中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1781-1792 DOI: 10.7536/PC140739 Previous Articles   Next Articles

• Review •

Photo Properties and Applications of Single Quantum Dots

Shi Xingbo*1, Wen Chao1, Fu Zhaodi2, Deng Fangming1, Zheng Shu1, Liu Qiuyun1   

  1. 1. Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
    2. Analytical Testing Laboratory, Changsha Research Institute of Mining and Metallurgy CO., LTD., Changsha 410012, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 31301484) and the Youth Foundation of Hunan Agricultural University(12YJ09)

PDF ( 3038 ) Cited
Export

EndNote

Ris

BibTeX

As novel fluorescent nanomaterials, quantum dots (QDs) have played important roles in many fields, such as chemical analysis, biology sensor, molecular imaging, owing to their excellent optical properties. Studies on the properties of single quantum dots can help to find new experimental phenomenology which can't be found in the ensemble-approach, provide a mentality to improve the properties of quantum dots, contribute to a better application of quantum dots in various fields. In this review, identifications criterion of single quantum dots, photo-properties (such as fluorescence enhancement, bleaching, blinking, bluing, etc.) of single quantum dots, and quantum dots application (such as single quantum dots tracking, single quantum dots biosensor, super-localization technology) at single nanoparticle levels are commented. The challenges and existing problems of application of single quantum dots are summarized. In the future, synthesis in quantum dots should simultaneously satisfy many excellent photo-properties, including small size, high quantum yield, non-blinking, lager blue shift range, no-biotoxicty. Meanwhile, plasmonic quantum dots that not only exhibit strong fluorescence, but also become excellent probes for surface plasmon scattering, are another significant research field.

Contents
1 Introduction
2 Single molecule/nanoparticle detection
3 Photo-properties of single quantum dots
3.1 Fluorescence enhancement and bleaching
3.2 Blinking
3.3 Spectral blue shift
4 Application of quantum dots at single nanoparticle level
4.1 Single quantum dots tracking
4.2 Single quantum dots biosensor
4.3 Quantum dots in super-localization technology
4.4 Other application
5 Conclusion and outlook

CLC Number: 

