中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1623-1636 DOI: 10.7536/PC190446 Previous Articles   Next Articles

Supramolecular Chiral Self-Assembly of Peptides and Its Applications

Daiwu Lin1, Qiguo Xing1, Yuefei Wang1,**(), Wei Qi1,2, Rongxin Su1,2, Zhimin He1   

  1. 1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2. The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
  • Received: Online: Published:
  • Contact: Yuefei Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21621004); National Natural Science Foundation of China(21606166); National Natural Science Foundation of China(51773149)
Richhtml ( 94 ) PDF ( 1981 ) Cited
Export

EndNote

Ris

BibTeX

Chiral self-assembly of peptides is an important way to prepare chiral nanomaterials, including nanohelices, nanotubes and chiral hydrogels. The self-assembled chiral nanomaterials with unique biological and optical activities have important applications in the fields of biology, chemistry, medicine and materials science. Although many chiral nanomaterials have been designed and synthesized based on the self-assembly of peptides, the precise control of their chiral assembly process and their chirality is still a challenge. This paper focuses on the design of peptide molecules and the regulation strategies for peptide chiral self-assembly, including the regulation of internal factors such as the amino acid sequences and configuration of polypeptide molecules, and the regulation of external factors such as pH, solvents and additives. Moreover, the applications of peptide-based chiral nanomaterials in the fields of chiral catalysis, chiral sensing, template synthesis and chiroptics are also reviewed.

Fig. 1 (a) Molecular structures and self-assembly structures of tetrapeptide amphiphiles[38]; (b) Schematic illustration showing the chiral self-assembly of Fmoc-tripeptide into chiral nanostructures with different chirality[42]
Fig. 2 Schematic illustration showing the effect of electrostatic interaction on hexapeptide self-assembly process[43]
Fig. 3 The schematic illustration of chiral self-assembly of enantiomeric short amphiphilic peptides[46]
Fig. 4 Schematic illustration showing the self-assembly process of enantiomer polypeptides[51,52].(a) Atomic force microscopic images showing the triblock-type peptides composed of L- or D-amino acid self-assemble into different nanostructures;(b) Schematic and TEM images showing the enantiomeric Ac-(FKFE)2-NH2 peptides assemble into β-sheet nanoribbons(1) or self-sorted enantiomeric nanohelices(2)
Fig. 5 Schematic illustration of the chiral self-assembly of amyloid fibrils at different pH[53]
Fig. 6 TEM images(a~h) and schematic illustration(i) of the chiral nanostructures self-assembled by S233HisL12 and S263His2L12 at different pH[54]. The molecular assemblies were prepared from S263His2L12 in 10 mM TBS(pH=7.4, a and b) and 10 mM CBS(pH=5.0, c and d; pH=3.0, e and f); The molecular assemblies were prepared from S233HisL12 in 10 mM CBS(pH=3.0, g and h)
Fig. 7 Schematic illustration of dynamic chirality inversion of self-assembled Fmoc-FWK nanostructures induced by pH[56]
Fig. 8 (a) Molecular design of small-molecular gelators and (b) photographs showing the gel formation of G1~G8 in ethanol after ultrasonic treatment[58]
Fig. 9 (a) Photo images of the 4BLGA gels with different metal ions and the SEM images of helical nanofibers formed by 4BLGA with different metal ions[60];(b) Nanostructures assembled from L-type enantiomeric monomers(LPF and LPPG) with different metal ions[61]
Fig. 10 Schematic illustration showing helical nanofibers of Fc-FF with different counterions[64]
Fig. 11 (a) Molecular structures of the designed Azo-GFGH and the photo-switchable assembly and the catalytic properties of the peptide-based hydrolase mimic[66];(b) Description of Photo-response Characteristics of Supramolecular Assembly of Cationic Phenylalanine Dipeptide and Azobenzene Derivative[67];(c) Synthesis of fluorescent hollow nanocapsule and free-standing thin lamella film by tyrosine-tyrosine UV crosslinking[68]
Fig. 12 (a) Cryo-TEM images and schematic illustration of the self-assembled helical assemblies of the peptide amphiphile at different time[73];(b) Cryo-TEM images and schematic illustration of pathway to nanotubes by chiral C12-β12 self-assembly[74]
Fig. 13 (a) The schematic illustration of self-assembly of vesicles and the model for the aldol reaction[75];(b) The schematic illustration of chiral nanotubes formed by Pro-Lys dipeptide derivative[76]
Fig. 14 The schematic illustration of the assembly mechanism of(a) Cu(Ⅱ)-HN catalysis and its asymmetric catalysis for Diels-Alder reaction and(b) Bi(Ⅲ)-HN catalysis and its asymmetric catalysis for Mukaiyama Aldol reaction[35,77]
Fig. 15 The illustration showing visualized recognition functions of amphiphilic peptides[78,79]
Fig. 16 (a) The illustration showing self-assembly of racemic alanine derivatives and its capacity for the discrimination of chiral species[80]; (b) The assembly mechanism of new amphiphilic gelators with different metal ions[81]
Fig. 17 The mechanism illustration of the formation of chiral silica nanostructures[83,84]
Fig. 18 (a) Schematic diagram of cysteine-controlled synthesis of chiral gold nanoparticles[86];(b) The illustration of Au-nanoparticle synthesis and chiral self-assembly strategy[87]
Fig. 19 (a) Self-assembly of Fmoc-Glu and purine nucleosides into helical structures and chiral transfer from Fmoc-Glu to ThT[90];(b) Chiral Induction of Fluorescent Dyes by Glutamic Acid Derivatives as Nanotemplates[91]
[1]
Whitesides G M, Bartosz G . Science, 2002,295(5564):2418. https://www.ncbi.nlm.nih.gov/pubmed/11923529

