中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1540-1549 DOI: 10.7536/PC190817 Previous Articles   Next Articles

Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems

Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li**()   

  1. School of Chemistry, Fudan University, Shanghai 200438, China
  • Received: Online: Published:
  • Contact: Zhan-Ting Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21890732); National Natural Science Foundation of China(21921003)
Richhtml ( 33 ) PDF ( 969 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular self-assembly provides a new strategy for the development of drug delivery systems from molecular components. With non-covalent interactions as driving forces, supramolecular drug delivery systems(SDDSs) can realize precise component control at the molecular level, increased predictability of the self-assembled structures, tunable control of morphologies and sizes, controlled release of delivered drugs. In this review, we first concisely introduce the background for the design of SDDSs and then describe important advances in SDDS development that involves the applications of cyclodextrin, calixarene, pillararene and cucurbituril based on host-guest interactions. Following these popular design principles, we further present the applications of water-soluble supramolecular organic frameworks as SDDSs. Finally, the challenges that need to be addressed for the practical translation of SDDSs are discussed.

Fig. 1 Annual publications(from SciFinder: “drug delivery” + “supramolecular”, July 28, 2019)
Fig. 2 The formation of the cross-linked supramolecular polymer by CHBC-2 and HA-AD through the encapsulation of β-cyclodextrin toward adamantane and its loading of doxorubicin[64]. Copyright 2016, American Chemical Society
Fig. 3 Switch-controlled loading and release of DOX through light-triggered con-version between vesicles and nanoparticles formed by polymers P1 and P2[67]. Copyright 2015, Royal Society of Chemistry
Fig. 4 Illustration of the multivalent peptide recognition by the co-assembly of CD and CA amphiphiles[69]
Fig. 5 Illustration of the self-assembly of Calix-4 A into micelles and further formation of larger DNA complexes[71]
Fig. 6 Amphiphilic sulfonated calixarene SC4AH as “drug chaperone” to co-assemble with drugs to form delivery platform[78]
Fig. 7 Schematic illustration of the formation of supramolecular vesicles from WS6 and G and the pH-responsive mitoxantrone loading and release[90]. Copyright 2013 American Chemical Society
Fig. 8 Illustration of the formation of cationic vesicles by FCAP+ and their redox-responsive DOX/siRNA release[96]. Copyright 2014 John-Wiley
Fig. 9 Schematic representation of the complexation of oxaliplatin by CB[7] and controlled release through being replaced by spermine in tumor microenvironment[122]
Fig. 10 The structure of Polym-1, Polym-2 and Adam-3 and the formation of the ternary complex and supramolecular micelles between the two polymers and CB[8][123]. Copyright 2012 American Chemical Society
Fig. 11 The structure of acyclic cucurbiturils Acyclic CB-1, Acyclic CB-2 and Acyclic CB-3a-c and doxorubicin prodrug DOX-prodrug[125,126,127,128]
Fig. 12 Illustration of the formation of SOFs from tetrahedral building blocks T1 and CB[8] and their in situ loading of drugs[139]
[1]
Pedersen C J . J. Am. Chem. Soc., 1967,89:2495. https://pubs.acs.org/doi/abs/10.1021/ja00986a052

doi: 10.1021/ja00986a052
[2]
Lehn J M . Science, 1985,227:849. https://www.ncbi.nlm.nih.gov/pubmed/17821215

doi: 10.1126/science.227.4689.849 pmid: 17821215
[3]
Zheng B, Wang F, Dong S, Huang F . Chem. Soc. Rev., 2012,41:1621. https://www.ncbi.nlm.nih.gov/pubmed/22012256

doi: 10.1039/c1cs15220c pmid: 22012256
[4]
Guo D S, Liu Y . Acc. Chem. Res., 2014,47:1925. https://www.ncbi.nlm.nih.gov/pubmed/24666259

doi: 10.1021/ar500009g pmid: 24666259
[5]
Cram D J, Cram J M . Science, 1974,183:803. https://www.ncbi.nlm.nih.gov/pubmed/17780761

doi: 10.1126/science.183.4127.803 pmid: 17780761
[6]
Han Y, Meng Z, Ma Y X, Chen C F . Acc. Chem. Res., 2014,47:2026. https://www.ncbi.nlm.nih.gov/pubmed/24877894

doi: 10.1021/ar5000677 pmid: 24877894
[7]
Xiao T, Zhong W, Zhou L, Xu L, Sun X Q, Elmes R B P, Hu X Y, Wang L . Chin. Chem. Lett., 2019,30:31. https://linkinghub.elsevier.com/retrieve/pii/S1001841718302213