[1] Moerner W E, Fromm D P. Rev. Sci. Instrum., 2003, 74: 3597.
[2] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281: 2013.
[3] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Methods, 2008, 5: 763.
[4] Baba K, Nishida K. Theranostics, 2012, 2: 655.
[5] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. Nat. Biotechnol., 2004, 22: 969.
[6] Biju V, Itoh T, Ishikawa M. Chem. Soc. Rev., 2010, 39: 3031.
[7] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4: 435.
[8] Shao L, Gao Y, Yan F. Sensors, 2011, 11: 11736.
[9] Wang C, Gao X, Su X G. Anal. Bioanal. Chem., 2010, 397: 1397.
[10] Zrazhevskiy P, Sena M, Gao X H. Chem. Soc. Rev., 2010, 39: 4326.
[11] Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Chem. Rev., 2010, 110: 6873.
[12] Wu P, Yan X P. Chem. Soc. Rev., 2013, 42: 5489.
[13] Freeman R, Willner I. Chem. Soc. Rev., 2012, 41: 4067.
[14] 刘晓君(Liu X J), 涂洋(Tu Y), 盖宏伟(Gai H W). 化学进展(Progress in Chemistry), 2013, 25: 370.
[15] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E. Nature, 1996, 383: 802.
[16] Lee S F, Osbome M A. J. Am. Chem. Soc., 2007, 129: 8936.
[17] Van Sark W, Frederix P, Bol A A, Gerritsen H C, Meijerink A. Chemphyschem, 2002, 3: 871.
[18] Lee S F, Osborne M A. Chemphyschem, 2009, 10: 2174.
[19] Cordero S R, Carson P J, Estabrook R A, Strouse G F, Buratto S K. J. Phys. Chem. B, 2000, 104: 12137.
[20] Van Sark W, Frederix P, van den Heuvel D J, Gerritsen H C, Bol A A, van Lingen J N J, Donega C D, Meijerink A. J. Phys. Chem. B, 2001, 105: 8281.
[21] Chen H P, Gai H W, Yeung E S. Chem. Commun., 2009, 1676.
[22] Shi X B, Meng X X, Sun L C, Liu J H, Zheng J, Gai H W, Yang R H, Yeung E S. Lab Chip, 2010, 10: 2844.
[23] Vela J, Htoon H, Chen Y, Park Y S, Ghosh Y, Goodwin P M, Werner J H, Wells N P, Casson J L, Hollingsworth J A. J. Biophotonics, 2010, 3: 706.
[24] Jin Y, Gao X. Nat. Nanotechnol., 2009, 4: 571.
[25] Smith A M, Duan H W, Rhyner M N, Ruan G, Nie S M. Phys. Chem. Chem. Phys., 2006, 8: 3895.
[26] Uematsu T, Maenosono S, Yamaguchi Y. Appl. Phys. Lett., 2006, 89: 031910.
[27] Myung N, Bae Y, Bard A J. Nano Lett., 2003, 3: 747.
[28] Chon J W M, Zijlstra P, Gu M, van Embden J, Mulvaney P. Appl. Phys. Lett., 2004, 85: 5514.
[29] Asami H, Abe Y, Ohtsu T, Kamiya I, Hara M. J. Phys. Chem. B, 2003, 107: 12566.
[30] Javier A, Strouse G F. Chem. Phys. Lett., 2004, 391: 60.
[31] Bao H B, Gong Y J, Li Z, Gao M Y. Chem. Mater., 2004, 16: 3853.
[32] Li Y Q, Guan L Y, Zhang H L, Chen J, Lin S, Ma Z Y, Zhao Y D. Anal. Chem., 2011, 83: 4103.
[33] Ray K, Badugu R, Lakowicz J R. J. Am. Chem. Soc., 2006, 128: 8998.
[34] Lu L, Chen D, Sun F, Ren X, Han Z, Guo G. Chem. Phys. Lett., 2010, 492: 71.
[35] Jin S, DeMarco E, Pellin M J, Farha O K, Wiederrecht G P, Hupp J T. J. Phys. Chem. Lett., 2013, 4: 3527.
[36] Castello Serrano I, Vazquez-Vazquez C, Matas Adams A, Stoica G, Correa-Duarte M A, Palomares E, Alvarez-Puebla R A. RSC Adv., 2013, 3: 10691.
[37] Ma X, Fletcher K, Kipp T, Grzelczak M P, Wang Z, Guerrero-Martinez A, Pastoriza-Santos I, Kornowski A, Liz-Marzan L M, Mews A. J. Phys. Chem. Lett., 2011, 2: 2466.
[38] Fu Y, Zhang J, Lakowicz J R. Chem. Commun., 2009, 313.
[39] Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M. Nano Lett., 2002, 2: 1449.
[40] Gueroui Z, Libchaber A. Phys. Rev. Lett., 2004, 93: 166108.
[41] Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. J. Phys. Chem. C, 2014, 118: 8514.
[42] Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L, de Vittorio M, Calabi F, Cingolani R, Rinaldi R. Nat. Nanotechnol., 2006, 1:126.
[43] LeBlanc S J, McClanahan M R, Jones M, Moyer P J. Nano Lett., 2013, 13: 1662.
[44] Matsuda K, Ito Y, Kanemitsu Y. Appl. Phys. Lett., 2008, 92: 211911.
[45] Kuno M, Fromm D P, Johnson S T, Gallagher A, Nesbitt D J. Phys. Rev. B, 2003, 67: 125304.