doi: 10.1126/science.1070821 pmid: 11923529
[2]
Ghadiri M R, Granja J R, Milligan R A, McRee D E, Khazanovich N . Nature, 1993,366:324. https://www.ncbi.nlm.nih.gov/pubmed/8247126

doi: 10.1038/366324a0 pmid: 8247126
[3]
Meital R, Ehud G . Science, 2003,300(5619):625. https://www.ncbi.nlm.nih.gov/pubmed/12714741

doi: 10.1126/science.1082387 pmid: 12714741
[4]
Hartgerink J D, Beniash E, Stupp S I . Science, 2001,294(5547):1684. https://www.ncbi.nlm.nih.gov/pubmed/11721046

doi: 10.1126/science.1063187 pmid: 11721046
[5]
Sylvain V, Steve S, Haiyan G, Nicki W, Shuguang Z . Proc. Natl. Acad. Sci. U. S. A., 2002,99(8):5355. https://www.ncbi.nlm.nih.gov/pubmed/11929973

doi: 10.1073/pnas.072089599 pmid: 11929973
[6]
Horne W S, Stout C D, Ghadiri M R . J. Am. Chem. Soc., 2003,125(31):9372. https://www.ncbi.nlm.nih.gov/pubmed/12889966

doi: 10.1021/ja034358h pmid: 12889966
[7]
Manuel A, Luis C, Granja J R . J. Am. Chem. Soc., 2003,125(10):2844. https://www.ncbi.nlm.nih.gov/pubmed/12617629

doi: 10.1021/ja0296273 pmid: 12617629
[8]
Ron O, Lihi A A, Sivan Z, Iris M H, Dror S, Ehud G . Biomacromolecules, 2009,10(9):2646. https://www.ncbi.nlm.nih.gov/pubmed/19705843

doi: 10.1021/bm900584m pmid: 19705843
[9]
Fan Z, Sun L, Huang Y, Wang Y, Zhang M . Nat. Nanotechnol., 2016,11(4):388. https://www.ncbi.nlm.nih.gov/pubmed/26751169

