中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1184-1194 DOI: 10.7536/PC170340 Previous Articles   Next Articles

• Review •

Stimuli Responsive Gradient Polymers

Anchao Feng, Xiangyu Pan, Xiaohu Wei, Anchao Feng*, San H. Thang*   

  1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21704001),the Fundamental Research Funds for the Central Universities (No. buctrc201724), and the Beijing Advanced Innovation Center for Soft Matter Science and Engineering.
PDF ( 943 ) Cited
Export

EndNote

Ris

BibTeX

Stimuli-responsive polymers have attracted much attention in recent years due to their unique properties. These polymers can respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals, and cause the change in the physical or chemical properties of the system. Gradient polymers form a new class of materials that come into existence with the advent of living polymerization techniques. Unlike random and block polymers, gradient polymers vary their monomer compositions gradually along molecular chains. Among them, amphiphilic gradient polymers which consist of hydrophilic units and hydrophobic units, can self-assemble to form various aggregates in selective solvents. Amphiphilic gradient polymers reveal many potential applications in different fields, such as supramolecular assemblies, smart coatings, networks or some combination of these possibilities. This article summarizes recent research progress on the synthesis of gradient polymers, such as living anionic polymerizations, controlled/living radical polymerizations (including nitroxide-mediated polymerization, atom transfer radical polymerization and reversible addition-fragmentation chain transfer polymerization) and ring opening polymerizations. The second part discusses their self-assembly and stimuli-responsive behaviors, especially for distinctive thermo-sensitivity and pH-sensitivity. In particular, the divergent stimuli responsive behaviors of aggregates self-assembled from amphiphilic block polymers and amphiphilic gradient polymers are discussed and compared in detail. The development prospect of this research field and its potential applications are discussed as well in the last part.
Contents
1 Introduction
2 Synthesis of gradient polymers
2.1 Living anionic polymerization
2.2 Nitroxide mediated polymerization
2.3 Atom transfer radical polymerization
2.4 Reversible addition-fragmentation chain transfer polymerization
2.5 Cationic ring opening polymerization
2.6 Others
3 Self-assembly methods of gradient polymers
4 Stimuli responsive property of gradient polymer aggregates
4.1 Temperature responsive property of gradient polymer aggregates
4.2 pH responsive property of gradient polymer aggregates
5 Conclusion

CLC Number: 