doi: 10.1016/j.cclet.2018.05.034
[8]
Wang M X . Sci. China Chem., 2018,61:993. https://doi.org/10.1007/s11426-018-9328-8

doi: 10.1007/s11426-018-9328-8
[9]
Yang L P, Liu W E, Jiang W . Tetrahedron Lett, 2016,57:3978. https://linkinghub.elsevier.com/retrieve/pii/S0040403916309352

doi: 10.1016/j.tetlet.2016.07.077
[10]
王梅祥 ( Wang M X). 化学进展(Prog. Chem.), 2018,30:463.
[11]
Li B, Wang B, Huang X, Dai L, Cui L, Li J, Jia X, Li C . Angew. Chem. Int. Ed., 2019,58:3885. https://www.ncbi.nlm.nih.gov/pubmed/30600896

doi: 10.1002/anie.201813972 pmid: 30600896
[12]
Balzani V, Credi A, Raymo F M, Stoddart J F . Angew. Chem. Int. Ed., 2000,39:3348. https://www.ncbi.nlm.nih.gov/pubmed/11091368

doi: 10.1002/1521-3773(20001002)39:19【-逻*辑*与-】lt;3348::aid-anie3348【-逻*辑*与-】gt;3.0.co;2-x pmid: 11091368
[13]
张双进(Zhang S J), 杨扬(Yang Y), 孙小强(Sun X Q), 尹芳华(Yin F H), 强琚莉(Jiang J L), 王乐勇(Wang L Y) . 化学进展(Prog. Chem.), 2016,28:244.
[14]
Wang Q, Chen D, Tian H . Sci. China Chem., 2018,61:1261. https://doi.org/10.1007/s11426-018-9267-3

doi: 10.1007/s11426-018-9267-3
[15]
Lehn J M . Polym. Int., 2002,51:825. http://doi.wiley.com/10.1002/%28ISSN%291097-0126

doi: 10.1002/(ISSN)1097-0126
[16]
吉晓帆(Ji X F), 夏丹玉(Xia D Y), 颜徐州(Yan X Z), 王虎(Wang H), 黄飞鹤(Huang F H) . 高分子学报(Acta Polymerica Sinica), 2017,1:9.
[17]
马骧(Ma X), 田禾(Tian H), . 高分子学报(Acta Polymerica Sinica), 2017,1:27.
[18]
Chen Y, Sun S, Lu D, Shi Y, Yao Y . Chin. Chem. Lett., 2019,30:37. https://linkinghub.elsevier.com/retrieve/pii/S1001841718304091

doi: 10.1016/j.cclet.2018.10.022
[19]
黄文忠(Huang W Z), 占田广(Zhan T G), 林沨(Lin F), 赵新(Zhao X) . 化学进展(Prog. Chem.), 2016,28:165.
[20]
徐江飞(Xu J F), 张希(Zhang X) . 高分子学报(Acta Polymerica Sinica), 2017,1:37.
[21]
Zeng F, Zimmerman S C . Chem. Rev., 1997,97:1681. https://www.ncbi.nlm.nih.gov/pubmed/11851463

doi: 10.1021/cr9603892 pmid: 11851463
[22]
Yang X, Liu F, Zhao Z, Liang F, Zhang H, Liu S . Chin. Chem. Lett., 2018,29:1560. https://linkinghub.elsevier.com/retrieve/pii/S100184171830041X

doi: 10.1016/j.cclet.2018.01.032
[23]
潘梅(Pan M), 韦张文(Wei Z W), 徐耀维(Xu Y W), 苏成勇(Su C Y) . 化学进展(Prog. Chem.), 2017,29:47.
[24]
Kan X, Liu H, Pan Q, Li Z, Zhao Y . Chin. Chem. Lett., 2018,29:261.
[25]
Chen Y, Huang F, Li Z T, Liu Y . Sci. China Chem., 2018,61:979.
[26]
Anslyn E V . J. Org. Chem., 2007,72:687. https://www.ncbi.nlm.nih.gov/pubmed/17253783

doi: 10.1021/jo0617971 pmid: 17253783
[27]
Wu X, Li Z, Chen X X, Fossey J S, James T D, Jiang Y B . Chem. Soc. Rev., 2013,42:8032. https://www.ncbi.nlm.nih.gov/pubmed/23860576

doi: 10.1039/c3cs60148j pmid: 23860576
[28]
Mako T L, Racicot J M, Levine M . Chem. Rev, 2019,119:322. https://www.ncbi.nlm.nih.gov/pubmed/30507166

