中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (2/3): 300-317 DOI: 10.7536/PC160929 Previous Articles   Next Articles

• Review •

Design Strategies and Applications of Quantum Dots Fluorescent Sensing

Xianyun Hu1,2*, Qingsheng Guo1, Yuqian Liu1, Qingjiang Sun1*, Tiehong Meng2, Ruguo Zhang2   

  1. 1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
    2. Qiannan Medical College for Nationalities, Duyun 558000, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 21545006,21375015), the National Science Foundation of Guizhou Province (No. 2015GZ48861, 2016GZ13752), the Fundamental Research Funds for the Central Universities (No. KYLX0187) and the Scientific Research fund of Qiannan Medical College for Nationalities (No.QNYZ201601).
PDF ( 977 ) Cited
Export

EndNote

Ris

BibTeX

Quantum dots (QDs), as novel fluorescent nanomaterials, have been widely used in fluorescent sensing and visual detection with high sensitivity and specificity analysis of target, owing to their excellent optical and electrical properties. The review addresses the surface functionalization of QDs that able to the use of sensing, and discusses different sensing mechanism including fluorescence resonance energy transfer (FRET), electron transfer (CT), direct fluorescent sensing, bioluminescence resonance energy transfer (BRET), chemiluminescence resonance energy transfer (CRET) and electrochemiluminescence (ECL), being applied in the different sensing systems. The challenges and existing problems of QDs fluorescent sensing application are summarized. Meanwhile fluorescent sensing of QDs will develop in the field of the good biocompatibility, real time visualization of sensing in cells or in vivo, multiplexed detection in complex systems and the function of sensing with logic-gate operations in the future.

Contents
1 Introduction
2 Photo-properties of quantum dots
3 Surface chemistry and conjugates of quantum dots
4 Mechanisms and design strategies of quantum dots fluorescence sensing
4.1 Fluorescence resonance energy transfer
4.2 Electron transfer
4.3 Direct fluorescent sensing
4.4 Bioluminescence resonance energy transfer
4.5 Chemiluminescence resonance energy transfer
4.6 Electrochemiluminescence
5 Conclusion

CLC Number: 