[46] Verberk R, van Oijen A M, Orrit M. Phys. Rev. B, 2002, 66: 233202.
[47] Tang J, Marcus R A. Phys. Rev. Letters, 2005, 95: 107401.
[48] Cherniavskaya O, Chen L W, Brus L. J. Phys. Chem. B, 2004, 108: 4946.
[49] Frantsuzov P A, Marcus R A. Phys. Rev. B, 2005, 72:155321.
[50] Schwartz O, OronD. Israel J. Chem., 2012, 52: 992.
[51] Hohng S, Ha T. J. Am. Chem. Soc., 2004, 126: 1324.
[52] Hollingsworth J A. Chem. Mat., 2013, 25: 1318.
[53] Wang X Y, Ren X F, Kahen K, Hahn M A, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg G E, Efros A L, Krauss T D. Nature, 2009, 459: 686.
[54] Ha T. Nature, 2009, 459: 649.
[55] Dong C, Liu H, Zhang A, Ren J. Chem. Eur. J., 2014, 20: 1940.
[56] Zhang A, Dong C, Liu H, Ren J. J. Phys. Chem. C, 2013, 117: 24592.
[57] Dabbousi B O, Rodriguez Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101: 9463.
[58] Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P, Dubertret B. Nat. Mater., 2008, 7: 659.
[59] Chen Y, Vela J, Htoon H, Casson J L, Werder D J, Bussian D A, Klimov V I, Hollingsworth J A. J. Am. Chem. Soc., 2008, 130: 5026.
[60] Ghosh Y, Mangum B D, Casson J L, Williams D J, Htoon H, Hollingsworth J A. J. Am. Chem. Soc., 2012, 134: 9634.
[61] Mahler B, Lequeux N, Dubertret B. J. Am. Chem. Soc., 2010, 132: 953.
[62] Van Embden J, Jasieniak J, Mulvaney P. J. Am. Chem. Soc., 2009, 131: 14299.
[63] Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X. J. Am. Chem. Soc., 2014, 136: 179.
[64] Dennis A M, Mangum B D, Piryatinski A, Park Y S, Hannah D C, Casson J L, Williams D J, Schaller R D, Htoon H, Hollingsworth J A. Nano Lett., 2012, 12: 5545.
[65] Jones M, Nedeljkovic J, Ellingson R J, Nozik A J, Rumbles G. J. Phys. Chem. B, 2003, 107: 11346.
[66] Nazzal A Y, Wang X Y, Qu L H, Yu W, Wang Y J, Peng X G, Xiao M. J. Phys. Chem. B, 2004, 108: 5507.
[67] Wang Y, Tang Z Y, Correa-Duarte M A, Pastoriza-Santos I, Giersig M, Kotov N A, Liz-Marzan L M. J. Phys. Chem. B, 2004, 108: 15461.
[68] Empedocles S A, Bawendi M G. J. Phys. Chem. B, 1999, 103: 1826.
[69] Liu L P, Peng Q, Li Y D. Inorg. Chem., 2008, 47: 3182.
[70] Galian R E, de la Guardia M, Perez-Prieto J. J. Am. Chem. Soc., 2009, 131: 892.
[71] Hay K X, Waisundara V Y, Zong Y, Han M Y, Huang D J. Small, 2007, 3: 290.
[72] Bonneau S, Dahan M, Cohen L D. LEEE T. Image Process., 2005, 14: 1384.
[73] Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G. Nat. Methods, 2008, 5: 695.
[74] Keller A M, Ghosh Y, DeVore M S, Phipps M E, Stewart M H, Wilson B S, Lidke D S, Hollingsworth J A, Werner J H. Adv. Funct. Mater., 2014, DOI: 10.1002/adfm. 201400349.
[75] Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Science, 2003, 302: 442.
[76] Bouzigues C, Morel M, Triller A, Dahan M. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 11251.
[77] Nechyporuk-Zloy V, Stock C, Schillers H, Oberleithner H, Schwab A. Am. J. Physiol. Cell Ph., 2006, 291: C266.
[78] Crane J M, van Hoek A N, Skach W R, Verkman A S. Mol. Biol. Cell, 2008, 19: 3369.
[79] Serge A, Bertaux N, Rigneault H, Marguet D. Nat. Methods, 2008, 5: 687.
[80] Pinaud F, Michalet X, Iyer G, Margeat E, Moore H P, Weiss S. Traffic, 2009, 10: 691.
[81] Ohmachi M, Komori Y, Iwane A H, Fujii F, Jin T, Yanagida T. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 5294.
[82] Hennig S, van de Linde S, Heilemann M, Sauer M. Nano Lett., 2009, 9: 2466.
[83] Watanabe T M, Fujii F, Jin T, Umemoto E, Miyasaka M, Fujita H, Yanagida T. Biophys. J., 2013, 105: 555.
[84] Zhang C Y, Yeh H C, Kuroki M T, Wang T H. Nat. Mater., 2005, 4: 826.
[85] Zhang C Y, Johnson L W. Anal. Chem., 2009, 81: 3051.
[86] Long Y, Zhang L F, Zhang Y, Zhang C Y. Anal. Chem., 2012, 84: 8846.
[87] Zhang Y, Zhang C Y. Anal. Chem., 2012, 84: 224.
[88] Zhang C Y, Hu J. Anal. Chem., 2010, 82: 1921.
