中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1341-1348 DOI: 10.7536/PC180123 Previous Articles   Next Articles

• Review •

The Study of Peptides Nanomedicine for Drug Delivery Systems

Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*   

  1. College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 81601598,81773662), the Jiangsu Province Young Natural Science Foundation (No.BK20151001), the Young Natural Science Foundation of Nanjing University of Chinese Medicine(No. 13XZR22), and the Research Innovation Program for Postgraduates of Jiangsu Province (No.KYCX181580)
PDF ( 936 ) Cited
Export

EndNote

Ris

BibTeX

Nanomaterials for drug delivery have become a hot issue in the field of modern medicine since the successful improvement of the physicochemical and biological properties to drugs. Among them, peptides, as an emerging class of building block for nanomedicine, have attracted an extensive research interest due to their excellent properties such as good biocompatibility, easy self-assembly and chemical diversities, which point out a new direction for researchers to construct the novel and intelligent drug delivery systems. Herein, we report that the self-assembly peptides are driven by the integrated roles of noncovalent forces, including hydrophobic interaction, hydrogen bonding, electrostatic interaction and π-π stacking, to form a variety of well-defined nanostructures, such as micelles, vesicles, nanospheres, nanofibers, nanotube, disc and so on. Furtherly, the basic concept of peptide drug conjugates (PDCs) and their advantages of high drug loading, high bioavailability and specific targeting are introduced. The research in recent years on the construction of PDCs nanomedicine for drug delivery based on the functional peptide is summarized. We mainly focus on the most recent five-year report to construct the smart drug delivery system with the multifunction involved in self-assembly, enhancing solubility, long-term acting, targeting, stimulating response and cell transmembrane function.
Contents
1 Introduction
2 Self-assembling peptides
2.1 Classification of self-assembling peptides
2.2 The driving force of peptide assembly
3 Peptide drug conjugate for drug delivery system
3.1 Self-assembling peptide drug conjugates
3.2 Long-term acting peptide-drug conjugates
3.3 Targeting peptide drug conjugates
3.4 Responsive polypeptide drug conjugates
3.5 Transmembrane polypeptide drug conjugates
4 Conclusion

CLC Number: 