doi: 10.1038/nnano.2015.312 pmid: 26751169
[10]
Kumar D, Workman V L, O'Brien M, McLaren J, White L, Ragunath K, Rose F, Saiani A, Gough J E . Adv. Funct. Mater., 2017,27(38):1702424.
[11]
Bedford N M, Hughes Z E, Tang Z, Li Y, Briggs B D, Ren Y, Swihart M T, Petkov V G, Naik R R, Knecht M R ; Walsh. R. J. Am. Chem. Soc., 2016,138:540. https://www.ncbi.nlm.nih.gov/pubmed/26679562

doi: 10.1021/jacs.5b09529 pmid: 26679562
[12]
Liu M, Zhang L, Wang T . Chem. Rev., 2015,115(15):7304. https://www.ncbi.nlm.nih.gov/pubmed/26189453

doi: 10.1021/cr500671p pmid: 26189453
[13]
Xing R, Yuan C, Li S, Song J, Li J, Yan X . Angew. Chem. Int. Ed. Engl., 2018,57(6):1537. https://www.ncbi.nlm.nih.gov/pubmed/29266653

doi: 10.1002/anie.201710642 pmid: 29266653
[14]
Wang X, Duan P, Liu M . Chem.-Asian J., 2014,9:770. https://www.ncbi.nlm.nih.gov/pubmed/24449380

doi: 10.1002/asia.201301518 pmid: 24449380
[15]
Jin Q, Zhang L, Liu M . Chemistry, 2013,19:9234. https://www.ncbi.nlm.nih.gov/pubmed/23729195

doi: 10.1002/chem.201300612 pmid: 23729195
[16]
Shen Z, Wang T, Liu M . Chem. Commun., 2014,50:2096. https://www.ncbi.nlm.nih.gov/pubmed/24445810

doi: 10.1039/c3cc48350a pmid: 24445810
[17]
Deshmukh S A, Solomon L A, Kamath G, Fry H C, Sankaranarayanan S K . Nat. Commun., 2016,7:12367. https://www.ncbi.nlm.nih.gov/pubmed/27554944

doi: 10.1038/ncomms12367 pmid: 27554944
[18]
Huang Z, Yao Y, Han L, Che S . Chem. Eur. J., 2014,20(51):17068. https://www.ncbi.nlm.nih.gov/pubmed/25323634

doi: 10.1002/chem.201403498 pmid: 25323634
[19]
Liu X, Shen Z, Wang T, Liu M . J. Colloid. Interf. Sci., 2014,435:1.
[20]
Liu Y, Wang T, Huan Y, Li Z, He G, Liu M . Adv. Mater., 2013,25(41):5875. https://www.ncbi.nlm.nih.gov/pubmed/23943418

doi: 10.1002/adma.201302345 pmid: 23943418
[21]
Rad-Malekshahi M, Visscher K M, Rodrigues J P, de Vries R, Hennink W E, Baldus M, Bonvin A M, Mastrobattista E, Weingarth M . J. Am. Chem. Soc., 2015,137:7775. https://www.ncbi.nlm.nih.gov/pubmed/26022089

doi: 10.1021/jacs.5b02919 pmid: 26022089
[22]
Shen Z, Wang T, Liu M . Langmuir, 2014,30(35):10772. https://www.ncbi.nlm.nih.gov/pubmed/25136742

doi: 10.1021/la502799j pmid: 25136742
[23]
Ivan U, Jozef A, Raffaele M . ACS Nano, 2013,7(12):10465. https://www.ncbi.nlm.nih.gov/pubmed/24171389

doi: 10.1021/nn404886k pmid: 24171389
[24]
Ivan U, Raffaele M . ACS Nano, 2014,8(11):11035. https://www.ncbi.nlm.nih.gov/pubmed/25275956

