, 2013, 60:421.
[19] Zhang Z, Hao J H, Zhang J, Zhang B L, Tang J L. RSC Adv., 2012, 2:8599.
[20] Lu S Y, Zhao X H, Zhu S J, Song Y B, Yang B. Nanoscale, 2014, 6:13939.
[21] Xu M M, Huang Q B, Sun R C, Wang X H. RSC Adv., 2016, 6:88674.
[22] Lai T T, Zheng E H, Chen L X, Wang X Y, Kong L C, You C P, Ruan Y M, Weng X X. Nanoscale, 2013, 5:8015.
[23] Wu P, Li W, Wu Q, Liu Y S, Liu S X. RSC Adv., 2017, 7:44144.
[24] Yang Y, Cui J H, Zheng M T, Hu C F, Tan S Z, Xiao Y, Yang Q, Liu Y L. Chem. Commun., 2012, 48:380.
[25] Liang Z C, Kang M J, Payne G F, Wang X H, Sun R C. ACS Appl. Mater. Interfaces, 2016, 8:17478.
[26] Li X M, Lau S P, Tang L B, Ji R B, Yang P Z. Nanoscale., 2014, 6:5323.
[27] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H B, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52:3953.
[28] Qu D, Zheng M, Zhang L G, Zhao H F, Xie Z G, Jing X B, Haddad R E, Fan H Y, Sun Z C. Sci. Rep., 2014, 4:5294.
[29] Barman M K, Jana B, Bhattacharyya S, Patra A. J. Phys. Chem C., 2014, 118:20034.
[30] Zhu C Z, Zhai J F, Dong S J. Chem. Commun., 2012, 48:9367.
[31] Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48:8835.
[32] Qin X Y, Lu W B, Asiri A M, Al-Youbi A O, Sun X P. Catal. Sci. Technol., 2013, 3:1027.
[33] Xu Q, Pu P, Zhao J G, Dong C B, Gao C, Chen Y S, Chen J R, Liu Y, Zhou H J. J. Mater. Chem. A, 2015, 3:542.
[34] Wang J, Gao M M, Ho G W. J. Mater. Chem. A, 2014, 2:5703.
[35] Shen C, Sun Y P, Wang J, Lu Y. Nanoscale, 2014, 6:9139.
[36] Wang C X, Xu Z Z, Cheng H, Lin H H, Humphrey M G, Zhang C. Carbon, 2015, 82:87.
[37] Han B F, Wang W X, Wu H Y, Fang F, Wang N Z, Zhang X J, Xu S K. Colloids. Surf. B. Biointerfaces, 2012, 100:209.
[38] Gan Z X, Wu X L, Hao Y L. CrystEngComm, 2014, 16:4981.
[39] Yang Z C, Wang M, Yong A M, Wong S Y, Zhang X H, Tan H, Chang A Y, Li X, Wang J. Chem. Commun., 2011, 47:11615.
[40] He X D, Li H T, Liu Y, Huang H, Kang Z H, Lee S T. Colloids. Surf. B. Biointerfaces, 2011, 87:326.
[41] Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Sci. Rep., 2014, 4:4976.
[42] Fang Q Q, Dong Y Q, Chen Y M, Lu C H, Chi Y W, Yang H H, Yu T. Carbon, 2017, 118:319.
[43] Fu M, Ehrat F, Wang Y, Milowska K Z, Reckmeier C, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15:6030.
[44] Liu J, Liu X L, Luo H J, Gao Y F. RSC Adv., 2014, 4:7648.
[45] Li N L, Jia L P, Ma R N, Jia W L, Lu Y Y, Shi S S, Wang H S. Biosens. Bioelectron., 2017, 89:453.
[46] Li W, Zhang Z H, Kong B, Feng S S, Wang J X, Wang L Z, Yang J P, Zhang F, Wu P Y, Zhao D Y. Angew. Chem. Int. Ed., 2013, 52:8151.
[47] Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1:2868.
[48] Wu Q, Li W, Wu P, Li J, Liu S X, Jin C D, Zhan X X. RSC Adv., 2015, 5:75711.
[49] Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24:2037.
[50] Huang H, Lv J J, Zhou D L, Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3:21691.
[51] Feng X, Jiang Y Q, Zhao J P, Miao M, Cao S M, Fang J H, Shi L Y. RSC Adv., 2015, 5:31250.
[52] Liao B, Long P, He B Q, Yi S J, Ou B L, Shen S H, Chen J. J. Mater. Chem. C, 2013, 1:3716.
[53] Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10:484.
[54] Bhunia S K, Saha A, Maity A R, Ray S C, Jana N R. Sci. Rep., 2013, 3:1473
[55] Ding H, Cheng L W, Ma Y Y, Kong J L, Xiong H M. New J. Chem., 2013, 37:2515.
[56] Fang Y X, Guo S J, Li D, Zhu C Z, Ren W, Dong S J, Wang E K. ACS Nano, 2012, 6:400.
[57] Hu S L, Trinchi A, Atkin P, Cole I. Angew. Chem. Int. Ed., 2015, 54:2970.
[58] Zhang Z H, Sun W H, Wu P Y. ACS Sustain. Chem. Eng., 2015, 3:1412.
[59] Atchudan R, Lee Y R, Edison T N J I. J. Colloid. Int. Sci., 2016, 482:8.
[60] Wei J M, Zhang X, Sheng Y Z, Shen J M, Huang P, Guo S K, Pan J Q, Feng B X. Mater. Lett., 2014, 123:107.