[1] Feng A C, Yuan J Y. Macromol. Rapid Commun., 2014, 35:767.
[2] Hu J M, Zhang G Y, Ge Z S, Liu S Y. Prog. Polym. Sci., 2014, 39:1096.
[3] Massoumi B, Poorgholy N, Jaymand M. Int. J. Polymer. Mater. Polymer. Biomater., 2017, 66:38.
[4] Kim D W, Kim E J, Lee J Y, Hong S S, Sung W Y, Lim N S, Park C G, Kim K M. J. Am. Chem. Soc., 2010, 132:9908.
[5] Huang J B, Zhang H, Yu Y, Chen Y, Wang D, Zhang G Q, Zhou G C, Liu J J, Sun Z G, Sun D X, Lu Y, Zhong Y Q. Biomater., 2014, 35:550.
[6] 梁嘉美(Liang J M), 冯岸超(Feng A C), 袁金颖(Yuan J Y). 化学进展(Prog. Chem.), 2015, 5:522.
[7] Rahikkala A, Aseyev V, Tenhu H, Kauppinen E I, Raula J. Biomacromolecules, 2015, 16:2750.
[8] Wu Y B, Wang L, Guo B L, Ma P X. J. Mater. Chem., 2014, 2:3674.
[9] Cho S J, Jung S M, Kang M, Shin H S, Youk J H. Polymer, 2015, 69:95.
[10] Sun C, Wang D Y, Zhang M H, Ni Y X, Shen X H, Song Y C, Geng Z M, Xu W M, Liu F, Mao C. Analyst, 2015, 140:797.
[11] Feng A C, Liang J L, Ji J Z, Dou J B, Wang S F, Yuan J Y. Scientific Reports, 2016, 6:23624.
[12] Strandman S, Zarembo A, Darinskii A A, Laurinmaki P, Butcher S J, Vuorimaa E, Lemmetyinen H, Tenhu H. Macromolecules, 2008, 41:1651.
[13] Yu K, Han Y C. Soft Matter, 2009, 5:759.
[14] Pakula T, Matyjaszewski K. Macromol. Theory Simul., 1996, 5:987.
[15] Geoffrey H, Ralph M. US 3265765, 1966.
[16] Matyjaszewski K, Ziegler M J, Arehart S V, Greszta D, Pakula T. J. Phys. Org. Chem., 2000, 13:775.
[17] Beginn U. Colloid Polym. Sci., 2008, 286:1465.
[18] Kim J K, Maisha K G, Zhou H Y, Nguyen S B T, Torkelson J M. Macromolecules, 2005, 38:5461.
[19] Kim J K, Zhou H Y, Nguyen S B T, Torkelson J M. Polymer, 2006, 47:5799.
[20] Lefay C, Save M, Charleux B, Magnet S. Aust. J. Chem., 2006, 59:544.
[21] Tao Y, Kim J K, Torkelson J M. Polymer, 2006, 47:6773.
[22] Sun D C, Cho J H. Polymer, 2015, 66:192.
[23] Zheng Z N, Gao X, Luo Y W, Zhu S P. Macromolecules, 2016, 49:2179.
[24] Stéphane J, Juan A G, Annevalérie R, Philippe L, Sylvie T, Leibler L. Macromolecules, 2007, 40:2432.
[25] Strandman S, Zhu X X. Prog. Polym. Sci., 2015, 42:154.
[26] Okabe S, Fuse C, Sugihara S, Aoshima S, Shibayama M. Phys. B:Condens. Matter, 2006, 385:756.
[27] Okabe S, Seno K, Kanaoka S, Aoshima S, Shibayama M. Macromolecules, 2006, 39:1592.
[28] Okabe S, Seno K, Kanaoka S, Aoshima S, Shibayama M. Polymer, 2006, 47:7572.
[29] Seno K I, Tsujimoto I, Kanaoka S, Aoshima S. J. Polym. Sci., Part A:Polym. Chem., 2008, 46:6444.
[30] Dragan E S, Loghin D F A, Cocarta A I, Doroftei M. React. Funct. Polym., 2016, 105:66.
[31] Lauber L, Santarelli J, Boyron O, Chassenieux C, Colombani O, Nicolai T. Macromolecules, 2017, 50:416.
[32] Niskanen J, Tenhu H. Polym. Chem., 2017, 8:220.
[33] Victor R, Woisel P, Hoogenboom R. Mater. Today, 2016, 19:44.
[34] Yuan W Z, Chen X N. RSC Advances, 2016, 6:6802.
[35] García-Juan H, Nogales A, Blasco E, Martínez J C, Šics I, Ezquerra T A, Piñol M, Oriol L. Eur. Polym. J., 2016, 81:621.
[36] Giulbudagian M, Rancan F, Klossek A, Yamamoto K, Jurisch J, Neto V C, Schrade P, Bachmann S, Rühl E, Blume-Peytavi U. J. Controlled Release, 2016, 243:323.
[37] Li H Y, Williams G R, Wu J Z, Lv Y, Sun X Z, Wu H L, Zhu L M. Int. J. Pharm., 2017, 517:135.
[38] Sun K, Xu M R, Zhou K C, Nie H L, Quan J, Zhu L M. Mater. Sci. Eng. C, 2016, 68:172.
[39] Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski ?, Haladjova E, Dworak A. Prog. Polym. Sci., 2016, 68:35.
[40] Park J H, Han N, Song J E, Cho E C. Macromol. Rapid Commun., 2016, 38(3):1600621.
[41] Riabtseva A, Kaberov L I, Kucka J, Bogomolova A Y, Stepanek P, Filippov S K, Hruby M. Langmuir, 2017, 33(3), 764.