[1] Biju V, Itoh T, Ishikawa M. Chem. Soc. Rev., 2010, 39:3031.
[2] Alivisatos A P. Science, 1996, 271:933.
[3] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404:59.
[4] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105:1025.
[5] Chaudhuri R G, Paria S. Chem. Rev., 2012, 112:2373.
[6] Klostrane J M, Chan W C W. Adv. Mater., 2006, 18:1953.
[7] Rosenthal S J, Chang J C, Kovtun O, McBride J R, Tomlinson I D. Chem. Biol., 2011, 18:10.
[8] Alivisatos A P, Gu W W, Larabell C. Annu. Rev. Biomed. Eng., 2005, 7:55.
[9] Probst C E, Zrazhevskiy P, Bagalkot V, Gao X H. Adv. Drug Deliv. Rev., 2013, 65:703.
[10] Fu A H, Gu W W, Larabell C, Alivisatos A P. Curr. Opin. Neurobiol., 2005, 15:568.
[11] Zrazhevskiy P, Sena M, Gao X H. Chem. Soc. Rev., 2010, 39:4326.
[12] Walling M A, Novak J A, Shepard J R E. Int. J. Mol. Sci., 2009, 10:441.
[13] Sun J J, Goldys E M. J. Phys. Chem. C, 2008, 112:9261.
[14] Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15:2854.
[15] Baird G S, Zacharias D A, Tsien R Y. Proc. Natl. Acad. Sci., 2000, 97:11984.
[16] Medintz I L, Tetsuouyeda H, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4:435.
[17] Wu X, Liu H, Liu J, Haley K, Treadway J, Larson J, Ge N, Peale F, Bruchez M. Nat. Biotechnol., 2003, 21:41.
[18] Bruchez J M, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281:2013.
[19] Chan W C W, Nie S. Science, 1998, 281:2016.
[20] Sing M N, Masilamany K, Ramaier N. RSC Adv., 2016, 6:21624.
[21] Zhang C, Yeh H, Kuroki M, Wang T. Nat. Mater., 2005, 4:826.
[23] Timothy T, Ruckh C G, Skipwith W C, Alexander W, Senko V B, Polina O, Heather A C. ACS Nano, 2016, 10:4020.
[24] Richard M G, Ryan C B. Anal. Chem., 2016, 88:431.
[25] Sharon E, Freeman R, Willner I. Anal. Chem., 2010, 82:7073.
[26] Dong H F, Gao W C, Yan F, Ji H X, Ju H X. Anal. Chem., 2010, 82:5511.
[27] Vasudevanpillai B, Tamitake I, Mitsuru I. Chem. Soc. Rev., 2010, 39:3031.
[28] Gao X, Cui Y, Levenson R, Chung L, Nie S. Nat. Biotechnol., 2004, 22:969.
[29] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[30] Somers R C, Bawendi M G, Nocera D G. Chem. Soc. Rev., 2007, 36:579.
[31] Sun Q J, Guru S, Dai L M, Michael C, Angela C, Rajesh N, James G, Wang Y Q. ACS Nano, 2009, 3:737.
[32] Carey G H, Abdelhady A L, Ning Z, Thon S M, Bakr O M, Sargent E H. Chem. Rev., 2015, 115:12732.
[33] Kim M R, Ma D. J. Phys. Chem. Lett., 2015, 6:85.
[34] Sun Q J, Wang Y A, Li L S, Wang D, Zhu T, Xu J, Yang C, Li Y. Nat. Photonics, 2007, 1:717.
[35] Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Chem. Rev., 2010, 110:389.
[36] Algar W R, Tavares A J, Krull U J. Anal. Chim. Acta, 2010, 673:1.
[37] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. J. Am. Chem. Soc., 2000, 122:12142.
[38] Breus V V, Heyes C D, Tron K, Nienhaus G U. ACS Nano, 2009, 3:2573.
[39] Liu W, Choi H S, Zimmer J P, Tanaka E, Frangioni J V, Bawendi M. J. Am. Chem. Soc., 2007, 129:14530.
[40] Dif A, Boulmedais F, Pinot M, Roullier V, Baudy M, Coquelle F M, Clarke S, Neveu P, Vignaux F, Le Borgne R, Dahan M, Gueroui Z, Marchi-Artzner V. J. Am. Chem. Soc., 2009, 131:14738.
[41] Susumu K, Uyeda H T, Medintz I L, Pons T. J. Am. Chem. Soc., 2007, 129:13987.
[42] Mei B C, Susumu K, Medintz I L, Delehanty J B, Mountziaris T J, Mattoussi H. J. Mater. Chem., 2008, 18:4949.
[43] Liu W, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G. J. Am. Chem. Soc., 2008, 130:1274.
[44] Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach A L, Keller S, Radler J, Natile G, Parak W J. Nano Lett., 2004, 4:703.
[45] Valencia P M, Basto P A, Zhang L, Rhee M, Langer R, Farokhzad O C, Karnik R. ACS Nano, 2010, 4:1671.