doi: 10.1021/acs.chemrev.8b00260 pmid: 30507166
[29]
Wei T, Zhang H, Li W, Qu W, Su J, Lin Q, Zhang Y, Yao H . Chin. J. Chem., 2017,35:1311.
[30]
Peng H Q, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Chem. Rev., 2015,115:7502. https://www.ncbi.nlm.nih.gov/pubmed/26040205

doi: 10.1021/cr5007057 pmid: 26040205
[31]
Li P, Chen Y, Liu Y . Chin. Chem. Lett., 2019,30:1190.
[32]
Zheng B, Hou Y, Gao L, Zhang M . Chin. J. Chem., 2019,37:843.
[33]
Yang M, Liu Q, Tang Q, Wang C, Yang M, Sun T, Huang Y, Tao Z . Chem. J. Chin. Univ., 2018,39:2665.
[34]
Ma X, Zhao Y . Chem. Rev, 2015,115:7794. https://www.ncbi.nlm.nih.gov/pubmed/25415447

doi: 10.1021/cr500392w pmid: 25415447
[35]
Haag R . Angew. Chem. Int. Ed., 2004,43:278. https://www.ncbi.nlm.nih.gov/pubmed/14705079

doi: 10.1002/anie.200301694 pmid: 14705079
[36]
Webber M J, Langer R . Chem. Soc. Rev., 2017,46:6600. https://www.ncbi.nlm.nih.gov/pubmed/28828455

doi: 10.1039/c7cs00391a pmid: 28828455
[37]
Peng L, Liu S, Feng A, Yuan J . Mol. Pharmaceutics, 2017,14:2475. https://www.ncbi.nlm.nih.gov/pubmed/28463008

doi: 10.1021/acs.molpharmaceut.7b00160 pmid: 28463008
[38]
Feng W, Jin M, Yang K, Pei Y, Pei Z . Chem. Commun, 2018,54:13626. https://www.ncbi.nlm.nih.gov/pubmed/30444504

doi: 10.1039/c8cc08252a pmid: 30444504
[39]
Hu X Y, Wang L . Supramol. Chem, 2018,30:664.
[40]
张丹维(Zhang D W), 王辉(Wang H), 黎占亭(Li Z T) . 高分子通报(Polymer Bulletin), 2018,6:243.
[41]
Wu X, Gao L, Hu X Y, Wang L . Chem. Rec, 2016,16:1216. https://www.ncbi.nlm.nih.gov/pubmed/27061964

doi: 10.1002/tcr.201500265 pmid: 27061964
[42]
徐柳(Xu L), 钱晨(Qian C), 朱辰奇(Zhu C Q), 陈志鹏(Chen Z P), 陈瑞(Chen R) . 化学进展(Prog. Chem.), 2018,30:1341.
[43]
赖欣宜(Lai X Y), 王志勇(Wang Z Y), 郑永太(Zheng Y T), 陈永明(Chen Y M) . 化学进展(Prog. Chem.), 2019,31:783.
[44]
Tibbitt M W, Dahlman J E, Langer R . J. Am. Chem. Soc., 2016,138:704. https://www.ncbi.nlm.nih.gov/pubmed/26741786

doi: 10.1021/jacs.5b09974 pmid: 26741786
[45]
Pattni, B S, Chupin V V, Torchilin V P . Chem. Rev., 2015,115:10938. https://www.ncbi.nlm.nih.gov/pubmed/26010257

doi: 10.1021/acs.chemrev.5b00046 pmid: 26010257
[46]
Qin S Y, Zhang A Q, Cheng S X, Rong L, Zhang X Z . Biomater., 2017,112:234. https://linkinghub.elsevier.com/retrieve/pii/S0142961216305610

doi: 10.1016/j.biomaterials.2016.10.016
[47]
Ma Y, Mou Q, Wang D, Zhu X, Yan D . Theranostics, 2016,6:930. https://www.ncbi.nlm.nih.gov/pubmed/27217829

doi: 10.7150/thno.14855 pmid: 27217829
[48]
Xu C, Tian H, Chen X . Sci. China Chem., 2017,60:319. http://link.springer.com/10.1007/s11426-016-0466-x

doi: 10.1007/s11426-016-0466-x
[49]
Bangham A D, Standish M M, Watkins J C . J. Mol. Biol., 1965,13:238. https://www.ncbi.nlm.nih.gov/pubmed/5859039

doi: 10.1016/s0022-2836(65)80093-6 pmid: 5859039
[50]
Gregoriadis G, Ryman B E . Biochem. J., 1971,124:48B.
[51]
Barenholz Y . J. Control. Release, 2012,160:117. https://www.ncbi.nlm.nih.gov/pubmed/22484195