[42] Seeli D S, Prabaharan M. Carbohydr. Polym., 2017, 158:51.
[43] Saunders B R. Biomacromolecules, 2016, 17:2448.
[44] Bera A, Kumar C U, Parui P, Jewrajka S K. J. Membr. Sci., 2015, 481:137.
[45] Yu K, Ichiura H, Ohtani Y. J. Appl. Polym. Sci., 2017, 134:44530.
[46] Song C F, Yu S R, Liu C, Deng Y M, Xu Y T, Chen X L, Dai L Z. Mater. Sci. Eng. C, 2016, 62:45.
[47] Yokoe M, Yamauchi K, Long T E. J. Polym. Sci., Part A:Polym. Chem., 2016, 54:2302.
[48] Zhang Q L, Schattling P, Theato P, Hoogenboom R. Eur. Polym. J., 2015, 62:435.
[49] Kraus G, Rollmann K. J. Polym. Sci. Polym. Phys. Edition, 1976, 14:1133.
[50] Didier B, Vladimir C, Rebecca B, Craig J H. J. Am. Chem. Soc., 1999, 121:3904.
[51] Hawker C J, Anton W B, Harth E. Chem. Rev., 2001, 101:3661.
[52] Coessens V, Pintauer T, Matyjaszewski K. Prog. Polym. Sci., 2001, 26:337.
[53] Matyjaszewski K, Xia J H. Chem. Rev., 2001, 101:2921.
[54] Tsarevsky N V, Matyjaszewski K. Chem. Rev., 2007, 107:2270.
[55] Chiefari J, Chong Y, Ercole F, Krstina J, Jeffery J, Le T P, Mayadunne R T, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31:5559.
[56] Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65:985.
[57] Fujisawa T, Penlidis A. J. Macromol. Sci., Part A:Pure Appl. Chem., 2008, 45:115.
[58] Korotkov A, Chesnokova N. Polym. Sci. USSR, 1961, 2:284.
[59] Kuntz I. J. Polym. Sci., 1961, 54:569.
[60] Morton M, Ells F. J. Polym. Sci., 1962, 61:25.
[61] Spirin Y L, Arest-Yakubovich A, Polyakov D, Gantmakher A, Medvedev S. J. Polym. Sci., 1962, 58:1181.
[62] Spirin Y L, Polyakov D, Gantmakher A, Medvedev S. J. Polym. Sci., 1961, 53:233.
[63] Arest-Yakubovich A, Litvinenko G. Polym. Prepr., 1994, 35:544.
[64] Nakhmanovich B I, Arest-Yakubovich A A, Prudskova T N, Litvinenko G I. Macromol. Rapid Commun., 1996, 17:31.
[65] Sardelis K, Michels H, Allen G. Polymer, 1984, 25:1011.
[66] Sardelis K, Michels H, Allen G. Polymer, 1987, 28:244.
[67] Tsukahara Y, Nakamura N, Hashimoto T, Kawai H, Nagaya T, Sugimura Y, Tsuge S. Polym. J., 1980, 12:455.
[68] Kelley D J, Tobolsky A V. J. Am. Chem. Soc., 1959, 81:1597.
[69] Worsfold D. J. Polym. Sci., Part A:Polym. Chem., 1967, 5:2783.
[70] Hashimoto T, Tsukahara Y, Tachi K, Kawai H. Macromolecules, 1983, 16:648.
[71] Kraus G, Childers C, Gruver J. J. Appl. Polym. Sci., 1967, 11:1581.
[72] Kraus G, Rollmann K. Die Angew. Makromol. Chem., 1971, 16:271.
[73] Oberster A, Bebb R. Die Angew. Makromol. Chem., 1971, 16:297.
[74] Wofford C, Hsieh H. J. Polym. Sci., Part A:Polym. Chem., 1969, 7:461.
[75] Zelinski R, Childers C. Rubber Chem. Technol., 1968, 41:161.
[76] Ohlinger R, Bandermann F. Die Makromol. Chem., 1980, 181:1935.
[77] Braunecker W A, Matyjaszewski K. Prog. Polym. Sci., 2007, 32:93.
[78] Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O. Soft Matter, 2011, 7:10824.
[79] Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O. Soft Matter, 2012, 8:7649.
[80] Couvreur L, Charleux B, Guerret O, Magnet S. Macromol. Chem. Phys., 2003, 204:2055.
[81] Laruelle G, François J, Billon L. Macromol. Rapid Commun., 2004, 25:1839.
[82] Lefay C, Charleux B, Save M, Chassenieux C, Guerret O, Magnet S. Polymer, 2006, 47:1935.
[83] Borisova O V, Billon L, Richter R P, Reimhult E, Borisov O V. Langmuir, 2015, 31:7684.
[84] Hong S C, Lutz J F, Inoue Y, Strissel C, Nuyken O, Matyjaszewski K. Macromolecules, 2003, 36:1075.
[85] Lee H, Matyjaszewski K, Yu S, Sheiko S S. Macromolecules, 2005, 38:8264.
[86] Lee S B, Russell A J, Matyjaszewski K. Biomacromolecules, 2003, 4:1386.