[61] Mehta V N, Jha S, Kailasa S K. Mater. Sci. Eng. C:Mater. Biol. Appl., 2014, 38:20.
[62] Liang Z C, Zeng L, Cao X D, Wang Q, Wang X H, Sun R C. J. Mater. Chem. C, 2014, 2:9760
[63] Pan D Y, Guo L, Zhang J C, Xi C, Xue Q, Huang H, Li J H, Zhang Z W, Yu W J, Chen Z W, Li Z, Wu M H. J. Mater. Chem., 2012, 22:3314.
[64] Shen J H, Zhu Y H, Yang X L, Zong J M, Zhang J, Li C Z. New J. Chem., 2012, 36:97.
[65] Qu D, Zheng M, Du P, Zhou Y, Zhang L G, Li D, Tan H Q, Zhao Z, Xie Z G, Sun Z C. Nanoscale, 2013, 5:12272.
[66] Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52:7800.
[67] Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A. Adv. Mater., 2012, 24:5333.
[68] Li J Z, Wang N Y, Tran T T, Huang C A, Chen L, Yuan L J, Zhou L P, Shen R, Cai Q Y. Analyst, 2013, 138:2038.
[69] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8:355.
[70] Zhu S J, Zhang J H, Tang S J, Qiao C Y, Wang L, Wang H Y, Liu X, Li B, Li Y F, Yu W L, Wang X F, Sun H C, Yang B. Adv. Funct. Mater., 2012, 22:4732.
[71] Kwon W, Do S G, Kim J H, Jeong M S, Rhee S W. Sci. Rep., 2015, 5:10.
[72] Gao M X, Liu C F, Wu Z L, Zeng Q L, Yang X X, Wu W B, Li Y F, Huang C Z. Chem. Commun., 2013, 49:8015.
[73] Song Y B, Zhu S J, Xiang S Y, Zhao X H, Zhang J H, Zhang H, Fu Y, Yang B. Nanoscale, 2014, 6:4676.
[74] Song Y B, Zhu S J, Zhang S, Fu Y, Wang L, Zhao X H, Yang B. J. Mater. Chem. C, 2015, 3:5976.
[75] Yu H, Zhang H C, Huang H, Liu Y, Li H T, Ming H, Kang Z H. New J. Chem., 2012, 36:1031.
[76] Yu B Y, Kwak S Y. J. Mater. Chem., 2012, 22:8345.
[77] Di J, Xia J X, Ji M X, Li H P, Xu H, Li H M, Chen R. Nanoscale, 2015, 7:11433.
[78] Cui X, Zhu L, Wu J, Hou Y, Wang P Y, Wang Z N, Yang M. Biosens. Bioelectron., 2015, 63:506.
[79] Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Anal. Chem., 2012, 84:5351.
[80] Liu L Q, Li Y F, Zhan L, Liu Y, Huang C Z. Sci. China. Chem, 2011, 54:1342.
[81] Zhang H M, Li Y B, Liu X L, Liu P R, Wang Y, An T C, Yang H G, Jing D W, Zhao H J. Environ. Sci. Technol. Lett., 2014, 1:87.
[82] Shen P F, Xia Y S. Anal. Chem., 2014, 86:5323.
[83] Qu K G, Wang J S, Ren J S, Qu X G. Chem. Eur. J., 2013, 19:7243.
[84] Miao H, Wang L, Zhuo Y, Zhou Z N, Yang X M. Biosens. Bioelectron., 2016, 86:83.
[85] Chen H, Xie Y J, Kirillov A M, Liu L L, Yu M H, Liu W S, Tang Y. Chem. Commun., 2015, 51:5036.
[86] Saxena M, Sarkar S. Mater. Express, 2013, 3:201.
[87] Li C L, Ou C M, Huang C C, Wu W C, Chen Y P, Lin T E, Ho L C, Wang C W, Shih C C, Zhou H C, Lee Y C, Tzeng W F, Chiou T J, Chu S T, Cang J S, Chang H T. J. Mater. Chem. B, 2014, 2:4564.
[88] Wang H, Di J, Sun Y B, Fu J P, Wei Z Y, Matsui H, Alonso C A, Zhou S Q. Adv. Funct. Mater., 2015, 25:5537.
[89] Shen C, Wang J, Cao Y, Lu Y. J. Mater. Chem. C, 2015, 3:6668.
[90] Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X, Teng K S, Luk C M, Zeng S J, Hao J H, Lau S P. ACS Nano, 2012, 6:5102.
[91] Wang Y, Kalytchuk S, Wang L Y, Zhovtiuk O, Cepe K, Zboril R, Rogach A L. Chem. Commun., 2015, 51:2950.
[92] Dou Q Q, Fang X T, Jiang S, Chee P L, Lee T C, Loh X J. RSC Adv, 2015, 5:46817.
[93] Chen P C, Chen Y N, Hsu P C, Shih C C, Chang H T. Chem. Commun., 2013, 49:1639.
[94] Ge J C, Lan M H, Zhou B J, Liu W M, Guo L, Wang H, Jia Q Y, Niu G L, Huang X, Zhou H Y, Meng X M, Wang P F, Lee C S, Zhang W J, Han X D. Nat. Commun, 2014, 5:4596.
[95] Ge J C, Jia Q Y, Liu W M, Guo L, Liu Q Y, Lan M H, Zhang H Y, Meng X M, Wang P F. Adv. Mater., 2015, 27:4169.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[6] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[7] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[8] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[9] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[10] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[11] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[12] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[13] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[14] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[15] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.