doi: 10.1016/j.jconrel.2012.03.020 pmid: 22484195
[52]
Tran S, DeGiovanni, P J, Piel B, Rai P . Clin. Trans. Med., 2017,6:44. https://www.ncbi.nlm.nih.gov/pubmed/29230567

doi: 10.1186/s40169-017-0175-0 pmid: 29230567
[53]
Cranmer L D . OncoTargets Therapy, 2019,12:2047. https://www.ncbi.nlm.nih.gov/pubmed/30936721

doi: 10.2147/OTT.S145539 pmid: 30936721
[54]
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J F, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao, Y . Sci. China Chem., 2018,61:1503. https://doi.org/10.1007/s11426-018-9397-5

doi: 10.1007/s11426-018-9397-5
[55]
Biedermann F, Nau W M, Schneider H J . Angew. Chem. Int. Ed., 2014,53:11158. https://www.ncbi.nlm.nih.gov/pubmed/25070083

doi: 10.1002/anie.201310958 pmid: 25070083
[56]
Isaacs L . Isr. J. Chem., 2011,51:578. a4508026-f3e7-4792-a82c-141e833703c2http://dx.doi.org/10.1002/ijch.201100022

doi: 10.1002/ijch.201100022
[57]
Kurkov S V, Loftsson T . Int. J. Pharm., 2013,453:167. https://www.ncbi.nlm.nih.gov/pubmed/22771733

doi: 10.1016/j.ijpharm.2012.06.055 pmid: 22771733
[58]
Keating G M . Drugs, 2016,76:1041. https://www.ncbi.nlm.nih.gov/pubmed/27324403

doi: 10.1007/s40265-016-0604-1 pmid: 27324403
[59]
Ottinger E A, Kao M L, Carrillo-Carrasco N, Yanjanin N, Shankar R K, Janssen M, Brewster M, Scott I, Xu X, Cradock J, Terse P, Dehdashti S J, Marugan J, Zheng W, Portilla L, Hubbs A, Pavan W J, Heiss J, Vite C H, Walkley S U, Ory D S, Silber S A, Porter F D, Austin C P, McKew J C . Curr. Top. Med. Chem., 2017,17:91. https://doi.org/10.2174/156802661701161114223616

doi: 10.2174/156802661701161114223616
[60]
Zhang Y M, Liu Y H, Liu Y . Adv. Mater, 2019,1806158.
[61]
Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B . Mater. Sci. Eng. C, 2019,96:872. https://www.ncbi.nlm.nih.gov/pubmed/30606602

doi: 10.1016/j.msec.2018.11.031 pmid: 30606602
[62]
Zheng Z, Geng W C, Xu Z, Guo D S . Isr. J. Chem., 2019, Doi: 10.1002/ijch.201900032.
[63]
Yang Y, Jia X, Zhang Y M, Li N, Liu Y . Chem. Commun, 2018,54:8713. https://www.ncbi.nlm.nih.gov/pubmed/30023992

doi: 10.1039/c8cc04783a pmid: 30023992
[64]
Yu J, Chen Y, Zhang Y H, Xu X, Liu Y . Org. Lett, 2016,18:4542. https://www.ncbi.nlm.nih.gov/pubmed/27589016

doi: 10.1021/acs.orglett.6b02183 pmid: 27589016
[65]
Liu B w, Zhou H, Zhou S t, Yuan J y . Eur. Polym. J., 2015,65:63. https://linkinghub.elsevier.com/retrieve/pii/S0014305715000294

doi: 10.1016/j.eurpolymj.2015.01.017
[66]
Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X, Liu C, Chen G, Jiang M . J. Am. Chem. Soc., 2016,138:1932. https://www.ncbi.nlm.nih.gov/pubmed/26799414

doi: 10.1021/jacs.5b11733 pmid: 26799414
[67]
Zhang H, Fan X, Suo R, Li H, Yang Z, Zhang W, Bai Y, Yao H, Tian W . Chem. Commun, 2015,51:15366. https://www.ncbi.nlm.nih.gov/pubmed/26343347

doi: 10.1039/c5cc05579b pmid: 26343347
[68]
Bai Y, Liu C P, Song X, Zhuo L, Bu H, Tian W . Chem. Asian J., 2018,13:3903. https://www.ncbi.nlm.nih.gov/pubmed/30311448

doi: 10.1002/asia.201801366 pmid: 30311448
[69]
Xu Z, Shaorui Jia S, Wang W, Yuan Z, Ravoo B J, Guo D S . Nat. Chem., 2019,11, 86. https://www.ncbi.nlm.nih.gov/pubmed/30455432

doi: 10.1038/s41557-018-0164-y pmid: 30455432
[70]
Ikeda A, Shinkai S . Chem. Rev, 1997,97:1713. https://www.ncbi.nlm.nih.gov/pubmed/11851464