[46] Liu W, Greytak A B, Lee J, Wong C R, Park J, Marshall L F, Jiang W, Curtin P N, Ting A Y, Nocera D G, Fukumura D, Jain R K, Bawendi M G. J. Am. Chem. Soc., 2010, 132:472.
[47] Pons T, Uyeda H T, Medintz I L, Mattoussi H. J. Phys. Chem. B, 2006, 110:20308.
[48] Wu P, He Y, Wang H F, Yan X P. Anal. Chem., 2010, 82:1427.
[49] Ji X, Zheng J, Xu J, Rastogi V K, Chen T C, De Frank J J, Leblanc R M. J. Phys. Chem. B, 2005, 109:3793.
[50] Goldman E R, Medintz I L, Whitley J L, Hayhurst A, Clapp A R, Uyeda H T, Deschamps J R, Lassman M E, Mattoussi H. J. Am. Chem. Soc., 2005, 127:6744.
[51] Wei Q, Lee M, Yu X, Lee E K, Seong G H, Choo J, Cho Y W. Anal. Biochem., 2006, 358:31.
[52] Pathak S, Davidson M C, Silva G A. Nano Lett., 2007, 7:1839.
[53] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. J. Am. Chem. Soc., 2000, 122:12142.
[54] Tang B, Cao L, Xu K, Zhuo L, Ge J, Li Q, Yu L. Chem. Eur. J., 2008, 14:3637.
[55] Deng Z, Samanta A, Nangreave J, Yan H, Liu Y. J. Am. Chem. Soc., 2012, 134:17424.
[56] Prokup A, Deiters A. Angew. Chem., Int. Ed., 2014, 53:13192.
[57] Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem. Int. Ed., 2012, 51:9020.
[58] Shlyahovsky B, Li Y, Lioubashevski O, Elbaz J, Willner I. ACS Nano, 2009, 3:1831.
[59] Wu C, Wan S, Hou W, Zhang L, Xu J, Cui C, Wang Y, Hu J, Tan W. Chem. Commun., 2015, 51:3723.
[60] Pu F, Ren J, Qu X. Adv. Mater., 2014, 26:5742.
[61] Jung C, Ellington A D. Acc. Chem. Res., 2014, 47:1825.
[62] Seelig G, Soloveichik D, Zhang D Y, Winfree E. Science, 2006, 314:1585.
[63] Goldman E R, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. J. Am. Chem. Soc., 2002, 124:6378.
[64] Yao H, Zhang Y, Xiao F, Xia Z Y, Rao J. Angew. Chem., Int. Ed., 2007, 46:4346.
[65] Barat B, Sirk S J, Mc Cable K E, Li J, Lepin E J, Remenyi R, Koh A L, Olafsen T, Gambhir S S, Weiss S, Wu A M. Bioconjug. Chem., 2009, 20:1474.
[66] Fernández-Argüelles M T, Costa-Fernández J M, Pereiro R, Sanz-Medel A. Analyst, 2008, 133:444.
[67] Goldman E R, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. J. Am. Chem. Soc., 2002, 124:6378.
[68] Vu T Q, Maddipati R, Blute T A, Nehilla B J, Nusblat L, Desai T A. Nano Lett., 2005, 5:603.
[69] Lidke D S, Nagy P, Heintzmann R, Arndt-Jovin D J, Post J N, Grecco H E, Jares-Erijman E A, Jovin T M. Nat. Biotechnol., 2004, 22:198.
[70] Levy M, Cater S F, Ellington A D. Chem. Biol. Chem., 2005, 6:2163.
[71] Souvik C, Tan L P, Yao S Q. Nat. Protocol., 2006, 1:2386.
[72] Pan Z, Mora-Seró I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J. J. Am. Chem. Soc., 2014, 136:9203.
[73] Hines D A, Kamat P V. ACS Appl. Mater. Inter., 2014, 6:3041.
[74] Achermann M, Petruska M A, Crooker S A, Klimov V I. J. Phys. Chem. B, 2003, 107:13782.
[75] Steigermald M L, Brus L E. Acc. Chem. Res., 1990, 23:183.
[76] Freeman R, Willner B, Willner I. J. Phys. Chem. Lett., 2011, 2:2667.
[77] Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. Biosens. Bioelectron., 2015, 74:562.
[78] Curutchet C, Franceschetti A, Zunger A, Scholes G D. J. Phys. Chem. C, 2008, 112:13336.
[79] Yuan L, Lin W Y, Zheng K B, Zhu S S. Acc. Chem. Res., 2013, 46:1462.
[80] Frasco M F, Chaniotakis N. Anal. Bioanal. Chem., 2010, 396:229.
[81] Freeman R, Girsh J, Willner I. ACS Appl. Mater. Inter., 2013, 5:2815.
[82] Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, Fan C, Wang L. ACS Appl. Mater. Inter., 2014, 6:1152.
[83] Freeman R, Liu X, Willner I. Nano Lett., 2011, 11:4456.
[84] Kim J H, Chaudhary S, Ozkan M. Nanotechnology, 2007, 18:195105.
[85] Kim J H, Morikis D, Ozkan M. Sens. Actuat. B, 2004, 102:315.