[89] Song Y K, Zhang Y, Wang T H. Small, 2013, 9: 1096.
[90] Opperwall S R, Divakaran A, Porter E G, Christians J A, DenHartigh A J, Benson D E. ACS Nano, 2012, 6: 8078.
[91] Zhou J, Wang Q X, Zhang C Y. J. Am. Chem. Soc., 2013, 135: 2056.
[92] Zeng Y P, Zhu G C, Yang X Y, Cao J, Jing Z L, Zhang C Y. Chem. Commun., 2014, 50: 7160.
[93] Yeh H C, Ho Y P, Wang T H. Nanomedicine, 2005, 1: 115.
[94] Yeh H C, Ho Y P, Shih I M, Wang T H. Nucleic Acids Res., 2006, 34: e35.
[95] Zinchuk V, Zinchuk O. Curr. Protoc. Cell Biol., 2008, Chapter 4: Unit 4.19.
[96] Comeau J W, Costantino S, Wiseman P W. Biophys. J., 2006, 91: 4611.
[97] Liu J B, Yang X H, Wang K M, Wang Q, Liu W, Wang D. Nanoscale, 2013, 5: 11257.
[98] Ho Y P, Kung M C, Yang S, Wang T H. Nano Lett., 2005, 5: 1693.
[99] Hell S W. Science, 2007, 316: 1153.
[100] Qu X H, Wu D, Mets L, Scherer N F. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 11298.
[101] Gordon M P, Ha T, Selvin P R. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 6462.
[102] Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photonics Rev., 2009, 3: 180.
[103] Chien F C, Kuo C W, Chen P L. Analyst, 2011, 136: 1608.
[104] Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 22287.
[105] Hoyer P, Staudt T, Engelhardt J, Hell S W. Nano Lett., 2011, 11: 245.
[106] Lagerholm B C, Averett L, Weinreb G E, Jacobson K, Thompson N L. Biophys. J., 2006, 91: 3050.
[107] Lidke K A, Rieger B, Jovin T M, Heintzmann R. Opt. Express, 2005, 13: 7052.
[108] Thompson R E, Larson D R, Webb W W. Biophys. J., 2002, 82: 2775.
[109] Antelman J, Wilking-Chang C, Weiss S, Michalet X. Nano Lett., 2009, 9: 2199.
[110] Agrawal A, Deo R, Wang G D, Wang M D, Nie S M. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 3298.
[111] Shi X B, Xie Z Q, Song Y H, Tan Y J, Yeung E S, Gai H W. Anal. Chem., 2012, 84: 1504.
[112] Huang B, Wang W, Bates M, Zhuang X. Science, 2008, 319: 810.
[113] Bulyshev A, Amzajerdian F, Roback V E, Hines G, Pierrottet D, Reisse R. Appl. Opt., 2014, 53: 2583.
[114] Biteen J S, Goley E D, Shapiro L, Moerner W E. Chemphyschem, 2012, 13: 1007.
[115] Wang Y, Fruhwirth G, Cai E, Ng T, Selvin P R. Nano Lett., 2013, 13: 5233.
[116] Heller M J. Annu. Rev. Biomed. Eng., 2002, 4: 129.
[117] Tan P K, Downey T J, Spitznagel E L, Xu P, Fu D, Dimitrov D S, Lempicki R A, Raaka B M, Cam M C. Nucleic Acids Res., 2003, 31: 5676.
[118] Naef F, Socci N D, Magnasco M. Bioinformatics, 2003, 19: 178.
[119] Ji H, Davis R W. Nat. Biotech., 2006, 24: 1112.
[120] Patterson T A, Obenhofer E K, Fulmer-Smentek S B, Collins P J, Chu T M, Bao W, Fang H, Kawasaki E S, Hager J, Tikhonova I R, Walker S J, Zhang L, Hurban P, de Longueville F, Fuscoe J C, Tong W, Shi L, Wolfinger R D. Nat. Biotech., 2006, 24: 1140.
[121] Hesse J, Jacak J, Kasper M, Regl G, Eichberger T, Winklmayr M, Aberger F, Sonnleitner M, Schlapak R, Howorka S, Muresan L, Frischauf A M, Schutz G J. Genome Res., 2006, 16: 1041.
[122] Clarke S, Pinaud F, Beutel O, You C, Piehler J, Dahan M. Nano Lett., 2010, 10: 2147.
[123] Uddayasankar U, Zhang Z F, Shergill R T, Gradinaru C C, Krull U J. Bioconjugate Chem., 2014, 25: 1342.

[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[7] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[8] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[9] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[10] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[11] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[12] Dai Yingping, Ji Zhengping, Wang Chengyin, Hu Xiaoya, Wang Guoxiu. Microcantilever Biosensors [J]. Progress in Chemistry, 2016, 28(5): 697-710.
[13] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[14] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[15] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.