doi: 10.1021/cr960385x pmid: 11851464
[71]
Rodik R V, Klymchenko A S, Jain N, Miroshnichenko S I, Richert L, Kalchenko V I, Mely Y . Chem. Eur. J., 2011,17:5526. https://www.ncbi.nlm.nih.gov/pubmed/21503994

doi: 10.1002/chem.201100154 pmid: 21503994
[72]
王以炫(Wang Y X), 刘育(Liu Y) . 化学学报(Acta Chimica Sinica), 2015,73:984.
[73]
Zhou Y, Li H, Yang Y W . Chin. Chem. Lett., 2015,26:825. https://linkinghub.elsevier.com/retrieve/pii/S1001841715000613

doi: 10.1016/j.cclet.2015.01.038
[74]
Giuliani M, Morbioli I, Sansone F, Casnati A . Chem. Commun, 2015,51:14140. https://www.ncbi.nlm.nih.gov/pubmed/26286064

doi: 10.1039/c5cc05204a pmid: 26286064
[75]
Rodik R V, Klymchenko A S, Mely Y, Kalchenko V I . J. Inclus. Phenom. Macrocycl. Chem., 2014,80:189. http://link.springer.com/10.1007/s10847-014-0412-8

doi: 10.1007/s10847-014-0412-8
[76]
Wang J, Ding X, Guo X . Adv. Colloid Interface Sci., 2019,269:187. https://www.ncbi.nlm.nih.gov/pubmed/31082545

doi: 10.1016/j.cis.2019.04.004 pmid: 31082545
[77]
Peng S, Gao J, Liu Y, Guo D S . Chem. Commun., 2015,51:16557. https://www.ncbi.nlm.nih.gov/pubmed/26421328

doi: 10.1039/c5cc05170c pmid: 26421328
[78]
Wang Y X, Guo D S, Duan Y C, Wang Y J, Liu Y . Sci. Rep, 2015,5:9019. https://www.ncbi.nlm.nih.gov/pubmed/25761778

doi: 10.1038/srep09019 pmid: 25761778
[79]
Chen M X, Li T, Peng S, Tao D . New J. Chem., 2016,40:9923. http://xlink.rsc.org/?DOI=C6NJ01986B

doi: 10.1039/C6NJ01986B
[80]
Mo J, Eggers P K, Yuan Z x, Raston C L, Lim L Y . Sci. Rep., 2016,6:23489. https://www.ncbi.nlm.nih.gov/pubmed/27009430

doi: 10.1038/srep23489 pmid: 27009430
[81]
Granata G, Paterniti I, Geraci C, Cunsolo F, Esposito E, Cordaro M, Blanco A R, Cuzzocrea S, Consoli G M L . Mol. Pharmaceutics, 2017,14:1610. https://www.ncbi.nlm.nih.gov/pubmed/28394618

doi: 10.1021/acs.molpharmaceut.6b01066 pmid: 28394618
[82]
Wang Y X, Zhang Y M, Wang Y L, Liu Y . Chem. Mater, 2015,27:2848. https://pubs.acs.org/doi/10.1021/cm504653k

doi: 10.1021/cm504653k
[83]
Xue M, Yang Y, Chi X, Zhang Z, Huang F . Acc. Chem. Res., 2012,45:1294. https://www.ncbi.nlm.nih.gov/pubmed/22551015

doi: 10.1021/ar2003418 pmid: 22551015
[84]
Ogoshi T, Yamagishi T a, Nakamoto Y . Chem. Rev., 2016,116:7937. https://www.ncbi.nlm.nih.gov/pubmed/27337002

doi: 10.1021/acs.chemrev.5b00765 pmid: 27337002
[85]
薛敏(Xue M), 范芳芳(Fan F F), 杨勇(Yang Y), 陈传峰(Chen C F) . 化学进展(Prog. Chem.), 2019,31:491.
[86]
Yu G, Chen X . Theranostics, 2019,9:3041. https://www.ncbi.nlm.nih.gov/pubmed/31244941

doi: 10.7150/thno.31653 pmid: 31244941
[87]
邵为(Shao W), 刘昕(Liu X), 王婷婷(Wang T T), 胡晓玉(Hu X Y) . 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1107.
[88]
Sathiyajith C, Shaikh R R, Han Q, Zhang Y, Meguellati K, Yang Y W . Chem. Commun., 2017,53:677. http://xlink.rsc.org/?DOI=C6CC08967D

doi: 10.1039/C6CC08967D
[89]
Yu G, Yu W, Shao L, Zhang Z, Chi X, Mao Z, Gao C, Huang F . Adv. Funct. Mater., 2016,26:8999. http://doi.wiley.com/10.1002/adfm.v26.48