[1] Türeli N G, Türeli A E, Schneider M. Int. J. Pharm., 2016, 515(1/2):343.
[2] Atak B H, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G. Carbohydr. Polym., 2017, 164:200.
[3] Yao Q Q, Cosme J G, Xu T, Miszuk J M, Picciani P H, Fong H, Sun H L. Biomaterials, 2017, 115:115.
[4] Deodhar G V, Adams M L, Joardar S, Joglekar M, Davidson M, Mettler M, Toler S A, Davies F, Trewyn B G. Langmuir, 2017, 34(1):228.
[5] Wu W, Jiang C Z, Roy V A. Nanoscale, 2016, 8(47):19421.
[6] Ghadiri M R, Granja J R, Milligan R A, Mcree D E, Khazanovich N. Nat., 1993, 366(6453):324.
[7] Zhang S, Holmes T, Lockshin C, Rich A. Proc. Natl. Acad. Sci., 1993, 90(8):3334.
[8] Chen Z P, Xing L, Fan Q, Cheetham A G, Lin R, Holt B, Chen L W, Xiao Y Y, Cui H G. Theranostics, 2017, 7(7):2003.
[9] Smith D J, Brat G A, Medina S H, Tong D, Yong H, Grahammer J, Furtmüller G J, Oh B C, Nagysmith K J, Walczak P. Nat. Nanotechnol., 2016, 11(1):95.
[10] Dehsorkhi A, Castelletto V, Hamley I W. J. Pept. Sci., 2014, 20(7):453.
[11] Hu X X, He P P, Qi G B, Gao Y J, Lin Y X, Chao Y, Yang P P, Hao H, Lei W, Hao W. ACS Nano, 2017, 11(4):4086.
[12] Ardoña H A M, Tovar J D. Chem. Sci., 2015, 6(2):1474.
[13] Groot N S D, Parella T, Aviles F X, Vendrell J, Ventura S. Biophys. J., 2007, 92(5):1732.
[14] Mandal D, Nasrolahi S A, Parang K. Org. Biomol. Chem., 2014, 12(22):3544.
[15] Deshmukh S A, Solomon L A, Kamath G, Fry H C. Nat. Com., 2016, 7:12367.
[16] Yu T, Lee O S, Schatz G C. J. Phys. Chem. A, 2013, 117(32):7453.
[17] Grajda M, Lewińska M J, Szumna A. Org. Biomol. Chem., 2017, 15(40):8513.
[18] Hamley I W. Soft Matter, 2011, 7(20):9533.
[19] Aulisa L, Dong H, Hartgerink J D. Biomacromolecules, 2009, 10(9):2694.
[20] Trent A, Marullo R, Lin B, Black M, Tirrell M. Soft Matter, 2011, 7(20):9572.
[21] Zhu X M, Zou R F, Sun P, Wang Q, Wu J C. Polym. Chem., 2018, 9:69.
[22] Niece K L, Hartgerink J D, Donners J J, Stupp S I. J. Am. Chem. Soc., 2003, 125(24):7146.
[23] Ramachandran S, Tseng Y, Yu Y B. Biomacromolecules, 2005, 6(3):1316.
[24] Behanna H A, Donners J J, Gordon A C, Stupp S I. J. Am. Chem. Soc., 2005, 127(4):1193.
[25] Tsonchev S, And G C S, Ratner M A. J. Phys. Chem. B, 2015, 108(26):8817.
[26] Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2016, 45(14):3935.
[27] Bushuyev O S, Peterson G R, Brown P, Maiti A, Gee R H, Weeks B L, Hope-Weeks L J. Chemistry, 2013, 19(5):1706.
[28] Luo J H, Graslund A, Abrahams J P. J. Biol. Chem., 2017, 292(5):2046.
[29] Bowerman C J, Liyanage W, Federation A J, Nilsson B L. Biomacromolecules, 2011, 12(7):2735.
[30] Bertness K A, Sanders A W, Rourke D M, Harvey T E, Roshko A, Schlager J B, Sanford N A. Adv. Funct. Mater., 2010, 20(17):2911.
[31] Yin W, Cheetham A G, Angacian G, Hao S, Xie L S, Cui H G. Adv. Drug Delivery Rev., 2016,:110.
[32] Fung S Y, Yang H, Sadatmousavi P, Sheng Y, Mamo T, Nazarian R, Chen P. Adv. Funct. Mater., 2011, 21(13):2456.
[33] Webber M J, Newcomb C J, Bitton R, Stupp S I. Soft Matter, 2011, 7(20):9665.
[34] Wang Q R, Zhang X, Zheng J H, Liu D J. RSC Adv., 2014, 4(48):25461.
[35] Li J Y, Kuang Y, Gao Y, Du X, Shi J F, Xu B. J. Am. Chem. Soc., 2013, 135(2):542.
[36] Fatouros D, Lamprou D A, Urquhart A J, Yannopoulos S N, Vizirianakis I S, Zhang S, Koutsopoulos S. ACS Appl. Mater., 2014, 6(11):8184.
[37] Rodríguezvázquez N, Amorín M, Granja J R. Org. Biomol. Chem., 2017, 15(21):4490.
[38] Panda J J, Mishra A, Basu A, Chauhan V S. Biomacromolecules, 2008, 9(8):2244.
[39] Yan C Q, Pochan D J. Cheminform, 2010, 39(9):3528.
[40] Panda J J,Yandrapu S,Kadam R S,Chauhan V S,Kompella U B. J. Control Release, 2013, 172(3):1151.
[41] Jin H L, Zhao G F, Hu J L, Ren Q G, Yang K, Wan C, Huang A, Li P D, Feng J P, >ñ J W. ACS Appl. Mater., 2017, 9(31):25755.
[42] Castelletto V, Cheng G, Stain C, Connon C J, Hamley I W. Langmuir, 2012, 28(31):11599.
[43] Tajima A, Liu W, Pradhan I, Bertera S, Lakomy R, Rudert W A, Trucco M, Meng W S, Fan Y. J. Vis. Exp., 2016,6(112):54062.
[44] Mazza M, Notman R, Anwar J, Rodger A, Hicks M, Parkinson G, Mccarthy D, Daviter T, Moger J, Garrett N. ACS Nano, 2013, 7(2):1016.