doi: 10.1021/nn503530a pmid: 25275956
[25]
Volpatti L R, Michele V, Dobson C M, Knowles T P J. ACS Nano, 2013,7:10443.
[26]
Backlund F G, Elfwing A, Musumeci C, Ajjan F, Babenko V, Dzwolak W, Solin N, Inganas O . Soft Matter, 2017,13:4412. https://www.ncbi.nlm.nih.gov/pubmed/28590474

doi: 10.1039/c7sm00068e pmid: 28590474
[27]
Gao N, Du Z, Guan Y, Dong K, Ren J, Qu X . J. Am. Chem. Soc., 2019,141:6915. https://www.ncbi.nlm.nih.gov/pubmed/30969760

doi: 10.1021/jacs.8b12537 pmid: 30969760
[28]
Kumar J, Erana H, Lopez-Martinez E, Claes N, Martin V F, Solis D M, Bals S, Cortajarena A L, Castilla J, Liz-Marzan L M . Proc. Natl. Acad. Sci. U. S. A., 2018,115(13):3225. https://www.ncbi.nlm.nih.gov/pubmed/29531058

doi: 10.1073/pnas.1721690115 pmid: 29531058
[29]
Li M, Howson S E, Dong K, Gao N, Ren J, Scott P, Qu X . J. Am. Chem. Soc., 2014,136(33):11655. https://www.ncbi.nlm.nih.gov/pubmed/25062433

doi: 10.1021/ja502789e pmid: 25062433
[30]
Sanchez-Ferrer A, Adamcik J, Handschin S, Hiew S H, Miserez A, Mezzenga R . ACS Nano, 2018,12(9):9152. https://www.ncbi.nlm.nih.gov/pubmed/30106557

doi: 10.1021/acsnano.8b03582 pmid: 30106557
[31]
Ulijn R V, Smith A M . Chem. Soc. Rev., 2008,37(4):664. https://www.ncbi.nlm.nih.gov/pubmed/18362975

doi: 10.1039/b609047h pmid: 18362975
[32]
Silvia M, Easton C D, Firdawosia K, Lynne W, Hartley P G . Chem. Commun., 2012,48:2195. https://www.ncbi.nlm.nih.gov/pubmed/22159641

doi: 10.1039/c2cc16609g pmid: 22159641
[33]
Jozef A, Valeria C, Sreenath B, Hamley I W, Raffaele M . Angew. Chem., 2011,50(24):5495. https://www.ncbi.nlm.nih.gov/pubmed/21538748

doi: 10.1002/anie.201100807 pmid: 21538748
[34]
Xie Y, Wang X, Huang R, Qi W, Wang Y, Su R, He Z . Langmuir, 2015,31(9):2885. https://www.ncbi.nlm.nih.gov/pubmed/25694059

doi: 10.1021/la504757c pmid: 25694059
[35]
Jiang J, Meng Y, Zhang L, Liu M . J. Am. Chem. Soc., 2016,138(48):15629. https://www.ncbi.nlm.nih.gov/pubmed/27934018

doi: 10.1021/jacs.6b08808 pmid: 27934018
[36]
Iglesias D, Melle-Franco M, Kurbasic M, Melchionna M, Abrami M, Grassi M, Prato M, Marchesan S . ACS Nano, 2018,12(6):5530. https://www.ncbi.nlm.nih.gov/pubmed/29787672

doi: 10.1021/acsnano.8b01182 pmid: 29787672
[37]
Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu J R . Langmuir, 2013,29(44):13457. https://www.ncbi.nlm.nih.gov/pubmed/24090051

doi: 10.1021/la402441w pmid: 24090051
[38]
Cui H, Cheetham A G, Pashuck E T, Stupp S I . J. Am. Chem. Soc., 2014,136(35):12461. https://www.ncbi.nlm.nih.gov/pubmed/25144245

