中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1523-1530 DOI: 10.7536/PC150534 Previous Articles   Next Articles

• Review and comments •

Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots

Yao Qiuhong1, Lin Liping2, Zhao Tingting1, Chen Xi3*   

  1. 1. Xiamen Huaxia University, Xiamen 361024, China;
    2. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    3. Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No.21375112) and the Program of Science and Technology of Xiamen for University Innovation(No.3502Z20143025).
PDF ( 2015 ) Cited
Export

EndNote

Ris

BibTeX

Luminescent graphene quantum dots(GQDs) display excellent physicochemical properties, which have ignited tremendous and increasing research interest of researchers from different fields. However, there are still some limitations including low quantum yield, less active sites and unsatisfactory selectivity, which impede their wide applications. As research continues, doping GQDs with heteroatoms has been considered as an effective strategy to address the above problems. In this review, we summarize the preparation methods, physicochemical properties and applications of heteroatom-doped GQDs. There are two kinds of heteroatom-doped GQDs including single-doped GQDs(B, N, S, F, Cl, et al.) and co-doped GQDs(B,N or N,P or N,S co-doping). The introduced heteroatoms changed the charge density and charge distribution of the GQDs, resulting in the enhancement of fluorescence quantum dots, more active sites and the appearances of new physicochemical properties including electrocatalytic activity and intrinsic peroxidase-like catalytic activity. We also give a perspective on the subsequent development and promising applications of heteroatom-doped GQDs.

Contents
1 Introduction
2 Preparation methods
2.1 Preparation of single-doped graphene quantum dots
2.2 Preparation of co-doped graphene quantum dots
3 Physicochemical properties of heteroatom-doped graphene quantum dots
3.1 Photoluminescence
3.2 Electrochemiluminescence
3.3 Catalytic property
4 Applications
4.1 Applications in biological field
4.2 Applications in environmental field
4.3 Applications in energy-related field
5 Conclusion and prospect

CLC Number: 