doi: 10.1002/adfm.v26.48
[90]
Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L . J. Am. Chem. Soc., 2013,135:10542. https://www.ncbi.nlm.nih.gov/pubmed/23795864

doi: 10.1021/ja405014r pmid: 23795864
[91]
Cao Y, Hu X Y, Li Y, Zou X, Xiong S, Lin C, Shen Y Z, Wang L . J. Am. Chem. Soc., 2014,136:10762. https://www.ncbi.nlm.nih.gov/pubmed/25033305

doi: 10.1021/ja505344t pmid: 25033305
[92]
Hu X Y, Jia K, Cao Y, Li Y, Qin S, Zhou F, Lin C, Zhang D, Wang L . Chem.-Eur. J., 2015,21:1208. https://www.ncbi.nlm.nih.gov/pubmed/25370941

doi: 10.1002/chem.201405095 pmid: 25370941
[93]
Liu X, Shao W, Zheng Y, Yao C, Peng L, Zhang D, Hu X Y, Wang L . Chem. Commun, 2017,53:8596. https://www.ncbi.nlm.nih.gov/pubmed/28718478

doi: 10.1039/c7cc04932c pmid: 28718478
[94]
Zuo M, Qian W, Xu Z, Shao W, Hu X Y, Zhang D, Jiang J, Sun X, Wang L . Small, 2018,14:1801942. http://doi.wiley.com/10.1002/smll.v14.38

doi: 10.1002/smll.v14.38
[95]
Hu X Y, Gao L, Mosel S, Ehlers M, Zellermann E, Jiang H, Knauer S K, Wang L, Schmuck C . Small, 2018,14, 1803952. http://doi.wiley.com/10.1002/smll.v14.52

doi: 10.1002/smll.v14.52
[96]
Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z . Angew. Chem. Int. Ed., 2014,53:13126. https://www.ncbi.nlm.nih.gov/pubmed/25267331

doi: 10.1002/anie.201407272 pmid: 25267331
[97]
Yang K, Chang Y, Wen J, Lu Y, Pei Y, Cao S, Wang F, Pei Z . Chem. Mater, 2016,28:1990. https://pubs.acs.org/doi/10.1021/acs.chemmater.6b00696

doi: 10.1021/acs.chemmater.6b00696
[98]
Yang K, Pei Y, Wen J, Pei Z . Chem. Commun, 2016,52:9316. https://www.ncbi.nlm.nih.gov/pubmed/27332040

doi: 10.1039/c6cc03641d pmid: 27332040
[99]
Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L . Angew. Chem. Int. Ed., 2005,44:4844. https://www.ncbi.nlm.nih.gov/pubmed/16052668

doi: 10.1002/anie.200460675 pmid: 16052668
[100]
焦阳(Jiao Y), 张希(Zhang X) . 化学学报(Acta Cinica Sinica), 2018,76:659.
[101]
Hou C, Zeng X, Gao Y, Qiao S, Zhang X, Xu J, Liu J . Isr. J. Chem., 2018,58:286. http://doi.wiley.com/10.1002/ijch.v58.3-4

doi: 10.1002/ijch.v58.3-4
[102]
Zou H, Liu J, Li Y, Li X, Wang X . Small, 2018,14:1802234. http://doi.wiley.com/10.1002/smll.v14.46

doi: 10.1002/smll.v14.46
[103]
Liu L . J. Inclus. Phenom. Macrocycl. Chem., 2017,87:1. http://link.springer.com/10.1007/s10847-016-0683-3

doi: 10.1007/s10847-016-0683-3
[104]
Kuok K I, Li S, Wyman I W, Wang R . Ann. New York Acad. Sci., 2017,1398:108. https://www.ncbi.nlm.nih.gov/pubmed/28692768

doi: 10.1111/nyas.13376 pmid: 28692768
[105]
Walker S, Oun R, McInnes F J, Wheate N J . Isr. J. Chem., 2011,51:616. http://doi.wiley.com/10.1002/ijch.201100033

doi: 10.1002/ijch.201100033
[106]
Macartney D H . Isr. J. Chem., 2011,51:600. 0ceb3a36-875e-4212-ba77-629c75daf150http://dx.doi.org/10.1002/ijch.201100040

doi: 10.1002/ijch.201100040
[107]
Yin H, Wang R . Isr. J. Chem., 2018,58:188. http://doi.wiley.com/10.1002/ijch.v58.3-4