doi: 10.1021/ja507051w pmid: 25144245
[39]
Cao M, Lu S, Zhao W, Deng L, Wang M, Wang J, Zhou P, Wang D, Xu H, Lu J R . ACS Appl. Mater. Interfaces, 2017,9(45):39174. https://www.ncbi.nlm.nih.gov/pubmed/29067798

doi: 10.1021/acsami.7b11681 pmid: 29067798
[40]
Bowerman C J, Liyanage W, Federation A J, Nilsson B L . Biomacromolecules, 2011,12(7):2735. https://www.ncbi.nlm.nih.gov/pubmed/21568346

doi: 10.1021/bm200510k pmid: 21568346
[41]
Lee N R, Bowerman C J, Nilsson B L . Biomacromolecules, 2013,14(9):3267. https://www.ncbi.nlm.nih.gov/pubmed/23952713

doi: 10.1021/bm400876s pmid: 23952713
[42]
Xing Q, Zhang J, Xie Y, Wang Y, Qi W, Rao H, Su R, He Z . ACS Nano, 2018,12(12):12305. https://www.ncbi.nlm.nih.gov/pubmed/30452865

doi: 10.1021/acsnano.8b06173 pmid: 30452865
[43]
Hu Y, Lin R, Zhang P, Fern J, Cheetham A G, Patel K, Schulman R, Kan C, Cui H . ACS Nano, 2016,10(1):880. https://www.ncbi.nlm.nih.gov/pubmed/26646791

doi: 10.1021/acsnano.5b06011 pmid: 26646791
[44]
Basak S, Singh I, Ferranco A, Syed J, Kraatz H B . Angew. Chem. Int. Ed. Engl., 2017,56(43):13288. https://www.ncbi.nlm.nih.gov/pubmed/28837256

doi: 10.1002/anie.201706162 pmid: 28837256
[45]
Clarke D E, Parmenter C D J, Scherman O A . Angew. Chem., 2018,130:7835.
[46]
Wang M, Zhou P, Wang J, Zhao Y, Ma H, Lu J R, Xu H . J. Am. Chem. Soc., 2017,139(11):4185. https://www.ncbi.nlm.nih.gov/pubmed/28240550

doi: 10.1021/jacs.7b00847 pmid: 28240550
[47]
Fu Y, Li B, Huang Z, Li Y, Yang Y . Langmuir, 2013,29(20):6013. https://www.ncbi.nlm.nih.gov/pubmed/23617232

doi: 10.1021/la400910g pmid: 23617232
[48]
Luo Z, Wang S, Zhang S . Biomaterials, 2011,32(8):2013. https://www.ncbi.nlm.nih.gov/pubmed/21167593

doi: 10.1016/j.biomaterials.2010.11.049 pmid: 21167593
[49]
Garcia A M, Iglesias D, Parisi E, Styan K E, Waddington L J, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu A V, Marchesan S . Chem, 2018,4(8):1862.
[50]
Marchesan S, Easton C D, Kushkaki F, Waddington L, Hartley P G . Chem. Commun.(Camb), 2012,48(16):2195. https://www.ncbi.nlm.nih.gov/pubmed/22159641

doi: 10.1039/c2cc16609g pmid: 22159641
[51]
Tomoyuki K, Miho M, Nobuyuki H . J. Am. Chem. Soc., 2005,127(50):17596. https://www.ncbi.nlm.nih.gov/pubmed/16351076

doi: 10.1021/ja0558387 pmid: 16351076
[52]
Swanekamp R J, DiMaio J T, Bowerman C J, Nilsson B L . J. Am. Chem. Soc., 2012,134:5556. https://www.ncbi.nlm.nih.gov/pubmed/22420540

doi: 10.1021/ja301642c pmid: 22420540
[53]
Kurouski D, Lu X, Popova L, Wan W, Shanmugasundaram M, Stubbs G, Dukor R K, Lednev I K, Nafie L A . J. Am. Chem. Soc., 2014,136(6):2302. https://www.ncbi.nlm.nih.gov/pubmed/24484302