[87] Lord S J, Sheiko S S, LaRue I, Lee H I, Matyjaszewski K. Macromolecules, 2004, 37:4235.
[88] Min K, Li M, Matyjaszewski K. J. Polym. Sci., Part A:Polym. Chem., 2005, 43:3616.
[89] Miura Y, Shibata T, Satoh K, Kamigaito M, Okamoto Y. J. Am. Chem. Soc., 2006, 128:16026.
[90] Neugebauer D, Theis M, Pakula T, Wegner G, Matyjaszewski K. Macromolecules, 2006, 39:584.
[91] Qin S H, Saget J, Pyun J, Jia S J, Kowalewski T, Matyjaszewski K. Macromolecules, 2003, 36:8969.
[92] Shinoda H, Matyjaszewski K, Okrasa L, Mierzwa M, Pakula T. Macromolecules, 2003, 36:4772.
[93] Börner H G, Duran D, Matyjaszewski K, Da Silva M, Sheiko S S. Macromolecules, 2002, 35:3387.
[94] Zhou Y N, Li J J, Zhang Q, Luo Z H. Langmuir, 2014, 30:12236.
[95] Hu Z Q, Zhang Z C. Macromolecules, 2006, 39:1384.
[96] Sun X Y, Luo Y W, Wang R, Li B G, Liu B, Zhu S P. Macromolecules, 2007, 40:849.
[97] Chen Y J, Luo W, Wang Y F, Sun C, Han M, Zhang C C. J. Colloid Interface Sci., 2012, 369:46.
[98] Gress A, Völkel A, Schlaad H. Macromolecules, 2007, 40:7928.
[99] Hoogenboom R, Fijten M W, Wijnans S, Am V D B, Thijs H M, Schubert U S. J. Comb. Chem., 2006, 8:145.
[100] Park J S, Kataoka K. Macromolecules, 2006, 39:6622.
[101] Park J S, Kataoka K. Macromolecules, 2007, 40:3599.
[102] Binder W H, Gruber H. Macromol. Chem. Phys., 2000, 201:949.
[103] Milonaki Y, Kaditi E, Pispas S, Demetzos C. J. Polym. Sci., Part A:Polym. Chem., 2012, 50:1226.
[104] Pippa N, Kaditi E, Pispas S, Demetzos C. Adv. Sci. Eng. Med., 2014, 6:642.
[105] Pippa N, Merkouraki M, Pispas S, Demetzos C. Int. J. Pharm., 2013, 450:1.
[106] Vlassi E, Pispas S. Macromol. Chem. Phys., 2015, 216:873.
[107] Bloksma M M, Hoeppener S, D'Haese C, Kempe K, Mansfeld U, Paulus R M, Gohy J F, Schubert U S, Hoogenboom R. Soft Matter, 2012, 8:165.
[108] Hoogenboom R, Lambermont-Thijs H M, Jochems M J, Hoeppener S, Guerlain C, Fustin C A, Gohy J F, Schubert U S. Soft Matter, 2009, 5:3590.
[109] Lobert M, Hoogenboom R, Fustin C A, Gohy J F, Schubert U S. J. Polym. Sci., Part A:Polym. Chem., 2008, 46:5859.
[110] Matsumoto K, Terashima T, Sugita T, Takenaka M, Sawamoto M. Macromolecules, 2016, 49:7917.
[111] Nakatani K, Terashima T, Sawamoto M. J. Am. Chem. Soc., 2009, 131:13600.
[112] Ogura Y, Terashima T, Sawamato M. Polym. Chem., 2017, 8:2299.
[113] Ogura Y, Terashima T, Sawamoto M. ACS Macro Letters, 2013, 2:985.
[114] Ogura Y, Terashima T, Sawamoto M. Macromolecules, 2017, 3:822.
[115] Hardeman T, Koeckelberghs G. Macromolecules, 2015, 48:6987.
[116] Zhao R B, Shea K J. ACS Macro Letters, 2015, 4:584.
[117] Tale S R, Yin L G, Reineke T M. Polym. Chem., 2014, 5:5160.
[118] Hurtgen M, Debuigne A, Fustin C A, Jérôme C, Detrembleur C. Macromolecules, 2011, 44:4623.
[119] Harrisson S, Ercole F, Muir B W. Polym. Chem., 2010, 1:326.
[120] Weaver L G, Stockmann R, Postma A, Thang S H. RSC Advances, 2016, 6:90923.
[121] Pietsch C, Mansfeld U, Guerrero-Sanchez C, Hoeppener S, Vollrath A, Wagner M, Hoogenboom R, Saubern S, Thang S H, Becer C R. Macromolecules, 2012, 45:9292.
[122] Zheng C, Huang H Y, He T B. Macromol. Rapid Commun., 2014, 35:309.
[123] Zhao Y, Luo Y W, Li B G, Zhu S P. Langmuir, 2011, 27:11306.
[124] Herzberger J, Kurzbach D, Werre M, Fischer K, Hinderberger D, Frey H. Macromolecules, 2014, 47:7679.
[125] Siddique A B, An J W, Kim H J, Park H, Lee Y J, Lee G C, Kim J. Macromolecular Research, 2017, 25:70.
[126] Li J J, Zhou Y N, Luo Z H. Soft Matter, 2012, 8:11051.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[10] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
Viewed
Full text


Abstract

Stimuli Responsive Gradient Polymers