doi: 10.1002/ijch.v58.3-4
[108]
张智睿(Zhang Z R), 阚京兰(Kan J L), 冯华明(Feng H M), 刘青云(Liu Q Y), 陶朱(Tao Z), 肖昕(Xiao X) . 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1972.
[109]
黄净净(Huang J J), 许志玲(Xu Z L), 练小卫(Lian X), 张晓东(Zhang X D W), 陶朱(Tao Z), 周清娣(Zhou Q D), 张前军(Zhang Q J), 卫钢(Wei G) . 高等学校化学学报(Chinese Journal of Chinese University), 2018,39:2425.
[110]
Xu Z, Lian X, Li M, Zhang X, Wang Y, Tao Z, Zhang Q . Chem. Res. Chin. Univ., 2017,33:736. http://link.springer.com/10.1007/s40242-017-7096-8

doi: 10.1007/s40242-017-7096-8
[111]
Hettiarachchi G, Nguyen D, Wu J, Lucas D, Ma D, Isaacs L, Briken V . PLoS One, 2010,5:e10514. https://www.ncbi.nlm.nih.gov/pubmed/20463906

doi: 10.1371/journal.pone.0010514 pmid: 20463906
[112]
Uzunova V D, Cullinane C, Brix K, Nau W M, Day A I . Org. Biomol. Chem., 2010,8:2037. https://www.ncbi.nlm.nih.gov/pubmed/20401379

doi: 10.1039/b925555a pmid: 20401379
[113]
Oun R, Floriano R S, Isaacs L, Rowan E G, Wheate N J . Toxicol. Res., 2014,3:447. https://academic.oup.com/toxres/article/3/6/447-455/5573428

doi: 10.1039/C4TX00082J
[114]
Li F, Gorle A K, Ranson M, Vine K L, Kinobe R, Feterl M, Warner J M, Keene F R, Collins J G, Day A I . Org. Biomol. Chem., 2017,15:4172. https://www.ncbi.nlm.nih.gov/pubmed/28443914

doi: 10.1039/c7ob00724h pmid: 28443914
[115]
Zhang X, Xu X, Li S, Wang L H, Zhang J, Wang R . Sci. Rep, 2018,8:8819. https://www.ncbi.nlm.nih.gov/pubmed/29891955

doi: 10.1038/s41598-018-27206-6 pmid: 29891955
[116]
Park K M, Lee D W, Sarkar B, Jung H, Kim J, Ko Y H, Lee, K E, Jeon H, Kim K . Small, 2010,6:1430. https://www.ncbi.nlm.nih.gov/pubmed/20564485

doi: 10.1002/smll.201000293 pmid: 20564485
[117]
Pennakalathil J, Jahja E, Özdemir E S, Konu O, Tuncel D . Biomacromolecules, 2014,15:3366. https://www.ncbi.nlm.nih.gov/pubmed/25075758

doi: 10.1021/bm500839j pmid: 25075758
[118]
Yang Y W . MedChemComm, 2011,2:1033. a852f30e-5f6a-40ec-a153-6e72eae88111http://dx.doi.org/10.1039/c1md00158b

doi: 10.1039/c1md00158b
[119]
Liu J, Du X, Zhang X . Chem. Eur. J., 2011,17:810. https://www.ncbi.nlm.nih.gov/pubmed/21226095

doi: 10.1002/chem.201002899 pmid: 21226095
[120]
Wu X, Zhang Y M, Liu Y . RSC Adv, 2016,6:99729. http://xlink.rsc.org/?DOI=C6RA21900D

doi: 10.1039/C6RA21900D
[121]
Chen Y, Huang Z, Xu J F, Sun Z, Zhang X . ACS Appl. Mater. Interfaces, 2016,8:22780. https://www.ncbi.nlm.nih.gov/pubmed/27548507

doi: 10.1021/acsami.6b08295 pmid: 27548507
[122]
Chen Y, Huang Z, Zhao H, Xu J F, Sun Z, Zhang X . ACS Appl. Mater. Interfaces, 2017,9:8602. https://www.ncbi.nlm.nih.gov/pubmed/28194936

doi: 10.1021/acsami.7b01157 pmid: 28194936
[123]
Loh X J, Barrio J, Toh P, Lee T C, Jiao D, Rauwald U, Appel E A, Scherman O A . Biomacromolecules, 2012,13:84. https://www.ncbi.nlm.nih.gov/pubmed/22148638

doi: 10.1021/bm201588m pmid: 22148638
[124]
Wang Y, Li D, Wang H, Chen Y, Han H, Jin Q, Ji J . Chem. Commun, 2014,50:9390. https://www.ncbi.nlm.nih.gov/pubmed/25005141