doi: 10.1021/ja407583r pmid: 24484302
[54]
Uesaka A, Ueda M, Makino A, Imai T, Sugiyama J, Kimura S . Langmuir, 2014,30(4):1022. https://www.ncbi.nlm.nih.gov/pubmed/24410257

doi: 10.1021/la404784e pmid: 24410257
[55]
Duan P, Qin L, Zhu X, Liu M. Chem-Eur . J., 2011,17(23):6389. https://www.ncbi.nlm.nih.gov/pubmed/21538601

doi: 10.1002/chem.201003049 pmid: 21538601
[56]
Xie Y, Wang Y, Qi W, Huang R, Su R, He Z . Small, 2017,13(30).
[57]
Li Y, Li B, Fu Y, Lin S, Yang Y . Langmuir, 2013,29(31):9721. https://www.ncbi.nlm.nih.gov/pubmed/23915244

doi: 10.1021/la402174w pmid: 23915244
[58]
Qing G, Shan X, Chen W, Lv Z, Xiong P, Sun T . Angew. Chem., 2014,53(8):2124. https://www.ncbi.nlm.nih.gov/pubmed/24453207

doi: 10.1002/anie.201308554 pmid: 24453207
[59]
Li C, Deng K, Tang Z, Jiang L . J. Am. Chem. Soc., 2010,132(23):8202. https://www.ncbi.nlm.nih.gov/pubmed/20499874

doi: 10.1021/ja102827f pmid: 20499874
[60]
Wang X, Duan P, Liu M . Chem. Commun., 2012,48:7501. https://www.ncbi.nlm.nih.gov/pubmed/22728654

doi: 10.1039/c2cc33246a pmid: 22728654
[61]
Wang F, Feng C L . Angew. Chem. Int. Ed. Engl., 2018,57(20):5655. https://www.ncbi.nlm.nih.gov/pubmed/29571216

doi: 10.1002/anie.201800251 pmid: 29571216
[62]
Dong J, Shokes J E, Scott R A, Lynn D G . J. Am. Chem. Soc., 2006,128(11):3540. https://www.ncbi.nlm.nih.gov/pubmed/16536526

doi: 10.1021/ja055973j pmid: 16536526
[63]
Liu G F, Zhu L Y, Ji W, Feng C L, Wei Z X . Angew. Chem. Int. Ed. Engl., 2016,55(7):2411. https://www.ncbi.nlm.nih.gov/pubmed/26663528

doi: 10.1002/anie.201510140 pmid: 26663528
[64]
Wang Y, Qi W, Huang R, Yang X, Wang M, Su R, He Z . J. Am. Chem. Soc., 2015,137(24):7869. https://www.ncbi.nlm.nih.gov/pubmed/26018930

doi: 10.1021/jacs.5b03925 pmid: 26018930
[65]
Chu C W, Ravoo B J . Chem Commun, 2017,53(92):12450. https://www.ncbi.nlm.nih.gov/pubmed/29099528

doi: 10.1039/c7cc07859e pmid: 29099528
[66]
Zhao Y, Lei B, Wang M, Wu S, Qi W, Su R, He Z . J. Mater. Chem. B, 2018,6:2444. https://www.ncbi.nlm.nih.gov/pubmed/32254461

doi: 10.1039/c8tb00448j pmid: 32254461
[67]
Ma H, Fei J, Li Q, Li J . Small, 2015,11(15):1787. https://www.ncbi.nlm.nih.gov/pubmed/25405602

doi: 10.1002/smll.201402140 pmid: 25405602
[68]
Min K I, Yun G, Jang Y, Kim K R, Ko Y H, Jang H S, Lee Y S, Kim K, Kim D P . Angew. Chem. Int. Edit., 2016,55(24):6925. https://www.ncbi.nlm.nih.gov/pubmed/27062089