[86] Cady N C, Strickland A D, Batt C A. Mol. Cell. Probe., 2007, 21:116.
[87] Jiang G, Susha A S, Lutich A A, Stefani F D, Feldmann J, Rogach A L. ACS Nano, 2009, 3:4127.
[88] Liao Y, Zhou X, Xing D. ACS Appl. Mater. Inter., 2014, 6:9988.
[89] Liu Y, Dong X, Chen P. Chem. Soc. Rev., 2012, 41:2283.
[90] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem., Int. Ed., 2009, 48:4785.
[91] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20:453.
[92] Zhang C, Xu J, Zhang S, Ji X, He Z. Chem. Eur. J. 2012, 18:8296.
[93] Medintz I L, Clapp A R, Brunel F M, Teiefenbrunn T, Uyeda H T, Chang E L, Deschamps J R, Dawson P E, Mattoussi H. Nat. Mater., 2006, 5:581.
[94] Levy M, Cater S F, Ellington A D. ChemBioChem, 2005, 6:2163.
[95] Chi C W, Lao Y H, Li Y S, Chen L C. Biosens. Bioelectron., 2011, 26:3346.
[96] Tyrakowski C M, Snee P T. Anal. Chem., 2014, 86:2380.
[97] 高桂园(Gao G Y),刘璐(Liu L),付璇(Fu X),杨冉(Yang R),屈凌波(Qu L B). 发光学报(Chin. J. Lumin.), 2012,33:911.
[98] Cheng A K, Su H, Wang Y A, Yu H Z. Anal. Chem., 2009, 81:6130.
[99] Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Mauro J M. Nat. Mater., 2003, 2:630.
[100] Shi Y P, Pan Y, Zhang H, Zhang Z M, Li M J, Yi C Q, Yang M S. Biosens. Bioelectron., 2014, 56:39.
[101] Hu B, Zhang L P, Chen M L, Wang J H. Biosens. Bioelectron., 2012, 32:82.
[102] Wang Y H, Gao D Y, Zhang P F, Gong P, Chen C, Gao G H, Cai L T. Chem. Commun., 2014, 50:811.
[103] Zhang Y M, Yang X J, Gao Z Q. RSC Adv., 2015, 5:21675.
[104] Heger Z, Cernei N, Krizkova S, Masarik M, Kopel P, Hodek P, Zitka O, Adam V, Kizek R. Sci. Rep., 2015, 5:1.
[105] Tang B, Cao L H, Xu K H, Zhuo L H, Ge J H, Li Q F, Yu L J. Chem. Eur. J., 2008, 14:3637.
[106] Revesz E, Lai E P C, De Rosa M C. J. Biomol. Struct. Dyn., 2007, 24:645.
[107] Xia Y S, Song L, Zhu C Q. Anal. Chem., 2011, 83:1401.
[108] Zhang K, Mei Q S, Guan G J, Liu B H, Wang S H, Zhang Z P. Anal. Chem., 2010, 82:9579.
[109] Guo J J, Zhang Y, Luo Y L, Shen F, Sun C Y. Talanta, 2014, 125:385.
[110] Wang X, Sheng P T, Zhou L P, Tong X, Shi L, Cai Q Y. Biosens. Bioelectron., 2014, 60:52.
[111] Hu B, Hu L L, Chen M L, Wang J H. Biosens. Bioelectron., 2013, 49:499.
[112] Page L E, Zhang X, Jawaid A M, Snee P T. Chem. Commun., 2011, 47:7773.
[113] Liu B Y, Zeng F, Wu G F, Wu S Z. Analyst, 2012, 137:3717.
[114] Wu L, Guo Q, Liu Y, Sun Q. Anal. Chem., 2015, 87:5318.
[115] Wu C S, Oo M K K, Fan X D. ACS Nano, 2010, 4:5897.
[116] Freeman R, Willner I. Chem. Soc. Rev., 2012, 41:4067.
[117] 梁佳然(Liang J R), 钟文英(Zhong W Y), 于俊生(Yu J S). 化学进展(Progress in Chemistry), 2008, 20:1385.
[118] 晋卫军(Jin W J). 化学传感器(Chemical Sensors), 2014, 34:1.
[119] 戚丽(Qi L), 张宝华(Zhang B H), 吴芳英(Wu F Y). 化学进展(Progress in Chemistry), 2010, 22:1077.
[120] Hu X Y, Zhu K, Guo Q, Liu Y, Ye M, Sun Q J. Anal. Chim. Acta, 2014, 812:191.
[121] Liu Y, Ye M, Ge Q, Qu X, Guo Q, Hu X Y, Sun Q J. Anal. Chem., 2016, 88:1768.
[122] Zhu K, Hu X Y, Ge Q, Sun Q J. Anal. Chim. Acta, 2014, 812:199.
[123] Zhang L, Zhu K, Ding T, Hu X Y, Sun Q J, Xu C. Analyst, 2013, 138:887.
[124] Medintz I L, Pons T, Trammell S A, Grimes A F, English D S, Blanco-Canosa J B, Dawson P E, Mattoussi H. J. Am. Chem. Soc., 2008, 130:16745.
[125] Raichlin S, Sharon E, Freeman R, Tzfati Y, Willner I. Biosens. Bioelectron., 2011, 26:4681.
[126] 黎舒怀(Li S H),陶慧林(Tao H L),徐铭泽(Xu M Z),覃亚福(Qin Y F). 分析化学(Chinese J. Anal. Chem.), 2012, 40:1450.
[127] Jessica V, Zhou X Y, Ma X D, Flessau S, Lin H, Schmittel M, Mews A. Angew. Chem., Int. Ed., 2010, 49:6865.
[128] Ruedas-Rama M J, Hall E A H. Anal. Chem., 2008, 80:8260.
[129] Cayuela A, Soriano M L, Carrión M C, Valcárcel M. Anal. Chim. Acta, 2014, 820:133.