doi: 10.1039/c4cc03978e pmid: 25005141
[125]
Ma D, Hettiarachchi G, Nguyen D, Zhang B, Wittenberg J B, Zavalij P V, Briken V, Isaacs L . Nat. Chem, 2012,4:503. https://www.ncbi.nlm.nih.gov/pubmed/22614387

doi: 10.1038/nchem.1326 pmid: 22614387
[126]
Li F, Liu D, Liao X, Zhao Y, Li R, Yang B . Bioorg. Med. Chem., 2019,27:525. https://www.ncbi.nlm.nih.gov/pubmed/30606675

doi: 10.1016/j.bmc.2018.12.035 pmid: 30606675
[127]
Mao D, Liang Y, Liu Y, Zhou X, Ma J, Jiang B, Liu J, Ma D . Angew. Chem. Int. Ed., 2017,56:12614. https://www.ncbi.nlm.nih.gov/pubmed/28812329

doi: 10.1002/anie.201707164 pmid: 28812329
[128]
Mao W, Mao D, Yang F, Ma D . Chem. Eur. J., 2019,25:2272. https://www.ncbi.nlm.nih.gov/pubmed/30511775

doi: 10.1002/chem.201804835 pmid: 30511775
[129]
Jiang S, Lan S, Mao D, Yang X, Shi K, Ma D . Chem. Commun, 2018,54:9486. https://www.ncbi.nlm.nih.gov/pubmed/30087959

doi: 10.1039/c8cc05552a pmid: 30087959
[130]
Maeda H . J. Drug Target., 2017,25:781. https://www.ncbi.nlm.nih.gov/pubmed/28988499

doi: 10.1080/1061186X.2017.1365878 pmid: 28988499
[131]
Wang L, Huo M, Chen Y, Shi J . Adv. Healthcare Mater., 2018,7:1701156. http://doi.wiley.com/10.1002/adhm.v7.8

doi: 10.1002/adhm.v7.8
[132]
Tian J, Wang H, Zhang D W, Liu Y, Li Z T . Natl. Sci. Rev., 2017,4:426. https://academic.oup.com/nsr/article/4/3/426/3072203

doi: 10.1093/nsr/nwx030
[133]
王辉(Wang H), 张丹维(Zhang D W), 黎占亭(Li Z T) . 高分子学报(Acta Polymerica Sinica), 2017,19.
[134]
Li X F, Yu S B, Yang B, Tian J, Wang H, Zhang D W, Liu Y, Li Z T . Sci. China Chem., 2018,61:830. https://doi.org/10.1007/s11426-018-9234-2

doi: 10.1007/s11426-018-9234-2
[135]
Tian J, Zhou T Y, Zhang S C, Aloni S, Altoe M Vi, Xie S H, Wang H, Zhang D W, Zhao X, Liu Y, Li Z T . Nat. Commun., 2014,5:5574. https://www.ncbi.nlm.nih.gov/pubmed/25470406

doi: 10.1038/ncomms6574 pmid: 25470406
[136]
Wu Y P, Yang B, Tian J, Yu S B, Wang H, Zhang D W, Liu Y, Li Z T . Chem. Commun., 2017,53:13367. https://www.ncbi.nlm.nih.gov/pubmed/29199747

doi: 10.1039/c7cc08824h pmid: 29199747
[137]
Yu S B, Qi Q, Yang B, Wang H, Zhang D W, Liu Y, Li Z T . Small, 2018,14:1801037. http://doi.wiley.com/10.1002/smll.201801037

doi: 10.1002/smll.201801037
[138]
Tian J, Yao C, Yang W L, Zhang L, Zhang D W, Wang H, Zhang F, Liu Y, Li Z T . Chin. Chem. Lett., 2017,28:798. https://linkinghub.elsevier.com/retrieve/pii/S1001841717300323

doi: 10.1016/j.cclet.2017.01.010
[139]
Yao C, Tian J, Wang H, Zhang D W, Liu Y, Zhang F, Li Z T . Chin. Chem. Lett., 2017,28:893. https://linkinghub.elsevier.com/retrieve/pii/S1001841717300141

doi: 10.1016/j.cclet.2017.01.005
[140]
Yang B, Zhang X D, Jian Li J, Tian J, Wu Y P, Yu F X, Wang R, Wang H, Zhang D W, Liu Y, Zhou L, Li Z T . CCS Chem., 2019,1:156. https://www.chinesechemsoc.org/journal/ccschem

doi: 10.31635/20965745
[141]
Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W . Nat. Rev. Mater., 2016,1:16014. https://doi.org/10.1038/natrevmats.2016.14

doi: 10.1038/natrevmats.2016.14
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[8] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[9] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[10] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[11] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[14] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[15] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.