doi: 10.1002/anie.201601675 pmid: 27062089
[69]
Min K I, Kim D H, Lee H J, Lin L, Kim D P . Angew. Chem. Int. Edit., 2018,57(20):5630. https://www.ncbi.nlm.nih.gov/pubmed/29569831

doi: 10.1002/anie.201713261 pmid: 29569831
[70]
Ding Y, Li Y, Qin M, Cao Y, Wang W . Langmuir, 2013,29(43):13299. https://www.ncbi.nlm.nih.gov/pubmed/24090141

doi: 10.1021/la4029639 pmid: 24090141
[71]
Huang Y F, Lu S C, Huang Y C, Jan J S . Small, 2014,10:1939. https://www.ncbi.nlm.nih.gov/pubmed/24573970

doi: 10.1002/smll.201303462 pmid: 24573970
[72]
Hamley I W, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J . Soft Matter, 2013,9(39):9290.
[73]
E Thomas P, Stupp S I . J. Am. Chem. Soc., 2010,132(26):8819. https://www.ncbi.nlm.nih.gov/pubmed/20552966

doi: 10.1021/ja100613w pmid: 20552966
[74]
Ziserman L, Lee H Y, Raghavan S R, Mor A, Danino D . J. Am. Chem. Soc., 2011,133(8):2511. https://www.ncbi.nlm.nih.gov/pubmed/21244023

doi: 10.1021/ja107069f pmid: 21244023
[75]
Qin L, Zhang L, Jin Q, Zhang J, Han B, Liu M . Angew. Chem. Int. Ed. Engl., 2013,52(30):7761. https://www.ncbi.nlm.nih.gov/pubmed/23776072

doi: 10.1002/anie.201302662 pmid: 23776072
[76]
Lee K S, Parquette J R . Chem. Commun., 2015,51(86):15653. https://www.ncbi.nlm.nih.gov/pubmed/26360936

doi: 10.1039/c5cc06142c pmid: 26360936
[77]
Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M . Langmuir, 2011,27(22):13847. https://www.ncbi.nlm.nih.gov/pubmed/21978005

doi: 10.1021/la203110z pmid: 21978005
[78]
Meng Y, Jiang J, Liu M . Nanoscale, 2017,9:7199. https://www.ncbi.nlm.nih.gov/pubmed/28513697

doi: 10.1039/c7nr02126g pmid: 28513697
[79]
Li S, Zhang L, Jiang J, Meng Y, Liu M . ACS Appl. Mater. Interfaces, 2017,9(42):37386. https://www.ncbi.nlm.nih.gov/pubmed/28972781

doi: 10.1021/acsami.7b10353 pmid: 28972781
[80]
Cao H, Zhu X, Liu M . Angew. Chem. Int. Ed. Engl., 2013,52(15):4122. https://www.ncbi.nlm.nih.gov/pubmed/23495092

doi: 10.1002/anie.201300444 pmid: 23495092
[81]
Jin Q, Zhang L, Zhu X, Duan P, Liu M . Chem. Eur. J., 2012,18(16):4916. https://www.ncbi.nlm.nih.gov/pubmed/22416042

doi: 10.1002/chem.201103187 pmid: 22416042
[82]
Deng M, Zhang L, Jiang Y, Liu M . Angew. Chem. Int. Ed. Engl., 2016,55(48):15062. https://www.ncbi.nlm.nih.gov/pubmed/27809390

doi: 10.1002/anie.201608638 pmid: 27809390
[83]
Wang Y, Qi W, Wang J, Li Q, Yang X, Zhang J, Liu X, Huang R, Wang M, Su R . He Z. Chem. Mater., 2018,30(21):7902.
[84]
Wang S, Ge X, Xue J, Fan H, Mu L, Li Y, Xu H, Lu J R . Chem. Mater., 2011,23(9):2466.
[85]
Jiang W, Pacella M S, Athanasiadou D, Nelea V, Vali H, Hazen R M, Gray J J, McKee M D . Nat. Commun., 2017,8:15066. https://www.ncbi.nlm.nih.gov/pubmed/28406143