[45] Lindsey S, Piatt J H, Worthington P, Sönmez C, Satheye S, Schneider J P, Pochan D J, Langhans S A. Biomacromolecules, 2015, 16(9):2672.
[46] Xu X D, Liang L, Chen C S, Lu B, Wang N L, Jiang F G, Zhang X Z, Zhuo R X. ACS Appl. Mater., 2010, 2(9):2663.
[47] Webber M J, Matson J B, Tamboli V K, Stupp S I. Biomaterials, 2012, 33(28):6823.
[48] Soukasene S, Toft D J, Moyer T J, Lu H, Lee H K, Standley S M, Cryns V L, Stupp S I. ACS Nano, 2011, 5(11):9113.
[49] Wang Q R, Zhang X, Zheng J H, Liu D J. RSC Adv., 2014, 4:25461.
[50] Li X M, Li J Y, Gao Y, Kuang Y, Shi J F, Xu B. J. Am. Chem.Soc., 2010, 132:17707.
[51] Wang M, Cheetham A G, Cui H G. Nano Today, 2016, 11(1):13.
[52] Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Ostlund P, Hallbrink M, Langel U. Biochem. Pharmacol., 2006, 71(4):416.
[53] He X, Na M H, Kim J S, Lee G Y, Park J Y, Hoffman A S, Nam J O, Han S E, Sim G Y, Oh Y K. Mol. Pharmaceutics., 2011, 8(2):430.
[54] Yu-Yin L E, Huang L J, Jun-Yan H E. J. Chinese Oncology, 2017, 23(6):502.
[55] Meng S Y, Su B, Li W, Ding Y M, Tang L, Zhou W, Song Y, Li H Y, Zhou C C. Nanotechnology, 2010, 21(41):415103.
[56] Mayr J, Hager S, Koblmüller B, Klose M H M, Holste K, Fischer B, Pelivan K, Berger W, Heffeter P, Kowol C R. J. Biol. Inorg. Chem., 2017, 22(4):591.
[57] Khodadust F, Ahmadpour S, Aligholikhamseh N, Abedi S M, Hosseinimehr S J. Eur. J. Med. Chem., 2017, 144:767.
[58] Dobroff A S, Eckhardt B L, Salmeron C C, Cimino D F, Arap W, Pasqualini R. Cancer Res., 2015, 75(15 Supplement):3543.
[59] Mokhtarzadeh A, Parhiz H, Hashemi M, Ayatollahi S, Abnous K, Ramezani M. AAPS PharmSciTech., 2015, 16(5):1025.
[60] Yao H R, Veine D M, Livant D L. Breast Cancer Res. Treat., 2016, 157(3):1.
[61] Milosavljevic V, Krejcova L, Guran R, Buchtelova H, Wawrzak D, Richtera L, Heger Z, Kopel P, Adam V. Colloid Surface B, 2017, 156:123.
[62] Ghosh A, Raju N, Tweedle M, Kumar K. Cancer Biother Radiopharm, 2017, 32(1):24.
[63] Xiao W J, Chen X, Yang L, Mao Y Q, Wei Y Q, Chen L J. Int. J. Pharm., 2010, 393(1/2):120.
[64] Katanasaka Y, Ishii T, Asai T, Naitou H, Maeda N, Koizumi F, Miyagawa S, Ohashi N. Int. J. Cancer., 2010, 127(11):2685.
[65] Rivera-Fillat M P, Reig F, Martínez E M, Grau-Oliete M R. J. Pept. Sci., 2010, 16(7):315.
[66] He S, Cen B H, Liao L M, Wang Z, Qin Y X, Wu Z M, Liao W J, Zhang Z Y, Ji A M. Drug Deliv., 2017, 24(1):471.
[67] Nishimura Y, Takeda K, Ezawa R, Ishii J, Ogino C, Kondo A. J. Nanobiotechnology, 2014, 12(1):11.
[68] Zhu L, Wang T, Perche F, Taigind A, Torchilin V P. PNAS, 2013, 110(42):17047.
[69] Zhu L, Perche F, Wang T, Torchilin V P. Biomaterials, 2014, 35(13):4213.
[70] Tu Y, Lin Z. J. Control Release., 2015, 212:94.
[71] He B, Ma S Y, Peng G F, He D H. Nanomedicine, 2017, 14(2):365.
[72] Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Drug Discov. Today, 2015, 20(1):76.
[73] Ablan F O, Spaller B L, Abdo K, Almeida P. Biophys J., 2016, 111(8):1738.
[74] Vasconcelos L, Madani F, Arukuusk P, Parnaste L, Graslund A, Langel U. Biochim Biophys Acta, 2014, 1838(12):3118.
[75] Bolhassani A, Jafarzade B S, Mardani G. Peptides, 2017, 87:50.
[76] Xue G Q, Liu Z, Wang L X, Zu L. J. Mass Spectrom., 2015, 50(1):220.
[77] Jones S, Howl J. Methods Mol Biol., 2011, 683(4):291.
[78] Duan Z Q, Chen C, Qin J, Liu Q, Wang Q, Xu X C, Wang J X. Drug Deliv., 2017, 24(1):752.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[3] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[4] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[5] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[6] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[7] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[10] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[11] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[12] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[13] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[14] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[15] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.