[1] Zhang Z, Zhang J, Chen N, Qu L. Energy Environ. Sci., 2012, 5(10):8869.
[2] Zhu S J, Tang S J, Zhang J H, Yang B. Chem. Commun., 2012, 48(38):4527.
[3] Li L, Rong M, Luo F, Chen D, Wang Y, Chen X. Trends Anal. Chem., 2014, 54:83.
[4] Zhou X J, Guo S W, Zhang J Y. Chem. Phys. Chem., 2013, 14(12):2627.
[5] Dai Y, Long H, Wang X, Wang Y, Gu Q, Jiang W, Wang Y, Li C, Zeng T H, Sun Y, Zeng J. Part. Part. Syst. Charact., 2014, 31(5):597.
[6] Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20):7067.
[7] Zhang L, Zhang Z Y, Liang R P, Li Y H, Qiu J D. Anal. Chem., 2014, 86(9):4423.
[8] Fan Z T, Li Y C, Li X H, Fan L Z, Zhou S X, Fang D C, Yang S H. Carbon, 2014, 70:149.
[9] Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Lett., 2014, 595/596:203.
[10] Qian Z S, Shan X Y, Chai L J, Ma J J, Chen J R, Feng H. ACS Appl. Mater. Interfaces, 2014, 6(9):6797.
[11] Wu Z L, Gao M X, Wang T T, Wan X Y, Zheng L L, Huang C Z. Nanoscale, 2014, 6(7):3868.
[12] Ju J, Zhang R, He S, Chen W. RSC Adv., 2014, 4(94):52583.
[13] Cai F, Liu X, Liu S, Liu H, Huang Y. RSC Adv., 2014, 4(94):52016.
[14] Ju J, Chen W. Biosens. Bioelectron., 2014, 58:219.
[15] Lin L P, Rong M C, Lu S S, Song X H, Zhong Y X, Yan J W, Wang Y R, Chen X. Nanoscale, 2015, 7(5):1872.
[16] Zhu X, Zuo X, Hu R, Xiao X, Liang Y, Nan J. Mater. Chem. Phys., 2014, 147(3):963.
[17] Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, Zheng J, Huang N, Gu Y, Shu C. Nanoscale, 2013, 5(3):1137.
[18] Hu C F, Liu Y L, Yang Y H, Cui J H, Huang Z R, Wang Y L, Yang L F, Wang H B, Xiao Y, Rong J H. J. Mater. Chem. B, 2013, 1(1):39.
[19] Tang L B, Ji R B, Li X M, Bai G X, Liu C P, Hao J H, Lin J Y, Jiang H X, Teng K S, Yang Z B, Lau S P. ACS Nano, 2014, 8(6):6312.
[20] Qian Z S, Zhou J, Chen J R, Wang C, Chen C C, Feng H. J. Mater. Chem., 2011, 21(44):17635.
[21] Li M, Wu W B, Ren W C, Cheng H M, Tang N J, Zhong W, Du Y W. Appl. Phys. Lett., 2012, 101(10):103107.
[22] Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Wang Y R, Jiang Y Q, Chen X. Anal. Chim. Acta, 2015, 869:89.
[23] Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1):15.
[24] Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Nano Lett., 2013, 13(6):2436.
[25] Xu H, Zhou S, Xiao L, Wang H, Li S, Yuan Q. J. Mater. Chem. C, 2015, 3(2):291.
[26] Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y. Microchim. Acta, 2014, 182(3/4):763.
[27] Li Q Q, Zhang S, Dai L M, Li L S. J. Am. Chem. Soc., 2012, 134(46):18932.
[28] Qu D, Zheng M, Zhang L G, Zhao H F, Xie Z G, Jing X B, Haddad R E, Fan H Y, Sun Z C. Sci. Rep., 2014, 4:5294.
[29] Li S H, Li Y C, Cao J, Zhu J, Fan L Z, Li X H. Anal. Chem., 2014, 86(20):10201.
[30] Li X, Lau S P, Tang L, Ji R, Yang P. Nanoscale, 2014, 6(10):5323.
[31] Yang S, Sun J, He P, Deng X, Wang Z, Hu C, Ding G, Xie X. Chem. Mater., 2015, 27(6):2004.
[32] Sun H J, Ji H W, Ju E G, Guan Y J, Ren J S, Qu X G. Chem. Eur. J., 2015, 21(9):3791.
[33] Feng Q, Cao Q Q, Li M, Liu F C, Tang N J, Du Y W. Appl. Phys. Lett., 2013, 102(1):013111.
[34] Gong P, Yang Z, Hong W, Wang Z, Hou K, Wang J, Yang S. Carbon, 2015, 83:152.
[35] Zhao J H, Tang L B, Xiang J Z, Ji R B, Yuan J, Zhao J, Yu R Y, Tai Y J, Song L Y. Appl. Phys. Lett., 2014, 105(11):111116.
[36] Li X M, Lau S P, Tang L B, Ji R B, Yang P Z. J. Mater. Chem. C, 2013, 1(44):7308.
[37] Fei H L, Ye R Q, Ye G L, Gong Y J, Peng Z W, Fan X J, Samuel E L, Ajayan P M, Tour J M. ACS Nano, 2014, 8(10):10837.
[38] Ananthanarayanan A, Wang Y, Routh P, Sk M A, Than A, Lin M, Zhang J, Chen J, Sun H, Chen P. Nanoscale, 2015, 17(7):8159.
[39] Qu D, Zheng M, Du P, Zhou Y, Zhang L G, Li D, Tan H Q, Zhao Z, Xie Z G, Sun Z C. Nanoscale, 2013, 5(24):12272.
[40] Zhang B, Gao H, Li X. New J. Chem., 2014, 38(9):4615.
[41] Du X J, Jiang D, Liu Q, Zhu G B, Mao H P, Wang K. Analyst, 2015, 140(4):1253.
[42] Liu Y, Wu P Y. ACS Appl. Mater. Interfaces, 2013, 5(8):3362.
[43] Yeh T F, Teng C Y, Chen S J, Teng H. Adv. Mater., 2014, 26(20):3297.
[44] Zhao Y, Liu Q, Shakoor S, Gong J R, Wang D. Toxicol. Res., 2015, 4(2):270.
[45] Chen W, Ju J. Anal. Chem., 2015, 87(3):1903.
[46] Tam T V, Trung N B, Kim H R, Chung J S, Choi W M. Sensor. Actuat. B:Chem., 2014, 202:568.
[47] Jiang D, Zhang Y, Chu H, Liu J, Wan J. Chen M. RSC Adv., 2014, 4(31):16163.
[48] Saidi W A. J. Phys. Chem. Lett., 2013, 4(23):4160.
[1] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[2] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[3] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[4] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[5] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[6] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[7] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[8] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[9] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[10] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[11] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[12] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.
[13] Zheng Na, Jie Suyun, Li Bogeng. Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene [J]. Progress in Chemistry, 2016, 28(5): 665-672.
[14] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[15] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.