[130] Malgorzata G M, Gilles C, Janina L. Journal of Luminescence, 2012, 132:987.
[131] Jin W J, Fernández-Argüelles M T, Costa-Fernández J M. Chem. Comm., 2005, 7:883.
[132] Liu X, Zhang N, Bing T, Shangguan D. Anal. Chem., 2014, 86:2289.
[133] 高楼军(Gao L J),赵艳(Zhao Y),孙雪花(Sun X H),柴红梅(Chai H M),陈露(Chen L). 分析试验室(Chinese Journal of Analysis Laboratory), 2012, 31:59.
[134] 申晨凡(Shen C F),张直峰(Zhang Z F),郭瑜桉(Guo Y A),闫桂琴(Yan G Q). 分析测试学报(Journal of Instrumental Analysis), 2016, 35:949.
[135] Liang J G, Ai X P, He Z K, Pang D W. Analyst, 2004, 129:619.
[136] 甘婷婷(Gan T T),张玉钧(Zhang Y J),赵南京(Zhao N J),肖雪(Xiao X),殷高方(Yin G F),石朝毅(Shi C Y). 光学学报(Acta Optica Sinica), 2013, 12:183.
[137] Zhang Y, Zhang Z, Yin D, Li J, Xie R, Yang W. ACS Appl. Mater. Inter., 2013, 5:9709.
[138] 汪乐余(Wang L Y),朱英贵(Zhu Y G),朱昌青(Zhu C Q),王伦(Wang L),宋海燕(Song H Y),李世珍(Li S Z),李兴江(Li X J). 分析化学(Chinese J. Anal. Chem.), 2002, 30:1352.
[139] Boute N, Jockers R, Issad T. Trends Pharmacol. Sci., 2002, 23:351.
[140] Huang X, Li L, Qian H, Dong C, Ren J. Angew. Chem., Int. Ed., 2006, 45:5140.
[141] 李雅林(Li Y L),白波(Bai B),陈京(Chen J). 中国生物化学与分子生物学报(Chinese Journal of Biochemistry and Molecular Biology), 2009, 25:1077.
[142] Xia Z, Rao J. Curr. Opin. Biotechnol., 2009, 20:37.
[143] Dacres H, Dumancic M M, Horne I, Trowell S C. Anal. Biochem., 2009, 385:194.
[144] Kumar M, Zhang D, Broyles D, Deo S K. Biosens. Bioelectron., 2011, 30:133.
[145] So M K, Xu C, Loening A M, Gambhir S S, Rao J. Nat. Biotechnol., 2006, 24:339.
[146] Xia Z, Xing Y, So M K, Koh A L, Sinclair R, Rao J. Anal. Chem., 2008, 80:8649.
[147] Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Angew. Chem., Int. Ed., 2007, 46:4346.
[148] Huang X, Ren J. Trac-trend. Anal. Chem., 2012, 40:77.
[149] Wang H Q, Li Y Q, Wang J H, Xu Q, Li X Q, Zhao Y D. Anal. Chim. Acta, 2008, 610:68.
[150] Huang X, Li L, Qian H, Dong C, Ren J. Angew. Chem., Int. Ed., 2006, 45:5140.
[151] Freeman R, Liu X, Willner I. J. Am. Chem. Soc., 2011, 133:11597.
[152] Richter M M. Chem. Rev., 2004, 104:3003.
[153] Miao W. Chem. Rev., 2008, 108:2506.
[154] Zhou J, Yang Y, Zhang C. Chem. Rev., 2015, 115:11669.
[155] Wu P, Hou X, Xu J, Chen H Y. Chem. Rev., 2014, 114:11027.
[156] Yang S, Liang J, Luo S, Liu C, Tang Y. Anal. Chem., 2013, 85:7720.
[157] Liu X, Jiang H, Lei J, Ju H. Anal. Chem., 2007, 79:8055.
[158] Wang X, Zhou Y, Xu J, Chen H. Adv. Funct. Mater., 2009, 19:1444.
[159] Zhou H, Han T, Wei Q, Zhang S. Anal. Chem., 2016, 88:2976.
[160] Zhou H, Liu J, Xu J, Chen H. Anal. Chem., 2011, 83:8320.
[161] Jie G, Wang L, Yuan J, Zhang S. Anal. Chem., 2011, 83:3873.
[162] Niu W, Zhu R, Cosnier S, Zhang X, Shan D. Anal. Chem. 2015, 87:11150.
[163] 石星波(Shi X B), 温超(Wen C), 符招弟(Fu Z D), 邓放明(Deng F M), 郑舒(Zheng S), 刘秋云(Liu Q Y). 化学进展(Progress in Chemistry), 2014, 26:1781.
[164] Wu P, Yan X P. Chem. Soc. Rev., 2013, 42:5489.
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[4] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[5] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[6] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[7] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[8] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[9] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[10] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[11] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[12] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[13] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[14] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[15] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.