doi: 10.1038/ncomms15066 pmid: 28406143
[86]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T . Nature, 2018,556(7701):360. https://www.ncbi.nlm.nih.gov/pubmed/29670265

doi: 10.1038/s41586-018-0034-1 pmid: 29670265
[87]
Chen C, Rosi N L . J. Am. Chem. Soc., 2010,132(20):6902. https://www.ncbi.nlm.nih.gov/pubmed/20429558

doi: 10.1021/ja102000g pmid: 20429558
[88]
Merg A D, Boatz J C, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, van der Wel P C A, Rosi N L . J. Am. Chem. Soc., 2016,138(41):13655. https://www.ncbi.nlm.nih.gov/pubmed/27726354

doi: 10.1021/jacs.6b07322 pmid: 27726354
[89]
Mokashi-Punekar S, Merg A D, Rosi N L . J. Am. Chem. Soc., 2017,139(42):15043. https://www.ncbi.nlm.nih.gov/pubmed/28876058

doi: 10.1021/jacs.7b07143 pmid: 28876058
[90]
Deng M, Zhang L, Jiang Y, Liu M . Angew. Chem. Int. Edit., 2016,55(48):15062. https://www.ncbi.nlm.nih.gov/pubmed/27809390

doi: 10.1002/anie.201608638 pmid: 27809390
[91]
Goto T, Okazaki Y, Ueki M, Kuwahara Y, Takafuji M, Oda R, Ihara H . Angew. Chem. Int. Edit., 2017,56(11):2989. https://www.ncbi.nlm.nih.gov/pubmed/28146313

doi: 10.1002/anie.201612331 pmid: 28146313
[92]
Niu D, Jiang Y, Ji L, Ouyang G, Liu M . Angew. Chem. Int. Edit., 2019,58(18):5946. https://www.ncbi.nlm.nih.gov/pubmed/30821078

doi: 10.1002/anie.201900607 pmid: 30821078
[93]
Huo S, Duan P, Jiao T, Peng Q, Liu M . Angew. Chem. Int. Edit., 2017,56(40):12174. https://www.ncbi.nlm.nih.gov/pubmed/28759134

doi: 10.1002/anie.201706308 pmid: 28759134
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[3] Yingying Wei, Lin Chen, Junli Wang, Shiping Yu, Xuguang Liu, Yongzhen Yang. Synthesis and Applications of Chiral Carbon Quantum Dots [J]. Progress in Chemistry, 2020, 32(4): 381-391.
[4] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[5] Hao Zhang, Jing Liu, Kun Cui, Tao Jiang, Zhi Ma. Synthesis and Application of Guanidine-Based Antibacterial Polymers [J]. Progress in Chemistry, 2019, 31(5): 681-689.
[6] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[7] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[8] Chuncai Zhou, Chuncai Zhou*. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers [J]. Progress in Chemistry, 2018, 30(7): 913-920.
[9] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[10] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.
[11] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[12] Liang Yanyu, Tang Shan, Zheng Jishen. Cell-Permeable Cyclic Peptides [J]. Progress in Chemistry, 2014, 26(11): 1793-1800.
[13] Li Xiaohui*, Huang Meiling, Liu Lina, Wang Yanyun. Cyclopeptide Histone Deacetylase Inhibitors [J]. Progress in Chemistry, 2014, 26(09): 1527-1536.
[14] Yang Chuting, Han Jun, Luo Yangming, Hu Sheng, Wang Xiaolin. Metal Ion Recognition Functions Based on Cyclopeptides [J]. Progress in Chemistry, 2014, 26(09): 1537-1550.
[15] Gao Shuai, Guo Ye, Li Haiyan, Fang Gemin. Chemical Synthesis and Applications of Stapled Peptides [J]. Progress in Chemistry, 2014, 26(01): 100-109.